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Background: The diagnosis of attention deficit hyperactivity disorder (ADHD) relies

on history and observation, as no reliable biomarkers have been identified. In this

study, we compared a large single diagnosis group of patients with ADHD (combined,

inattentive, and hyperactive) to healthy controls using brain perfusion single-photon

emission computed tomography (SPECT) imaging to determine specific brain regions

which could serve as potential biomarkers to reliably distinguish ADHD.

Methods: In a retrospective analysis, subjects (n = 1,135) were obtained from a large

multisite psychiatric database, where resting state (baseline) and on-task SPECT scans

were obtained. Only baseline scans were analyzed in the present study. Subjects were

separated into two groups – Group 1 (n = 1,006) was composed of patients who only

met criteria for ADHD with no comorbid diagnoses, while a control group (n = 129)

composed of individuals who did not meet criteria for any psychiatric diagnosis, brain

injury, or substance use served as a non-matched control. SPECT regions of interests

(ROIs) and visual readings were analyzed using binary logistic regression. Predicted

probabilities from this analysis were inputted into a Receiver Operating Characteristic

analysis to identify sensitivity, specificity, and accuracy.

Results: The baseline ROIs and visual readings show significant separations from

healthy controls. Sensitivity of the visual reads was 100% while specificity was >97%.

The sensitivity and specificity of the post-hoc ROI analysis were both 100%. Decreased

perfusion was primarily seen in the orbitofrontal cortices, anterior cingulate gyri, areas

of the prefrontal cortices, basal ganglia, and temporal lobes. In addition, ROI analysis

revealed some unexpected areas with predictive value in distinguishing ADHD, such as

cerebellar subregions and portions of the temporal lobes.

Conclusions: Brain perfusion SPECT distinguishes adult ADHD patients without

comorbidities from healthy controls. Areas which were highly significantly different from

control and thus may serve as biomarkers in baseline SPECT scans included: medial

anterior prefrontal cortex, left anterior temporal lobe, and right insular cortex. Future

studies of these potential biomarkers in ADHD patients with comorbidities are warranted.
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INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is one the
most costly psychiatric disorders, conservatively estimated to be
around 42.5 billion USD annually (1). ADHD is also one of
the most prevalent disorders in the USA with ∼5.29–10% of
school-aged children estimated to suffer from the disorder (1).
Despite these enormous costs and the issues of administering
stimulant medication to children, there remains no empirically
validated means by which ADHD can be diagnosed. Objective
markers of ADHD would not only improve reliability of the
diagnosis but might also allow for precision medicine treatments
(2). Problems associated with the use of subjective criteria
for diagnosing ADHD are extensive (3). Subjective diagnostic
criteria and related diagnostic processes are highly vulnerable to
variability by different clinics and by different clinicians within
the same clinic (4, 5). Moreover, even when clinicians strictly
adhere to the DSM method for diagnosing ADHD, there is also
significant variation in the rates of ADHD secondary to the
DSM versions utilized by a clinician (6). The problem does not
become easier with adult ADHD patients with whom confounds
of coping strategies, substance use, and comorbidities cloud the
diagnostic picture (7).

Furthermore, the cardinal symptom of ADHD—inattention—
is a non-specific symptom. Inattention is found not only in
ADHD, mania, anxiety, and depression, but it is also found in
traumatic brain injury, carbon monoxide poisoning, cadmium
toxicity, lead toxicity, schizophrenia, post-traumatic stress
disorder (PTSD), post-coronary bypass syndrome, multiple
sclerosis, substance abuse, space-occupying lesions, CNS
infections, dementia, and a litany of other conditions which
alter frontal lobe functioning. Distinguishing among these
alternatives by interview alone is challenging, because, for
instance, there is no specific question that will reveal lead toxicity
or cadmium toxicity. Similarly, an interview may or may not
uncover a history of brain injury, depending on the degree
of anterograde amnesia or how the patient has trivialized the
impact of a concussive event. The authors have seen numerous
cases of drowning, toxicity, post-pediatric surgery, hypomania,
and irritable depression which were misdiagnosed clinically as
ADHD. An additional challenge in diagnosing ADHD, regardless
of age, is that comorbidity is the rule, rather than the exception
in ADHD.

DIAGNOSTIC EVALUATION OF ADHD

The base level of precision in the diagnostic evaluation of ADHD
is the use of rating scales. Measures such as the Vanderbilt
Rating Scale (6), and the Conners Parent Rating Scales (8) are
quantifiable, but lack diagnostic precision. Scales are dependent
upon the subjective opinion of parents and/or teachers. Symptom
overlap of scale items across multiple DSM diagnoses is the rule
rather than the exception (9, 10).

A higher level of accuracy can be derived by the use
of computerized tests of attention. While there is perception
that continuous performance tests are the “objective standard”
for ADHD diagnosis, the research demonstrates a distinct

gap between the computerized diagnosis and the clinical
presentation. For example, correlation between the Conners
Continuous Performance Test (CPT) results and results of parent
or teacher symptom rating scales is low to moderate (11, 12).
The Test of Variables of Attention (TOVA) has a sensitivity of
∼85% and a false positive rate of 30% (11, 13). In contrast,
the CPT has a high false negative rate (14). Combining the
continuous performance test with an infrared motion sensor
(McLean Motion Attention Test or Quotient ADHD System)
has been FDA-cleared as a diagnostic tool for ADHD. Using
this system, Teicher et al. found that boys with ADHD moved
their heads 2.3 times more often than boys without ADHD
(15). However, this system is less effective in the diagnosis of
inattentive-type ADHD and of adult ADHD.

BIOMARKERS FOR ADHD

The Food and Drug Administration’s (FDA) Biomarkers,
EndpointS and other Tools (BEST) glossary defines a biomarker
as: “a defined characteristic that is measured as an indicator
of normal biological processes, pathogenic processes, or
responses to an exposure or intervention, including therapeutic
interventions” (16). Note that the BEST definition does not limit
the nature of the characteristic to a molecule. Any characteristic
can serve as an indicator of pathology or response to therapeutic
intervention. A significant need remains for identifying
biomarkers for psychiatric conditions, including ADHD, to
provide more accurate diagnosis and to foster efforts to develop
more effective treatments. While there is widespread agreement
that fronto-striatal-thalamic pathways are altered in ADHD
(17, 18), it has been difficult to identify a reliable neuroimaging
biomarker, regardless of the neuroimaging technique.

Quantitative EEG
Quantitative electroencephalogram (qEEG) has been FDA-
approved as a diagnostic tool for ADHD and purported to serve
as a biomarker. However, the marker of elevated theta/beta wave
ratio is not reliably diagnostic. The pivotal study on the ratio
reported a 20% false negative rate (19). Moreover, Arns et al.
analyzed the collective data of more than 1,750 children and
concluded that the elevated theta/beta ratio was not a reliable
diagnostic measure for ADHD (20). Elevated theta/beta ratio
has not proven to be the endophenotype or biomarker that was
initially hoped.

Anatomical MRI
Anatomical magnetic resonance imaging (MRI) studies have
found a small number of consistent findings across the age-
range of ADHD (21). Multiple meta-analyses of case-control
studies have shown reduced volume of the striatum in children
with ADHD (22–25); however, the reduced striatal volume in
ADHD appears to correct itself with age (24, 26). Notably,
reduced striatal volume is also found in children with autism
spectrumdisorders (27). The ENIGMA-ADHDproject examined
the volumes of subcortical structures in a large sample of 1,713
cases of ADHD compared to 1,529 controls (28). In children,
slight, but significant, decreases in volume were found in the
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caudate, putamen, and amygdala, as well as the hippocampus
and nucleus accumbens. However, these differences were not
found in the adult subjects, confirming the results of some meta-
analyses (24, 26). Similarly, the ENIGMA-ADHD analysis of
cortical thickness found smaller surface areas in the frontal,
cingulate, and temporal cortices in children, but not in adults
(29). Further analysis of the ENIGMA data including 2,271 cases
of ADHD and 5,827 controls found cortical thickness was smaller
in orbital frontal, inferior frontal and cingulate cortices across all
age ranges, including adults.

One limitation of this anatomical MRI research is that
a majority of the studies do not control for comorbidities
or medication use. Also, the relative paucity of longitudinal
studies precludes determining if the brain volume changes
represent a persisting difference or a delay in maturation. An
additional limitation of this work is the high degree of variability
within groups for any given metric (27). Lastly, while the
ENIGMA-ADHDdatabase represents an impressive feat of cross-
site coordination and data collection, the ADHD population
captured therein is incompletely characterized. For example,
comorbidities are known in only 58% of the population and
stimulant use is documented for only about half of all cases (27).

Functional MRI
ADHD has been the subject of intense study using functional
MRI over the past 24 years, yet the results have been highly
divergent (30–32). Multiple meta-analyses have yielded mixed
results. To quote the authors of a recent meta-analysis of 96
studies with over 1,914 subjects which found no statistically
significant functional abnormalities in ADHD:

“The overall findings indicate a lack of regional convergence

in children/adolescents with ADHD, which might be due

to heterogenous clinical populations, various experimental

design, preprocessing, (or) statistical procedures in individual

publications.” (32)

Despite the harsh criticism of the heterogeneity in the field,
these authors did find a marginally significant decrease in left
inferior frontal cortex activity in male children only (32). Others
have found similar task-dependent inferior frontal cortex deficits,
although it varies whether the right or left side is more involved
(32–36). For example, Pliszka et al. found that adolescents with
ADHD (N = 17; age 13.4 ± 1.9 yrs) failed to show increased
perfusion in the anterior cingulate bilaterally and in the left
orbitofrontal prefrontal cortex during an inhibitory task (Stop
Signal Task) compared to 15 age-matched controls (age 13.2
± 1.9). These authors further analyzed the ADHD subjects by
comparing children who were medication-naïve and those who
were not. These two subgroups did not differ in performance
or functional neuroimaging findings (37). Smith et al. described
similar findings in a small group of 19 medication-naïve patients
(age 12.9 ± 1.9 yrs) compared to 27 healthy controls (age 14.1 ±
2.0 yrs). They found decreased perfusion in the left rostral mesial
frontal cortex during one interference-type concentration task
and decreased perfusion in the bilateral inferior prefrontal (right

more significant than left) and temporal lobes during a switch
task (34).

Efforts to explore networks either via the default mode
network (DMN) or using selected kernels to identify networks
of activation, have suggested that ADHD is not a disorder of
isolated brain regions, but more of a connectivity disorder (38).
Nevertheless, in a recent meta-analysis involving 30 studies with
1,094 subjects with ADHD and 884 Controls, no significant
functional networks or areas were found to distinguish ADHD
from Controls (38).

In addition, multiple areas of the cerebral cortex, including
parietal and temporal regions, as well as the cerebellum, have
shown decreased activity during concentration tasks in subjects
with ADHD (17). Thus, in addition to the technical discrepancies
in fMRI studies, the effects of age, medication use, comorbidities,
and recruitment or suppression of activity in multiple areas
of the brain have hampered the ability of fMRI to reveal a
consistent biomarker.

Machine Learning – Multimodal Imaging
Machine learning or artificial intelligence (AI) techniques have
been applied to neuroimaging in an effort to detect patterns and
findings not evident from simple statistical analysis. Numerous
AI techniques, such as support vector machine, multiple kernel
learning, deep belief network, convolutional neural network and
others have been applied to fMRI and anatomical MRI data
(39). For example, a group of 36 adults with ADHD and 36
controls underwent anatomicalMRI, fMRI using a cued attention
task, and diffusion tensor imaging. Twenty features were chosen
from this multimodal dataset and processed in a meta-algorithm
referred to as “ensemble learning techniques” (ELT). A series
of training and validation algorithms followed by multiple ELT-
based models yielded a number of parameters with favorable
sensitivity and specificity (18). Notably, decreased activity of
the right inferior frontal gyrus stood out as a strong predictor
of ADHD status. The limitation of the AI work to date has
been the relatively small sample sizes, the lack of consistent
findings across studies (18, 39, 40) and the need for multiple
time-consuming scans.

Functional SPECT
Functional neuroimaging studies of ADHD utilizing single-
photon emission computed tomography (SPECT) in children
and adults have included baseline studies, cognitive challenge
studies, and medication effect studies. The controlled clinical
trials have been small with a range of 6–54 subjects (reviewed in
Discussion). Our earliest study in this area included 54 children
who met DSM-III-R criteria for ADHD compared to a clinical
group of 18 children who did not meet those criteria (41). Visual,
semi-quantitative reads revealed areas of increased perfusion
in dorsal frontal cortices, while areas of decreased perfusion
were noted in the orbitofrontal/inferior prefrontal cortices in
baseline SPECT scans. SPECT scans during intellectual challenge
also revealed decreased inferior prefrontal cortical perfusion
(41). A smaller study by our group in 27 older adults (>50
years) who met DSM-IV criteria for ADHD, but not for major
depression, revealed a similar decrease of perfusion in the
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orbitofrontal cortices at baseline (42). Recently, a larger, open
retrospective case series of 170 patients ranging in age from
adolescent to adult utilized visual reads of SPECT scans found
that visual read to assess ADHD using 3D renderings yielded
83% sensitivity and 77% specificity in the diagnosis of ADHD
based predominately on the finding of decreased orbitofrontal
perfusion (43).

Findings across multiple studies are consistent but are
they reliable and can they be used on an individual basis
to predict the diagnosis of ADHD? This question is central
to the ability to use a SPECT neuroimaging finding as a
biomarker. Herein, we describe the first step in an analysis of a
community dataset totaling over 100,000 patients. We describe
the analysis of adults with ADHD free of comorbidity compared
to a control group who lack any psychiatric or neurological
diagnoses. Future steps will include comparisons of comorbid
ADHD across age groups and predictive modeling utilizing
machine learning algorithms involving iterative comparisons
of data subsets to assess the predictive value of specific
biomarker candidates.

MATERIALS AND METHODS

Study Subjects
This study adhered to the STAR-D guidelines (44) (see
Supplementary Material for table). This retrospective
review was approved by an accredited institutional review
board, IntegReview (http://www.integreview.com/). In this
retrospective analysis, all study subjects were patients at Amen
Clinics, Incorporated (ACI), a multidisciplinary group of
psychiatric clinics that incorporates SPECT neuroimaging
into diagnostic assessment and treatment (45). Methods of
clinical assessment, gamma camera equipment, scan analysis
software, and interpretation protocols are unified throughout
the group of clinics. All subjects were drawn from the following
ACI branches: Newport Beach, CA; Brisbane, CA; Fairfield,
CA; Tacoma, WA; Bellevue, WA; Reston, VA; New York, NY;
Atlanta, GA. Group 1 included patients seen from April 1996
to November 2013. Informed consent was obtained at the time
of patient evaluation from all patients or legal guardians to
allow their anonymous clinical data to be utilized for future
research purposes. We identified from this clinical cohort, Group
1 (n = 1,006) which included persons that met the DSM-IV
criteria for ADHD (46) and no other diagnoses (Table 1).
The diagnosis of ADHD (inattentive, impulsive-hyperactive,
combined) was determined by DSM-IV guided clinical interview,
internal DSM-IV-guided symptom checklists, and a Conners
Continuous Performance Test (47). The ADHD-only group was
compared to a Control group who did not meet criteria for any
psychiatric condition and had no history of traumatic or toxic
brain injury (n = 129). The Control group was recruited using
local advertisements in newspapers and local colleges. Each
subject met the clinical criteria for a healthy brain subject based
on our criteria that included the absence of current medical
illnesses, brain trauma, family history of psychiatric illness,
drug/alcohol abuse and no current or past evidence of behavioral
or psychiatric issues as measured by a detailed clinical history,

TABLE 1 | Demographic characteristics of Group 1.

Variable ADHD Control Statistical

comparison

(t, p)

(n = 1,006) (n = 129)

Age 37.7 ± 15.5 45.4 ± 16.9 2.9, 0.004

Gender (%

female)

34 44 30.6, <0.001

Race (%

non-Caucasian)

31 33 48.9, <0.001

Bipolar disorder 0 0 NA

Depression 0 0 NA

Dementia 0 0 NA

Brain trauma 0 0 NA

PTSD 0 0 NA

Substance

disorder

0 0 NA

Schizophrenia 0 0 NA

Minnesota Multiphasic Personality Inventory (MMPI) and
Structured Clinical Interview for Diagnosis (SCID) for DSM-IV.
The Control group recruitment and scanning study protocol was
approved by Western IRB (WIRB # 20021714). All subjects were
fully informed and gave their written consent.

SPECT Neuroimaging
Brain SPECT was applied as previously described in published
work using standard methods (48). To review, all patients were
instructed to refrain from the use of stimulants, caffeine,
ephedrine, bupropion, atomoxetine, nicotine, alcohol,
illicit drugs, opiates, benzodiazepines, guarana, or steroids
for 48 h prior to scanning. Other medications including
psychotropic medications were not restricted. For each scan,
an age- and weight-appropriate dose of technetium Tc99m-
HMPAO (commercially available as Ceretec) was administered
intravenously. At all clinic sites, photon emission was captured
using a high-resolution Picker (Phillips) Prism 3000 triple-
headed gamma camera with fan beam collimator with data
collected in 128 × 128 matrices, yielding 120 images per scan
with each image separated by three degrees spanning 360
degrees. A low pass filter was applied with a high cutoff. A Chang
attenuation correction was performed using linear methods (49).

All images were processed using Odyssey software (Picker),
with transaxial slices oriented horizontal to the AC-PC line.
Coronal, sagittal, and transaxial slice images (6.6mm apart,
unsmoothed) were then rendered in the Odyssey step-20 scale,
a commercial scale included in the Odyssey software package,
which scales all voxels to the brain maximum and assigns each
a color gradient based on its percentile of activity. Each color step
represents a (not necessarily linear) five-percentile-point change
in rCBF.

Baseline images were acquired in the following manner,
adapted from the Society of Nuclear Medicine and Molecular
Imaging Procedure Guideline for Brain Perfusion SPECT (50).
Patients sat upright in a quiet, dimly lit room with open eyes,
and the bolus was injected after 10min. Patients sat for an
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additional 10min post-injection. While concentration-task scans
were obtained for all patients, they are not included in the current
analysis and will be subject of future studies.

Clinician Visual Rating of Regions of
Interest
Methods for clinical interpretation of SPECT scans by visual read
have not changed during the 17 years of patient evaluations from
which these data are drawn. These methods have already been
fully described in prior peer reviewed work (42). To review, 14
gross general cortical regions of interest (ROIs) in orthogonal
planes were visually inspected and rated using the Mai Atlas of
the Human Brain (51): the left and right prefrontal poles [medial
aspect of Brodmann area (BA) 10, anterior rostral aspect of BA
12]; the left and right inferior orbitofrontal (BA 11); the left
and right anterior/lateral PFC (comprised of BAs 45, 46, 47, the
anterior aspect of area 9, the lateral aspect of area 10); the left and
right midlateral PFC (BAs 8 and 44, and the posterior aspect of
area 9); the left and right posterior frontal region (BAs 4, 6, and
the anterior aspect of area 43); the left and right parietal lobes
(BAs 1, 2, 3, 5, 7, 39, and 40, and the posterior aspect of area 43);
and the left and right occipital lobes (BAs 17, 18, and 19). In like
manner, we rated both the left and right cerebellum. In addition,
seven gross subcortical ROIs were rated: the anterior cingulate
gyrus (BAs 25, 32, 33, and the anterior aspect of BA 24); the
left and right insula; the left and right thalami; the left and right
caudate nuclei; and the left and right putamina. The following
non-linear scheme was used to visually rate rCBF: activity rated
above the top 95%was assigned a score of+4; 91–95%was scored
+3; 86–90% was scored+2; 81–85% was scored+1; 61–80% was
scored 0; 56–60% was scored −1; 51–55% was scored −2; 46–
50% was scored −3; and 41–45% was scored −4. Because of the
non-uniform nature of perfusion within any given ROI, each area
was rated for its highest and lowest activity, and the average of
the two was taken as a given ROI’s final rating, resulting in a
rating scale ranging from+4 to−4 in half-point intervals. Raters
had minimal clinical information. Interrater reliability was not
assessed for these particular groups; however, prior studies have
found a kappa of 0.79 or above for all visually-read regions (42).

Post-hoc ROI Analysis
All baseline scans in the two groups were subjected to post-
hoc ROI analysis. ROI counts were derived from the anatomical
regions in the AAL atlas (52), different, but closely aligned with
the regions in the atlas used for visual reads. ROI included in
this study were as follows: anterior cingulate, mid-orbital frontal,
insula, anterior inferior temporal, middle inferior temporal,
posterior inferior temporal, temporal pole, superior parietal,
hippocampus, thalamus, caudate, pallidum, cerebellar regions
7b,8,9, cerebellar crus1, and cerebellar vermis. To account for
outliers, T-score derived ROI count measurements were derived
using trimmed means that are calculated using all scores within
the 98% confidence interval (−2.58<Z<−2.58). The ROImean
for each subject and the trimmed mean for the sample are used

to calculate with the following formula:

T = 10∗((subject roi_mean− trimmed regional_avg)/

trimmed regional_stdev)+ 50

Statistical Analyses
All analyses were performed using Statistical Package for
Social Science (SPSS) (53). In Group 1, a receiver operating
characteristic (ROC) curve analysis was done using DSM-
IV diagnosis for ADHD as ground truth. The first step of
this analysis was constructing logistic regression models with
age, gender, and race as co-variates. Separate models were
constructed with the following independent variables: (i) Baseline
visual reads, and (ii) T-score ROI counts from baseline scans.
From each of these logistic regression models, odds ratios
and predicted probabilities were computed and then inputted
into an ROC analysis to determine area under the curve, or
accuracy of the given methods used. For ROI data, one way
ANOVA with Least Square Differences (LSD) for correcting
for multiple comparisons was done to assess group differences.
Automated linear regression was used for feature selection.
Correction for multiple comparisons were performed in each
logistic regression model.

RESULTS

The total sample of 1,135 subjects were separated into two
groups. Group 1 consisted of patients who met the DSM-IV
criteria for ADHD, and it contained 1,006 subjects (see Table 1).
The mean age was 37.7 ± 15.5, making it somewhat younger
than the control group (n = 129) with a mean age of 45.4
± 16.9 (p ≤ 0.001). Group 1 was 34% female and 31% non-
Caucasian, while the control group was 44% female and 33%
non-Caucasian (p < 0.001 in age group and non-significant for
non-Caucasian). Group 1 did not meet criteria for any other
psychiatric disorder, substance abuse, or brain injury based on a
detailed clinical history, the Minnesota Multiphasic Personality
Inventory (MMPI) and the Structured Clinical Interview for
Diagnosis (SCID) for DSM-IV.

The results of the logistic regression models with age, gender,
and race as co-variates, computation of odds ratios and predicted
probabilities with correction for multiple comparisons were
input for a ROC analysis which yielded area under the curve
(AUC) calculations. The AUC for Visually Read ROI’s of the
Baseline scan was 97.6%. The AUC for the post-hoc ROI analysis
of the Baseline scan was 100%. Sensitivity of the visual reads was
100% while specificity was >97%. The sensitivity and specificity
of the post-hoc ROI analysis were both 100%. Figure 1 is a
typical baseline tomogram presentation of the SPECT scan data
from a control case. Figure 2 is a typical baseline tomogram
of the SPECT scan data from a patient in Group 1 illustrating
hypoperfusion by visual interpretation in the medial anterior
prefrontal (orbitofrontal) cortex, bilateral temporal lobes, and the
anterior cingulate gyri. These findings proved strongly predictive
of the diagnosis of ADHD, as illustrated in Table 2. Areas
identified by visual read as having highly significant Odds Ratio
(p < 0.001) for discriminating ADHD from control included:
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FIGURE 1 | A typical example of a control case. Selected tomograms in horizontal (A), sagittal (B), and coronal (C) orientation are provided. The color scale for the

tomograms is provided. All voxels are scaled to the brain maximum and assigned each a color gradient based on its percentile of activity. Each color step represents a

(not necessarily linear) five-percentile-point change in rCBF. (D) A 3-D representation of the scan data is shown. The surface is set at 60% of brain maximum. Areas

which fall below 55% are represented as indentations or holes depending on how far below 55% the activity falls. (E) A wireframe brain representation is shown,

wherein the areas of brain with activity at 85% of maximum or greater are shown in red and areas of 92% or greater are shown in white.

medial anterior prefrontal cortex, left anterior temporal lobe,
and right insular cortex. Areas with moderately significant Odds
Ratio (p < 0.03) included: right lateral middle temporal lobe,
right medial temporal lobe, dorsal anterior cingulate gyrus, the
genu of the anterior cingulate gyrus, and the left parietal cortex
(see Table 2).

Table 3 shows the post-hoc quantified ROI regions that were
most predictive in distinguishing cases of ADHD in Group 1
from controls. In particular, cerebellar subregions were very
predictive (p < 0.001), along with the bilateral anterior inferior
temporal lobe, bilateral middle temporal pole, and the bilateral
inferior occipital lobe. Areas with significant predictive findings
(p < 0.03) included: bilateral anterior cingulate gyri, bilateral
mid orbital frontal cortices, right superior orbital frontal cortex,

bilateral hippocampi, right middle occipital cortex, bilateral
thalamus, and bilateral pallidum. Some left/right differences were
observed. The left anterior cingulate showed a higher odds ratio
than the right, while the right orbital frontal cortical areas had
higher odds ratios than the corresponding areas on the left.

DISCUSSION

In the adult population, there was high separation between non-
comorbid ADHD patients vs. healthy controls using this method.
The ROC characteristics were similar for the baseline scan data
whether using visual or quantitative analysis. Since the post-hoc
ROIs were not used in any way to initially establish the clinical
diagnoses, they serve as a particularly rigorous independent
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TABLE 2 | Predictive visually interpreted ROIs from Group 1.

Brain region Statistical output

Baseline Odds ratio of increased

probability for ADHD, p-value

Medial anterior prefrontal cortex 5.4, 0.001

Left anterior temporal lobe 4.7, 0.001

Right insular cortex 4.3, 0.001

Right lateral middle temporal lobe 3, 0.01

Right medial temporal lobe 3.6, 0.02

Dorsal anterior cingulate gyrus 2.8, 0.02

Genu anterior cingulate gyrus 4.5, 0.03

Left parietal lobe 4.4, 0.03

predictor of diagnostic category. However, it is emphasized that
nuclear medicine physicians and radiologists typically use visual
analysis for readings SPECT scans in a clinical setting; thus the
high sensitivity and specificity of the identified areas serve as
promising steps for the translation of SPECT markers for ADHD
more widely into clinical practice.

To guide the relevance of these results as possible ADHD
biomarkers we use the term biomarker as defined by the FDA
BEST criteria (16) - “a defined characteristic that is measured
as an indicator of normal biological processes, pathogenic
processes, or responses to an exposure or intervention, including
therapeutic interventions.” A safe and effective biomarker for
ADHD could guide diagnosis and treatment. Treating ADHD
based solely on clinical indications is not without risk. For
example, the differentiation of ADHD from incipient bipolar
disorder is challenging. Clinical experience and research data
have shown that stimulant medications can precipitate a
manic episode, exacerbate mood instability, and/or increase
rapid cycling. Some (54) hypothesize that stimulant medication
exposure can permanently alter the course of bipolar disorder
in some children. In addition, atomoxetine, FDA-approved
for the treatment of ADHD, has been clinically found to
be a potent mood destabilizer. A large open-label naturalistic
case series (55) found that roughly 33% of patients became
mood dysregulated on atomoxetine. Symptoms of aggression,
hypomania, agitation, and frank mania were reported in patients,
some of whom lacked any previous history of mood symptoms.
Thus, correctly differentiating ADHD from incipient bipolar
disorder and/or possible variants of ADHD who show adverse
reactions to stimulants and/or atomoxetine would mitigate
serious patient harm.

Prior SPECT neuroimaging studies of ADHD in children
and adults have varied in quality considerably, but have
consistently pointed in the direction of potential biomarkers.
The first baseline investigations by Lou et al. (56, 57) utilized
Xenon-133, which provides a single-pass perfusion scan and
absolute quantification of perfusion in units of ml/min/100 g
of tissue, albeit with limited resolution. In addition, confounds
of methodology and diagnostics further limit the validity of
these studies. Nevertheless, a later study by the same group with
better technology replicated the findings of decreased perfusion

TABLE 3 | Group 1 ROI differences between ADHD and normal.

Region Control ADHD F, p-value

Baseline

L caudate 55.6 ± 8.2 53.4 ± 8.1 3.9, 0.04

R caudate 55.7 ± 8.1 53.5 ± 8 4.2, 0.04

L cerebellum 7b 47.6 ± 6.9 54.8 ± 9.4 33.2, <0.001

R cerebellum 7b 47.7 ± 8.1 54.2 ± 10.1 23.5, <0.001

L cerebellum 8 49.2 ± 7.8 55.7 ± 9.1 27.3, <0.001

R cerebellum 8 49 ± 8 55.2 ± 8.9 26.3, <0.001

L cerebellum 9 51.4 ± 8.5 56 ±8.6 15.5, <0.001

R cerebellum 9 51.4 ± 8.2 55.9 ± 8.6 14.9, <0.001

L cerebellum crus1 51.3 ± 8 54.6 ± 8.1 8.7, 0.003

R cerebellum crus1 50.7 ± 8.3 54.6 ± 8.4 11.2, 0.001

L cerebellum crus2 47.1 ± 7.8 54.3 ± 9.5 32.2, <0.001

R cerebellum crus2 47.2 ± 7.8 54.1 ± 9.8 27.3, <0.001

L anterior cingulate gyrus 56.1 ± 8.7 53.1 ± 8.2 7.1, 0.008

R anterior cingulate gyrus 55.7 ± 8.7 53.1 ± 8.2 5.4, 0.02

L mid orbital frontal 9 51.3 ± 9.2 54.2 ± 8.2 6.1, 0.01

R mid orbital frontal 10 50.3 ± 9.3 54.1 ± 8.5 10.1, 0.002

R superior orbital frontal lobe 10 51.8 ± 9.2 54.3 ± 7.9 5.1, 0.02

L hippocampus 56.2 ± 8.6 53.7 ± 8.1 4.9, 0.02

R hippocampus 56.2 ± 8.5 53.7 ± 7.8 5.5, 0.01

R insula 55.6 ± 8.2 53.3 ± 7.9 4.3, 0.04

L inferior occipital lobe 49.9 ± 8.5 54.7 ± 8.6 16.2, <0.001

R inferior occipital lobe 48.6 ± 9.3 54.9 ± 8.8 26.8, <0.001

R middle occipital lobe 51.1 ± 8.7 54.7 ± 8.3 10.3, 0.001

L superior occipital lobe 51.9 ± 8.5 54.4 ± 8.2 4.6, 0.03

R superior occipital lobe 52.1 ± 8.2 54.5 ± 8.1 4.3, 0.04

L pallidum 56.2 ± 8.6 53.5 ± 8.2 5.6, 0.01

R pallidum 56.3 ± 8.7 53.8 ± 8.1 4.6, 0.03

R superior parietal 49.6 ± 8.4 52.4 ± 8.7 5.3, 0.02

L anterior inferior temporal lobe 47.9 ± 9.2 53.4 ± 9.3 18.3, <0.001

R anterior inferior temporal lobe 48 ± 7.6 53.4 ± 9.7 17.1, <0.001

L mid inferior temporal lobe 51 ± 8.3 54.1 ± 8.4 7.5, 0.006

R mid inferior temporal lobe 50.5 ± 7.6 53.9 ± 8.2 9.3, 0.002

L posterior inferior temporal lobe 51.5 ± 7.8 54.3 ± 8.1 6.4, 0.01

R posterior inferior temporal lobe 51 ± 8.5 54.6 ± 8.2 9.5, 0.002

L mid temporal pole 49.7 ± 9.1 53.7 ± 9.2 10.2, 0.001

R mid temporal pole 48.6 ± 9.2 53.9 ± 9.3 17.1, <0.001

L thalamus 55.1 ± 6.4 53.1 ± 7.9 5.1, 0.02

R thalamus 54.9 ± 7.1 53.4 ± 7.8 5.2, 0.02

Vermis 10 56.5 ± 6.9 53 ± 8.1 10.3, 0.001

Vermis 8 51 ± 7.1 55.2 ± 8.2 11.2, 0.001

This table shows the quantified statistically significant ROI differences between ADHD and

normal controls in Group 1 on baseline and concentration scans.

of the striatum based on Xenon-133 quantitative perfusion
(58). Gustafsson et al. (59) compared baseline SPECT scan
data to EEG and neurological examination in a group of 28
children with broadly defined ADHD (based on Conners Parent
Rating Scale and Wechsler Intelligence Scale for Children).
While this study lacked a control group, it is notable for its
correlation of EEG findings, symptoms, soft neurological signs,
and functional neuroimaging. The key findings were that patients
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FIGURE 2 | A typical example of a case of ADHD without comorbidity. Selected tomograms in horizontal (A), sagittal (B), and coronal (C) orientation are provided.

The color scale is the same as Figure 1 for the tomograms is provided. All voxels are scaled to the brain maximum and assigned each a color gradient based on its

percentile of activity. Each color step represents a (not necessarily linear) five-percentile-point change in rCBF. Yellow arrows indicate areas of hypoperfusion in the

orbitofrontal cortices. (D) A 3-D representation of the scan data is shown. The surface setting is the same as in Figure 1. Yellow arrows point to the areas of

decreased perfusion in the orbitofrontal cortices. (E) A wireframe brain representation is shown with setting the same as in Figure 1.

with ADHD showed decreased frontal lobe perfusion and the
degree of symptoms correlated with the degree of hypoperfusion
(decreased activity) in the frontal lobes (59). In addition, patients
with ADHD had a number of soft neurological signs and physical
anomalies. Similarly, Spalletta et al. (60) found a correlation
between symptoms of ADHD and frontal lobe perfusion. In a
carefully screened group of 8 children (inclusion criteria were
medication-naïve, normal MRI scan, no comorbid psychiatric
diagnoses, IQ > 80, and ADHD diagnosis based on Stroop
Test and neurometric data), baseline scans done under sedation
showed decreased perfusion of the left dorsolateral prefrontal
cortex and orbital frontal cortex. Relatively increased perfusion
in the right prefrontal cortex and relatively decreased perfusion
in the left prefrontal cortex were correlated with worse clinical
symptomatology (60). Given that the radiopharmaceuticals

HMPAO and ECD are distributed and relatively fixed within
2min of injection and a waiting period of roughly 15–30min
was allowed after tracer injection, sedation during the scan would
have no significant effect on the distribution of radiotracer and
scan results.

Cognitive challenge tasks highlight the deficits in task-specific
function that characterize ADHD. A response inhibition task
was administered to 20 children with ADHD and 4 controls
(61). The authors concluded that children with ADHD exhibited
a right prefrontal cortex dysfunction based on an exaggerated
left-to-right asymmetry of perfusion.

Medication response trials using SPECT or fMRI can also
point toward areas which may serve as candidate imaging
biomarkers. In general, control patients showed equivocal
differences in perfusion in the frontal lobes whether they were
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on- and off-stimulant medications. In contrast, children with
ADHD demonstrate decreased perfusion at baseline (which
equates to decreased activity) in the frontal cortices and often the
temporal lobes and cerebellum (42, 61–66) that increased with
stimulant medication (61, 63, 64, 67).

Kim et al. (68) conducted an elegant treatment effect
study involving 40 medication-naïve children with ADHD
(who were evaluated with ADHD assessment scales, structured
clinical interviews, and neuropsychological testing, and had
normal MRI or CT scans) and who were compared to 17
controls using statistical parametric analysis before and after
treatment with methylphenidate (68). Baseline HMPAO SPECT
scans were obtained in 40 children (age 9.7 ± 2.1 years)
diagnosed with ADHD. Strict exclusion criteria eliminated
subjects with IQ below 90, learning disorders, neurological
disorders, or comorbid psychiatric diagnoses of mood, anxiety,
or conduct. These baseline scans were then compared statistically
to baseline scans of 17 similar strictly screened controls (age
10.5 ± 2.2 years). Then, ADHD subjects were started on
methylphenidate at standard doses (0.3–1.0 mg/kg/day). After
4–5 weeks of stimulant treatment, ADHD subjects underwent
a second baseline SPECT scan while taking methylphenidate.
The second scan was again compared statistically to the control
scans and differences between the pre- and post-medication
scans were identified. All ADHD subjects showed significant
improvement in symptoms based on psychometric testing while
taking methylphenidate. Pre-treatment scans of subjects with
ADHD showed decreased perfusion of the prefrontal cortex and
middle temporal gyri but showed increased perfusion in the
somatosensory cortex and anterior cingulate gyri, compared to
controls. After treatment with methylphenidate, ADHD subjects
showed increased perfusion of the prefrontal cortex relative to
their own pre-medication scans. Perfusion in the somatosensory
cortex and striatum was reduced (68). 3D SPECT images in
ADHD have also been used by Schneider et al. (43, 69) to show
orbitofrontal cortex hypoperfusion in patients with ADHD.

Lorberboym et al. (70) examined ADHD with and without
comorbid learning or behavioral diagnoses (oppositional defiant
disorder, conduct disorder, learning disorder, mood disorder).
After psychometric testing and structured clinical interview,
a group of 8 children with simple ADHD, a group of 11
children with ADHD comorbid for one or more of the above
diagnoses, and a group of 9 age-matched controls underwent
SPECT scanning, and the scans were compared. Using a semi-
quantitative analysis of selected regions of baseline scans, ∼50%
of cases showed decreased frontal lobe perfusion, but all of
the cases who were comorbid demonstrated decreased temporal
lobe perfusion (70). These findings were largely confirmed in a
study of 19 children with specific learning disorders compared
to 12 children with ADHD (71). Unfortunately, no control
group was included in this confirmatory study. Children with
learning disorders showed relatively decreased perfusion in the
temporal lobes and the right parietal lobe, but also in the bilateral
basal ganglia.

Recently, these neuroimaging findings have been replicated
using a newer technique of infrared spectroscopy (72). A
sample of 150 children with ADHD were compared to 51

controls in a series of concentration tasks. Children with
ADHD demonstrated low activation of the medial prefrontal
(orbitofrontal) cortex during vigilance and concentration tasks.

COMORBIDITY IS THE RULE, NOT THE
EXCEPTION

Unfortunately, comorbidity is the rule, rather than the exception,
in cases of ADHD. Therefore, a study of pure ADHD is
not sufficient to identify a clinically useful imaging biomarker
for ADHD. Children with ADHD frequently have comorbid
anxiety, oppositional disorders, or learning disorders (73, 74).
For example, learning disorders are highly prevalent among those
with ADHD, ranging from 10 to 90% comorbidity (75, 76).
The prevalence of anxiety disorders among those with ADHD
ranges from 15 to 35% (77, 78). Depressive disorders occur
in 12–59% of children with ADHD (79, 80). The prevalence
of conduct disorder and oppositional defiant disorder among
those with ADHD ranges from 30 to 50% (76, 81). The
comprehensive Multimodal Treatment Study of Children with
Attention-Deficit/Hyperactivity Disorder (MTA) study similarly
found 29 % of children diagnosed with ADHD were comorbid
for either conduct disorder or oppositional defiant disorder
(78). These comorbidities profoundly alter the clinical picture of
ADHD and undoubtedly alter the response to pharmacological
interventions. Current diagnostic methods fail to fully assess the
presence and impact of comorbidities.

ADHD in adults was largely unrecognized prior to 2002
(82, 83). Comorbidity clouds the diagnosis in adults, as well. An
estimated 65–89% of adult patients with ADHD also have anxiety
disorders, depressive disorders, bipolar disorder, personality
disorders, drug abuse, and alcohol abuse (84). Comorbidity of
ADHD and depressive disorders ranges from 18.6 to 53% (85).
Anxiety disorders are quite common in adults with ADHD,
approaching 50% comorbidity (86). An estimated 20–47% of
adults with ADHD are comorbid for bipolar disorder (87, 88).
Comorbid substance abuse is estimated at 23.3% based on
a systematic review (89). Although not well-studied, at least
one analysis of insurance data indicates that ADHD leads to
an increased risk of TBI. The risk for receiving any form
of TBI was 9.8% for those with ADHD compared to 2.2%
for those without ADHD, representing a 4.5-fold increase in
risk (90).

NEXT STEPS

Herein, we have analyzed baseline SPECT scans of adult
patients with pure ADHD compared to an age-matched control
group. Interesting potential candidate neuroimaging biomarkers
have been identified. Next, it will be vital to expand these
analyses to patients with ADHD comorbid for diagnoses such
as anxiety, depression, bipolar disorder, addictions, gender-
based differences, and/or brain trauma (among others). Going
forward, we will also implement machine learning algorithms
to rigorously test the candidate biomarkers utilizing our large-
N dataset. These algorithms will be applied to our adolescent
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datasets to explicitly address the complex diagnostic picture of
ADHD symptomatology in the adolescent patient.

CONCLUSIONS

Strengths of this study include the large sample size of non-
comorbid ADHD compared to a well-characterized control
group, the consistent methods of visual interpretation of rest
(or baseline) scans with a well-validated functional imaging
modality, and detailed quantitative analysis. The study is further
enhanced by a post-hoc ROI analysis which had similar findings.
That said, several caveats of the study must be addressed.
First, the data are retrospective, and higher levels of evidence
can be derived from either prospective studies or randomized
clinical trials. However, the large sample size and diverse multi-
site study optimizes the generalizability of our results. Second,
this dataset does not have associated structural imaging data.
Such information would have been useful in characterizing any
atrophy associated hypoperfusion. However, the use of functional
neuroimaging is essential in characterizing subtle abnormalities
that may not be apparent on even quantitative structural
neuroimaging. Third, in such a large retrospective database, there
are many patients who were on one or more medications for
medical and psychiatric indications.While known stimulants and
depressants of brain function were withheld prior to scanning,
the confounding effects of medical and psychiatric medications
cannot be completely eliminated.

Using the method described above we consistently
distinguished adult ADHD patients from healthy controls.

Given the wide availability of brain SPECT imaging and
the need for accurate diagnosis in ADHD, this test, with
appropriate reader training, could provide valuable information
in clinical practice.
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