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Abstract

High-dimensional cytometry represents an exciting new era of immunology

research, enabling the discovery of new cells and prediction of patient

responses to therapy. A plethora of analysis and visualization tools and

programs are now available for both new and experienced users; however, the

transition from low- to high-dimensional cytometry requires a change in the

way users think about experimental design and data analysis. Data from high-

dimensional cytometry experiments are often underutilized, because of both the

size of the data and the number of possible combinations of markers, as well as

to a lack of understanding of the processes required to generate meaningful

data. In this article, we explain the concepts behind designing high-dimensional

cytometry experiments and provide considerations for new and experienced

users to design and carry out high-dimensional experiments to maximize

quality data collection.

INTRODUCTION

Since 2010, the ability of immunologists to study high-

dimensional data has become increasingly possible. Both

mass and spectral flow cytometry have led to an increase

in the number of parameters that can be measured on, or

in, a single cell. High-dimensional cytometry experiments

allow users to collect details of the expression of high

numbers of proteins, thus providing enormous amounts

of data. In contrast to conventional flow cytometry, mass

cytometry couples specific antibodies to elemental

isotopes, rather than fluorochromes, significantly reducing

issues caused by spectral overlap and allowing for routine

analysis of more than 40 parameters.1 Similarly, advances

in spectral flow cytometry have enabled the measurement

of up to 40 parameters per cell.2

Collectively, these new technologies have vastly

increased the amount of data that can be collected in

immunology experiments. While analysis software has also

significantly progressed, for many immunologists, the

adjustment to dealing with so much data has been

difficult. The full potential of high-dimensional data
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requires changes in experimental design and, in particular,

analysis plans. Our conventional gating approaches are

not always accurate or appropriate—for an example, an

analysis of T-cell populations in cancer 2013 (Figure 1a;

low dimension) to an analysis of T-cell populations in

cancer in 2019 (Figure 1b; high dimension). There is a

strong temptation to include as many parameters as

possible, without consideration of how noisy or irrelevant

the data could be or how significant differences between

test groups will be determined.

This paper is designed for immunologists who are using,

or plan to use, high-dimensional cytometry data in

research. The goal of this paper is to help users not only to

design experiments but, more importantly, to design

appropriate analysis strategies to ensure that their

experiments provide high-quality, relevant and meaningful

data. These strategies include the use of clustering tools to

group similar cells together for analysis, and tools that

allow visualization of relationships between cells. High-

dimensional cytometry data are often underutilized, and

this article provides guidelines for both new and existing

users to plan experiments from design to output.

We will provide an overview of experimental

considerations and then, in more detail, explain

considerations for data analysis that have not been

consistently required for analysis of cytometry data using

small numbers of parameters. We will not provide a

comprehensive overview of available software, but rather

broadly explain the key concepts of high-dimensional

cytometry data analysis, illustrated with examples (Box 1).

Defining a research question

As for all research, defining a research question drives

both experimental design and data analysis. This is

particularly true for high-dimensional experiments—the

lure of multiple parameters can override experimental

common sense. Extraneous markers can lead to nonsense

data (have all markers been validated in the target

population?) or noisy data (are all markers relevant?). An

example may be the inclusion of a dendritic cell

activation marker to a T-cell-based panel. The key to

successful high-dimensional research is the design of both

an experimental and analysis plan to maximize the

usefulness of data, and this plan must be driven by a

research question (Figure 2). This is, of course, sensible

advise for all experiments, but the potential downstream

impact of poor design in high-dimensional experiments is

exponentially greater, especially at the analysis stage. As a

first step, it is important to have a clear idea of the

Figure 1. Comparison of analysis methods for low- and high-dimensional cytometry data sets. (a) A typical analysis pathway with low-

dimensional cytometry performed in 2013. (b) A new analysis pathway with high-dimensional cytometry, using the same type of samples as in a,

performed in 2020. IFN, interferon; IL, interleukin; TNF, tumor necrosis factor.
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question or questions that are to be addressed, and to

have a solid understanding of the biology of the

experimental system, especially for exploratory research.

There are many research questions that might motivate

researchers to use high-dimensional cytometry, which

may be quite distinct from using traditional lower-

dimensional cytometry, and these feed into differences in

experimental design and analysis.

Among others, some strengths of high-dimensional

cytometry include the ability to

• examine the characteristics of a large number of cell

subsets within a single sample

• investigate heterogeneity within a known cell

population

• identify changes in cellular populations that correlate

with clinical states

• assess the similarity of target cell populations with

known reference populations

• determine changes in the physiological state of cell

populations

• identify intermediate states or branch points in

developmental pathways

We have reviewed the now large number of research

papers using high-dimensional cytometry for

immunology studies, and found that research questions

can be broadly divided into four categories: (1)

measurement of phenotype and proportion of cells of

interest, for example, quantifying tumor infiltrating T

cells in cancer3 (2) discovery of new, possibly rare, cells,

for example, innate lymphoid cell subpopulations in

infection4; (3) comparisons of data sets, for example,

cancer patients treated with immune checkpoint

inhibitors5 and (4) developmental trajectory analysis.6

While the details of individual high-dimensional

experiments are as diverse as the scientific questions

underlying them, some general principles can help guide

design. As with most experiments, a typical goal of high-

dimensional cytometry studies is to determine the effect

of an intervention (e.g. drug treatment, gene deletion,

infection) on measurable readouts such as the absolute

number or proportion of a specific cell type, or levels of

marker expression. With these in mind, we will discuss

experimental design as well as analysis planning strategies

applicable and/or appropriate for all these research

questions.

STEP ONE: GETTING USED TO THINKING
DIFFERENTLY

High-dimensional cytometry is not conventional

cytometry with extra spaces. It requires a change in

thinking from the researcher to use it correctly and to its

full potential—in a large parameter panel, serial gating of

more than 40 markers is not practical or easily

translatable into results. Our experience is that a change

in thinking is essential to help researchers avoid the

temptation of charging into a badly designed experiment

that can waste time, money and, potentially, samples.

Many projects still benefit from multiple conventional

flow cytometry panels, or simply do not require multiple

BOX 1. I already know how to analyze cytometry data, why should I

read this?

For a new user of high-dimensional cytometry, the

pathway for good analysis is shown in Figure 2. Each

step is essential to maximize the collection and

interpretation of high-quality data. There are multiple

traps users fall into:

(1) Poorly defined research questions

A specific research question guides the design of the

experiment and also the analysis. It ensures that the

appropriate number and type of parameters are chosen,

including good controls. Without a specific question,

users tend to incorporate as many markers as possible,

overly excited by the opportunity for discovery.

However, unless additional markers are well selected

(e.g. known lineage markers), this approach makes it

difficult to set boundaries for what is or is not a “real”

population, leading to the creation of multiple potential

subpopulations. If 2 of the 10 000 cells coexpress two

markers, is it a new cell type?

(2) Planning experiments without incorporating

biological knowledge

A preliminary gating and/or exclusion strategy is

essential. To study B-cell populations it is important to

have a fool-proof way to define both what a B cell is and

what a B cell is not. Planning a serial gating or selection

strategy directs the user toward the answer to the

research question, rather than down a rabbit hole of

irrelevant or biologically impossible results.

(3) Failing to adjust experimental design for multiple

types of experiments

With high-dimensional cytometry, there is scope to

combine all previous experimental panels, for example,

measurement of surface proteins, intracellular cytokines

and phosphorylated proteins. However, it is important to

remember that expression, stimulation, preservation and

regulation of different proteins can all vary, and a

one-size-fits-all approach can be problematic.
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parameters, such as a clearly defined research question.

Consider the following scenario: mucosal associated

invariant T cells (MAIT cells) have been defined in the

literature as CD8+CD161+Va7.2+.7 A low-dimensional

study analyzing the frequency of MAIT cells in two

groups could incorporate additional phenotypic or

functional markers to compare the cells found in both

groups. A high-dimensional study analyzing the

phenotype of MAIT cells could incorporate a large

number of phenotypic and functional markers and use

analysis tools to identify multiple MAIT cell populations,

possibly with new combinations of phenotype or

function, and to determine the relative frequency of these

potentially rare populations between the two groups.

Conversely, high-dimensional experiments are often

exploratory, an approach which is difficult to reconcile

with the traditional training of formulating a specific

hypothesis and locking in analyses and plans for

statistical testing ahead of time. Instead, high-dimensional

experiments are often used as hypothesis-generating data,

and these newly developed hypotheses are then tested in

independent experiments. This approach to science can

Figure 2. Planning a high-dimensional cytometry experiment: steps involved in both experimental and analysis design.
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be difficult for immunologists to accept, because

traditional immunology has had a targeted approach,

although in reality, high-dimensional immunology is no

different from genome-wide association studies or studies

sequencing large populations of microbes. Poor quality of

low-dimensional data can be worked around with manual

gating on simple populations; however, achieving high-

quality data is essential to fully explore the potential

results and hypotheses that arise from a high-dimensional

experiment.

STEP TWO: EXPERIMENTAL DESIGN

Defining a research question

Experimental design does not take place in isolation, but

instead is part of an integrated approach, incorporating

factors such as panel design and data analysis methods at a

very early stage of planning, and must be driven by a

research question or theme. Thinking ahead to data analysis

is, of course, important during the planning of any

experiment, but high-dimensional approaches often have

requirements that are distinct from typical low-dimensional

approaches with which most researchers may be familiar—
for example, phenotyping cells can be done by looking at all

markers simultaneously, using clusters of “like” cells, rather

than studying the expression of each marker one at a time

on a variety of cell types. A further level of complication is

that practical considerations such as the number and types

of samples available, or sample collection and storage

methods, may constrain what can be achieved.

Changing the thinking about panel design

Time invested in the development of a high-dimensional

panel can ultimately determine the success or failure of a

study, so it is important to allow sufficient resources to

carefully and systematically develop one that meshes with

downstream analysis approaches. In addition, the careful

balancing of panel design considerations over a large

number of channels means that in contrast to lower-

dimensional cytometry, high-dimensional panels are

typically more difficult to change in an ad hoc manner

between experiments. The key factors that need to be

considered in the panel design process will already be

familiar to researchers who have experience with low-

dimensional cytometry. These include antigen density,

interchannel signal spillover as well as differential

sensitivity of individual channels. The principles of panel

design are well described in the literature,8–10 so will not

be discussed in detail here.

A first consideration is to include sufficient and

appropriate markers to identify all major subsets in the

sample, or at least enough markers to exclude them from

analysis. While manual gating generally requires clear

separation of populations on bivariate plots, high-

dimensional analysis techniques effectively integrate

signals from many dimensions simultaneously. Markers

may not discriminate populations by themselves but can

still collectively contribute to separation of populations.

Thus, the decision to add more markers must include a

good justification for their inclusion and a strategy to

remove them from analysis steps if necessary.

With a modular panel strategy, a restricted set of

antibodies can be used for core functions, typically broad

immunophenotyping and identification of major

populations, and different sets of antibodies can be

dropped into the remaining channels depending on

specific requirements. Such requirements might include

detailed phenotyping of individual lineages, such as

regulatory T cells in colorectal cancer,3 or investigation of

physiological changes within populations, such as

measurement of phosphorylated signaling proteins in

response to drug treatments.11

The degree of modularity that is chosen largely

depends on long-term practical plans as much as specific

experimental questions. For example, if the aim is to

develop a panel that comprehensively identifies all

immune cell types in multiple tissues, then these may use

most or all of the available channels with minimal

thought to leaving free channels that can be used for

other purposes. Alternatively, if the strategy is to tailor

high-dimensional cytometry to multiple models and

research questions, then it may be more useful to use a

smaller panel core that can be added to depending on the

needs of individual experiments.

The difficulty with exploratory analyses

Given the exploratory nature of high-dimensional

cytometry experiments, researchers may uncover new or

novel outcomes that were not part of the original study

design, and there is often still a question as to whether the

results are “real” or not, for example, the identification of

CD25+ myeloid cell population in colorectal cancer.12 With

many populations measured simultaneously, apparent

changes in abundance of a numerically minor population

may reflect an interesting biological phenomenon; however,

the changes could also represent a statistical artifact. A

difference in population frequency between two groups can

be significantly influenced by changes in the number and

selection of parameters included in the analysis.

Alternatively, because of the increased numbers of markers

included in high-dimensional panels, antigens may be

found on populations that, according to traditional

thinking, should not express them. Ideally, these findings
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should then be verified using independent methodologies

and/or data sets, particularly if they are puzzling or

unexpected. One useful approach, if collection of samples is

not a limiting factor, is to split total experimental subjects

into two separate cohorts: one exploratory and the other for

confirmation. Any changes found in the exploratory cohort

can be confirmed in the (typically smaller) confirmation

cohort, using a more focused panel. This obviously requires

a decision at the experimental design stage, or the collection

of a completely new set of samples. Unexpected antigen

expression can be confirmed using a range of methods on

reserved sample aliquots in focused experimental repeats.

These could include incorporation of extra staining

controls (e.g. fluorescence-minus-one or isoclonic

controls), different antibody clones/fluorochromes or

different technologies such as sorting for functional studies

or microscopic approaches such as imaging flow cytometry

to examine staining patterns (for example, to identify

doublets or binding of membrane fragments). Finally, it is

important to be able to use the same acquisition and

analysis strategies in multiple experiments by the same user

and for similar experiments by other users. Reporting of

analysis parameters is not only good bookkeeping, but

speaks to transparency and reproducibility which are

essential for promoting good science.

The importance of determining experimental power

A critical step during the planning stage is to ensure that

the experiment is likely to have adequate statistical power.

In cytometry experiments, the process of estimating

statistical power differs subtly but importantly from many

other technology platforms as a result of errors arising

during sampling because the number of events per

population (or cluster node) of interest may only contain

small numbers of cells. Under these conditions, Poisson

statistics describe the relationship between the frequency

of a population of interest and the number of cells

required for a given level of precision of a measurement

of that cell population. In turn, this dictates the number

of total events from a sample that need to be acquired

with larger cell numbers in a population leading to greater

ability to determine differences between experimental

groups.13–15 Key parameters influencing power that are

under control of the investigator are group sample size

and the number of events collected per sample (an

important practical note here is to incorporate cell losses

during processing, acquisition and preliminary gating). By

contrast, parameters that are outside the control of the

investigator, but which should be incorporated when

estimating power, include the relative abundance of the

rarest population of interest, between-subject variability of

populations (either abundance or staining intensity) and

intrapopulation marker staining variability (if testing for

effects on marker expression). In practice, these can often

be difficult to determine but can be estimated either from

prior experience with the biological system, in pilot

experiments,16 or by examining published studies. An

integrated model of the effect of group size, population

variance and cell number on statistical power for single-

cell experiments has recently been described, and a web

interface is available.17

The impact of sample collection and storage on

experiment quality

The practicalities of sample collection and processing can

have important effects on outcomes and need to be

balanced carefully against experimental considerations. For

example, cultured cells, peripheral blood or bone marrow

samples are easily processed with minimal cell loss,

whereas preparations from solid tissues risk loss of

antigens during enzymatic digestion and loss of important

cell populations.18 Solid tissue preparations may also be

prone to clogging by instrument fluidics, and the extra

processing time needed can make batching of large

numbers of samples difficult. Rapid processing on

collection, followed by immediate staining and analysis on

the cytometer is generally ideal and may be possible for

in vitro or animal-based studies. Examples include in vitro

studies of the effects of drugs on apoptotic pathways19 and

animal studies investigating cellular heterogeneity within

populations.20 In many cases, however, rapid processing is

not possible, and some form of storage is needed so that

sample processing and data collection can be both batched

and matched to instrument availability. Similarly, freezing

of samples after staining is possible if, for example, the

instrument is at another site, or has a catastrophic issue

and is unavailable (Box 2).21

The use of batching and barcoding to minimize

variability

An important factor leading to the success of high-

dimensional experiments is minimization of technical

variability and artifact creation. Minimization of technical

variability decreases the chance of false results arising

from, for example, batch effects, and maximizes the

likelihood of detecting real differences between

experimental groups. There are many small adjustments to

experimental procedures that can be performed which help

minimize technical variability, from steps including sample

collection and processing, staining to acquisition on the

cytometer,23 and only those with particular relevance to

high-dimensional cytometry studies are presented here.

Key among these is the concept of batching. For small-
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scale experiments, all samples can often be processed, and

data are acquired in a single run or batch. Running as a

single batch minimizes the variability associated with

sample preparation and staining, as well as with day-to-

day variation in instrument responsiveness. The use of cell

barcoding approaches further decreases intrabatch

variability.24 With barcoding, the expansion of available

channels with high-dimensional instruments allows several

(typically up to six) channels to be dedicated to

combinations—or barcodes—that identify individual

samples (e.g. anti-CD45 antibodies labeled with In-115 or

Bi-209 to barcode two individual donors). Once barcoded,

samples are pooled together for staining and data

acquisition on the cytometer, before the pooled data are

deconvolved in silico into their original sample identities.

Barcoding has been implemented in both flow

cytometry25,26 and mass cytometry.27–29

The difficulty of large studies and data sets

Many experiments—typically clinical studies—are simply

too large for samples to be processed and run as a single

batch, or even at a single site, and require additional

measures to decrease the associated variability. The

challenges associated with very large-scale studies, such as

the Human Immunology Project, have been described by

multiple groups and a number of steps can be taken to

improve data quality.30,31 In particular, use of either

lyophilized (flow cytometry)31,32 or frozen (mass

cytometry)33 aliquots of antibody cocktails has been shown

to decrease batch-related variability. A key approach that has

been widely used in omics studies, which is applicable to

cytometry, is to minimize the influence of confounding

factors by using a balanced design, where experimental

groups are distributed across batches.34,35 In its most

extreme form, it may be possible to use randomized

complete block design approaches,36,37 in which similar

numbers of samples from experimental groups are randomly

assigned to each run batch. Despite best efforts, some degree

of batch-associated variability inevitably occurs in multiday

or multisite studies, and computational approaches have

recently been described that can minimize the impact. These

approaches typically use repeated measures of a control

sample that can be stained and analyzed as part of each

batch run and normalized (Box 3).38,39

Preliminary data processing—assessing data quality and

reliability

Perhaps one of the most important steps in analysis is

the initial assessment of data quality. Three of the most

common factors that influence data quality are (1)

technical issues during acquisition, (2) debris in the

sample and (3) staining quality.

1 Technical issues during acquisition. Procedural or

instrument technical issues during the data acquisition

process can have the potential to introduce

considerable variation in the data. For example, clogs

BOX 2. Sample considerations: peripheral blood mononuclear cells as

an example

The balancing procedure between experimental and

practical considerations is most clearly illustrated by

the use of peripheral blood mononuclear cells (PBMCs)

in human clinical studies, particularly for the study of

lymphocyte populations.

Consideration 1: cryopreservation

For many clinical studies, the preparation and freezing of

PBMCs are typically performed. When cryopreserving

peripheral blood and cells such as tumor-infiltrating

lymphocytes, it is important to consider the viability of

immune cells after defrosting. It is recommended to

optimize the cryopreservation process and media to

obtain maximum cell viability for all populations; this

may include standardization of freezing and defrosting

processes (including blood storage temperature) and

timeframes, use of commercial freezing media and

always counting live cells before and after preservation.21

Consideration 2: cell populations

Initial processing and storage of whole blood may be

simpler than with PBMCs, but unless granulocytes are of

specific interest, the benefits may be outweighed by the

increased instrument acquisition time caused by

granulocyte burden, given they are the major white

blood cell component in the blood.

Consideration 3: practicality

Importantly, blood samples may often be collected in the

field under less-than-ideal conditions, or by busy

health-care staff whose main priority is their patient. In

these situations, ideal sample processing may need to be

traded for speed and simplicity, and a number of cell

preservation systems are commercially available to aid

this. These systems may only be suitable for whole blood,

and because they contain fixatives, they can affect the

staining of certain antigens, particularly chemokine

receptors.22 The increasing availability of new fixatives

and reagents for preserving whole blood may resolve

some of these issues, as well as the availability of

freeze-dried antibody cocktails for real-time staining of

blood in the field.
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and back-pressure issues on a fluorescent flow

cytometer affect the sheath flow rate, impacting the

time to travel between lasers. As a result, the signals

are no longer matched by the delay electronics and the

resulting data, when viewed relative to time, are shown

as an unstable signal. Similarly, across all platforms,

clogs reduce detection of events, which again proves

evident when viewing the time parameter as a

histogram. Filtering samples, as close as possible to the

time of acquisition, is a very sensible idea.

2 Debris in the sample. Does the data file look like it has

a lot of debris (indicative in flow cytometry as forward

and side scatter low, and in mass cytometry as DNA

low/negative)? This may be a reflection on poor

sample quality to begin with or mishandling during

experimental procedures. This should flag that

subsequent analysis may be subpar and potentially

misleading.

3 Staining quality. Data must be assessed for quality:

does the staining look like it worked (strong signal,

consistent with previous experiments or published

profiles)? Is there good separation between populations

of cells positive for the marker of interest, with

minimal background on populations which should be

negative for the marker? While there are new

computational approaches to help identify data quality,

for example, FlowAI,41 they cannot completely replace

a human eye and experience to manually check

anything that appears unusual.

Preprocessing data—getting from the cytometer to the

plots

Once initial data quality has been assessed, it is often

necessary to export the events of interest for further

analysis to a new .fcs file. This is an integral part of the

process of adapting raw data to data ready for analysis

and is referred to as “preprocessing.” Preprocessing may

be as simple as excluding any internal control beads

(such as EQ beads in the case of mass cytometry) or

identifying live single events (achieved using a viability

dye and singlet length/width relationships of scatter

parameters for flow cytometry or DNA and event length

parameters for mass cytometry). Further gating to specific

populations of interest (such as T cells by gating on

CD3+ events) may also be implemented if the

downstream analysis aims only to focus on a defined

population, and it is useful at this stage to debarcode

events.

Most cytometry analyses include a scaling step to allow

for comparison between multiple parameters that exist in

different orders of magnitude. Scaling not only allows for

direct comparison between markers, but normalizing data

to a comparable dimension also ensures that all

parameters are weighted equally. This may be a problem

in immunology, as there is an argument that not all

markers should be weighted equally.

The method of scaling often varies between analyses.

Some analyses transform the raw values to bring them

within a similar range—while inverse hyperbolic sine

(Arcsinh) transformation is widely used as a viable

“default,” it is best to keep both the underlying biology

of the sample and the research question in mind and

consider other options too. Other analyses use relative

scaling that scale each parameter individually and give a

range of low to high within each parameter (such as

min–max normalization). Both of these approaches are

suitable when there is a full range of expression for each

parameter in the data set. However, “artificial” highs and

lows can be created if a parameter is expressed by all cells

or by no cells (https://github.com/ImmuneDynamics/Spec

tre42). Without additional validation (usually manual

gating), false findings may not be recognized.

It is important to realize the importance of decisions

made in these preprocessing steps, as implications are

carried through all subsequent analyses. For example,

exclusion of doublets might actually obscure meaningful

biology to your individual research scenario, as is the

case for platelets associated with monocytes.43

STEP THREE: ANALYSIS DESIGN

The analysis of high-dimensional data must involve a

strategy that incorporates the research question and the

experimental design. Using one or more different tools,

always in combination with the expert understanding of

investigators, ultimately allows the findings to be

presented in a clear and statistically valid way.

Multiparameter data sets cannot be fully analyzed using a

conventional approach focused on assessing one marker

BOX 3. Statistical analyses

A detailed discussion of how to plan appropriate

statistical analyses is beyond the scope of this article,

but readers are referred to a useful review by Skinner.40

The use of statistical tests is dependent on both the

research question and the user’s data set. However, it is

vital to consider statistical approaches that allow

meaningful interpretation of the data and that enhance

the validity and utility of the results. Furthermore, it is

never too early to consider what statistical test(s) should

be used for a given data set, even before the first sample

data are acquired.
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at a time (e.g. serial gating or Boolean gating). Applied to

a high-dimensional data set, and depending on the expert

knowledge of the user, this approach can be cumbersome

and insensitive as the user moves through gates using a

binary inclusion–exclusion model to identify populations

based only on one or two markers. Once the

dimensionality of the data increases (in this case, each

dimension is the expression of a selected surface marker

in the panel) many more potential populations can be

identified that need to be investigated and included in

the analysis—our low-dimensional-capable brains need

extra help in deciphering patterns. Doing this in any fully

manual way becomes impossible at a certain point and

algorithmic approaches become extremely useful (Box 4).

It is necessary to cover some basic concepts in high-

dimensional data analysis and how it can differ from

approaches to low-dimensional data analysis. The first

important concepts are dimensionality reduction and

clustering, and these are inter-related ideas.

Dimensionality reduction algorithms reduce the

appearance of complexity by creating an artificial space

that achieves spread across the data attributable to

parameters of greatest variance. Large amounts of

numerical cytometric data can then be represented on a

single two-dimensional plot where individual cells can be

seen. Because the cells are spread out on the greatest axes

of diversity, similar cells tend to group together and their

relationship to other cells in the experiment can then be

easily visualized (although a limitation of dimensionality

reduction is that distances are not always well-preserved

in low dimensions). Expression patterns of markers can

be colored to identify populations manually, and multiple

plots can be presented to illustrate population dynamics

—for example, general changes in patterns of cell types,

or marker expression, because of an experimental

treatment. Thus, dimensionality reduction is a

mechanism to improve visualization of data, allowing the

user to see both common and rare cells at the single-cell

level. Summaries of the data (e.g. average expression of a

cluster) can also be useful for overall visualization of the

entire data set.

Clustering algorithms reduce complexity by combining

cells into groups (i.e. clusters) in which the individual

cells are similar in high-dimensional space and can

therefore be treated similarly for computational purposes.

Cells can then be studied as groups with varying levels of

relatedness to each other and relationships between

clusters can be visualized by methods such as minimum-

spanning trees or force-directed layouts (see the “Data

analysis presentation—convincing others your data are

real” section). Clustering and other similar categorization

approaches also help with statistical analysis because the

data from the clusters themselves, once validated by

expert inspection, can be used as individual groups. This

can take the form of such parameters as median marker

level expression or population size, and can be fed into

automated pipelines, algorithms or visualization plots

that assist with identifying significant differences between

treatments. One widely used presentation approach is to

perform clustering and dimensionality reduction in

parallel to map cluster identities, using color, onto a

dimensionality reduction plot. This allows identification

of populations through clustering, then presentation of

the data at the single-cell level using dimensionality

reduction.

The second important concept is cyclical analysis. The

nature of high-dimensional data makes it impractical to

assess every possible combination of markers. More

importantly, it is impossible to incorporate and

understand every potential outcome prior to the analysis

—it cannot be determined whether a rare population

justifies future investigation if the rare population has

never been described. For many new users, this cyclical

analysis approach may appear to be “milking” the data to

get a desired result and could also introduce

confirmation bias. In fact, an iterative approach actually

improves the data quality. Traditionally, with low-

dimensional data, the use of sequential biaxial plots

BOX 4. Frequently asked questions for new users

1 Time. Do not underestimate time and effort of

analysis (the general rule is 20% of time spent on

experimental design and 80% on analysis design).
2 Expertise. Who will do the analysis? Are the skills

available in-house or by collaboration? Is it possible

to have a dedicated student or postdoc who is

motivated and has time to learn analysis approaches?

Can analysis be outsourced to a bioinformatics

group or an external provider? Is the available

bioinformatics support specialized in cytometry data

(which is very different from sequencing data)?
3 Tools. What tools and software are needed and are

they available? Analysis packages are constantly

updated, but there are many standalone programs,

with in-built and R plugins, web interfaces and

R-based pipelines and integrated packages.
4 Data management. For many users, high-dimensional

analysis can require multiple steps in multiple

platforms, especially if they do not have substantial

skills in R. It is vital to have an organized structure,

including storage of data in a standardized format,

and record keeping plan to keep track of all of the

analysis steps.
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allows the user to obtain a quick overview of the basics

of the data—event number, major populations or any

distinct differences between data sets. However, with

high-dimensional data, many of the important findings

are hidden, either by virtue of being a rare population or

by having a complex phenotype. Validation by

conventional manual gating is always recommended.

Revisiting and replotting high-dimensional data multiple

times and in multiple ways refine the interpretation of

the data, ultimately improving the quality. It is very easy

to continue down this path indefinitely, so when

interpreting the results, it is best to approach them with

the research question in mind and focus on the best

means to answer the desired question.

How to understand clusters

To attempt to answer the research question, there are

many platforms available to researchers, covered

elsewhere.44–46 However, the most common first decision

is how to look at everything at once.

Clustering involves grouping cells together based on

their phenotype and can be useful for identifying major

cell subsets. Phenotypic markers (such as lineage

markers) that identify cell types of interest are included

in the staining panel, and only these are typically selected

as clustering parameters. However, the use of lineage-

specific markers is very experiment dependent; some

decisions may result in loss of novel or rare populations.

A number of clustering tools are available, and each has

their own advantages and disadvantages depending on

the context of the data (for examples of appropriate

clustering tools for different types of experiments, see

Weber and Robinson47 and Liu et al.48). The result of the

clustering process is that each cell is assigned to a group.

These groups of cells usually represent biologically

meaningful populations, for example, T cells

(CD3+CD19–) or B cells (CD19+CD3–). Clustering can be

unsupervised, whereby the computer algorithm

determines similarity between cell types based on

coexpression of molecules; supervised, where the user can

guide the algorithm by creating subgroups first (e.g. all

CD3+ events are T cells), or somewhere in between.

Clustering can be useful for quick identification of

subsets, which can then be easily quantified and

compared between groups. Clustering is, therefore, more

prone to batch and experimental variability, and

therefore, the resulting clusters need to be validated

(most commonly achieved with manual gating). A

limitation of most analysis pipelines is that the default

readout is the median expression of a marker within

clusters, when in reality, there is a spread of expression,

for example, a mixture of cells both high and low/

negative would be averaged to report an average intensity

—this would only be realized with validation, a process

that always depends on the level of expert biological

knowledge.

Interpreting cluster visualizations

The two most common readouts of clusters are

abundance of individual clusters between samples and the

cluster phenotype. There are several visualization tools

that can achieve this; for a summary, see Saeys et al.49

This approach provides information on variability as well

as the heterogeneity in cells between samples. Force-

directed visualizations, for example, present each cell as

an individual dot that is then colored by the cluster to

which that cell belongs. It also provides information on

the heterogeneity of each cluster—tight clusters represent

more homogenous populations than loose clusters. The

nature of these visualizations means that the user can

also observe how the clusters group into meta-clusters.

For example, three populations of activated CD4+ T cells

may all group together distantly from regulatory T cell

populations, but all lie within the larger group of CD4+

T-cell clusters.

Overclustering and underclustering

Overclustering occurs when true single populations are

coerced into multiple clusters by the cluster analysis

algorithm. The result of overclustering is the possible

appearance of more populations than are predicted to

actually exist within the data set. Figure 3 shows an

example of the same data set arranged into different

numbers of clusters—low to high. Determining which is

the correct cluster number to use ultimately resides with

the researchers and their knowledge of both the biology

and the data. Underclustering occurs when single

populations are merged that are clearly mixed

populations, for example, if CD4+ and CD8+ T cells were

contained within a single cluster. These problems

reinforce the need for the user to interrogate the data,

rather than assuming an algorithm knows what immune

cells are and how to meaningfully differentiate cells based

on marker expression values. This interrogation includes

cyclical analysis, exploration of variance and validation of

findings with manual gating.

Overclustering and underclustering can falsely

demonstrate heterogeneity in the data and can lead to

problems with downstream analyses. Direct comparisons

between individual clusters may not be representative of

actual changes in the population, if each cluster only

represents a fraction of a true population. Analyses

typically include cluster number validation steps, such as
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elbow point validation or cluster silhouette index (see

Glossary) that attempt to predict the actual cluster

number and avoid overclustering. Other approaches allow

the user to define the number of clusters, and this often

leads to overclustering. For example, the clustering

algorithm FlowSOM, by default, intentionally overclusters

by using a 10 9 10 self-organizing map, thereby creating

100 clusters.50

Downsampling

Downsampling is commonly used for high-dimensional

data analysis to reduce the necessary computing power

required for these complex approaches. It can also

counter the problem of “saturation” in dimensionality

reduction plots, when the visualization of data is impaired

because there are too many cells. Downsampling usually

involves random sampling from the initial data set, for

example, using 10% of the original sample. However, it is

possible that the downsampling includes an unknown

bias, for example, overselection of cells from a diseased

cohort, rather than an equal selection of cells from the

diseased and healthy cohorts. One approach is to

deliberately overcluster and then downsample so that cells

are sampled from each cluster. Consider the research

question and biology (How many subsets are expected to

be identified? Does each sample contain the same number

of cells?) when deciding the clustering approach.

What to look for and why?

Just as the analysis of high-dimensional data is cyclical, so

too is the experimental design. To determine what to look

for, the original panel needs to include all the parameters

that will be needed to make the analysis decisions. Starting

out with an important or large experiment is not advised

—practicing the entire process from experimental design

to analysis and data readouts will reveal the cyclical

process of developing a meaningful experiment.

A large number of parameters are needed to inform the

analysis process: Which markers determine clusters (CD3,

CD19)? Which markers are coexpressed and validate

phenotypes (FOXP3, CD25)? If detecting new biomarkers

is the primary goal, using markers that best discriminate

between samples can be more valuable than visualizing

differences in all possible populations. As always, the

research question informs which markers are the most

valuable, taking into account variance between samples.

Validating the data—how to take back control from the

computer overlords

It is essential to validate findings generated using analysis

approaches that involve data manipulation. The best

approach is to return to the raw data in cytometry

platforms, such as FlowJo, and verify that expression

values are above background and that the predicted

Figure 3. Overclustering and underclustering. Mouse hematopoietic cells were analyzed by dimensionality reduction and clustering. Expression of

individual markers identifying populations is shown in the top row on a dimensionality reduction plot, and in the bottom row clusters are

projected onto the same plot. Use of too few clusters (the left panel) fails to identify real populations, whereas too many clusters (the right panel)

leads to identification of heterogeneity that is not biologically relevant.
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populations can be identified using conventional manual

gating.

The most informative visualization is to simply show

traditional gating strategies of specific marker expression

on a population of interest. This is appropriate to answer

very basic questions such as “how does expression of

cytokine x change on population y between treatment

groups?”. These analyses can usually be done using

conventional cytometry and substantial amounts of

information from the high-dimensional data may be

missed. These simple analyses can still be incorporated

into high-dimensional data, for example, showing

expression on a newly discovered cluster of cells, rather

than a predetermined population. Conversely, high-

dimensional analyses can also be performed on previously

acquired data (e.g. on 7–14-parameter panels), and many

software programs have incorporated commonly used

algorithms to allow this, without requiring the user to

have extensive coding skills (Box 5).

Data analysis presentation—convincing others your

data are real

The last step in the analysis pathway is planning data

presentation. Considering the data in terms of the broad

research categories from the Introduction: (1) measurement

of proportion and phenotype of cells of interest; (2)

discovery of new, possibly rare, cells; (3) comparisons of

data sets and (4) developmental trajectories; these categories

can inform decisions on how to share the information.

Returning to the individual research question is essential.

Showing multiple plots of everything that has been collected

obfuscates the findings, confuses readers andmay also imply

incorrect interpretation of the results.

There are several options available to communicate the

results of the scientific study, including conventional heat

maps, or Brick plots,12 and these have been reviewed

elsewhere.45 Instead, this section focuses on the tools used

to analyze the data and present this analysis to others.

Principal component analysis

Principal component analysis (PCA) is a linear

dimensionality reduction algorithm. A PCA is capable of

identifying parameters that contribute a large amount of

variance across a given data set. Because a PCA is

extremely fast, it can be useful to determine marker

selection for further analyses, which assists in removing

markers that do not provide large variation to the data.

For cytometry, this can include the identification of

markers that may differentiate between a large number of

subsets. Downstream calculations, therefore, do not

require as much computing power.

Once a PCA has reduced the number of dimensions

based on their variance, it is possible to test whether the

variance between samples (such as individual patients)

can explain the difference between groups (such as

healthy versus disease). This makes it possible to identify

the parameters (such as cluster or marker expression)

that contribute to the variance and in turn provide

differentiation between groups. For example, Lugli et al.53

used clustering and PCA to assist in the differentiation of

age groups based on an individual’s T-cell compartment.

BOX 5. Classifiers

One downside to algorithms is their reliance on a

complete data set: that is, if more data are generated

later, the algorithms must be rerun to include everything.

This in turn will provide slightly different results, such as

a change in cluster number or different dimensionality

reduction plots. However, with classifiers, it is possible to

assign new data sets to previously acquired results

without having to rerun all algorithms.

Classifiers “classify” cells and add them to preassigned

groups (such as subsets or clusters). Commonly used

classifiers include k-nearest neighbor and decision trees/

random forests.51 A set of user-selected training data

(such as data that have cluster numbers assigned) is

provided to generate “rules” that the classifier can use to

differentiate between these cells. For example, a decision

tree defines a set of rules that the user can follow based

on a previous decision. Instead of simultaneously

assessing all available parameters in high dimensions,

this method works by examining binary positive and

negative staining patterns in a cascading way, allowing

the placement of individual cells into groups. Random

forests are a consensus made up of multiple decision

trees. In contrast to decision trees, the most relevant

output from a random forest is a plot that scores the

value of each marker individually on its ability to

discriminate the data set.

Once training is complete, the test data (such as newly

acquired data) are assigned to each group based on these

rules. In cytometry data, classifiers assign cells to groups

that share a similar phenotype.52 This grouping can be

greatly affected by batch/experimental variability, so

being mindful of this, by checking that data sets match

up before undertaking, would be advised. However, it is

still a faster approach because the trained classifier is run

on only the newly acquired data, rather than running an

algorithm across both old and new data.
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tSNE/viSNE and UMAP

T-distributed stochastic neighbor embedding (tSNE)/

viSNE and uniform manifold approximation and

projection (UMAP) are nonlinear dimensionality

reduction algorithms that are commonly used to visualize

the heterogeneity of cell subsets across a data set.54,55

Dimensionality reduction algorithms maintain cells

independently of each other (rather than forming clusters

or groups). They distinguish between subsets and

highlight changes that may occur across groups, but their

appearance can be misleading: a subset of highly

homogenous cells group very tightly together on a plot,

while a more heterogenous subset of cells may appear to

be a larger population but does not necessarily make up

the majority of cells on the plot. Using density plots can

clarify these differences. As a reader, it is important to

know which markers were used to generate the plots, as

well as the overall distribution of cells. Coloring the plots

by cluster can help verify a clustering algorithm. These

types of plots should only be used for data visualization.

Minimum spanning tree

Minimum spanning trees (MSTs) or variants of this such

as spanning-tree progression analysis for density-

normalized events (SPADE)56 provide a simple overview

of cluster relationships, that is, how related each cluster is

to another. This approach can be useful for an indication

of the number of populations within a lineage of cells,

BOX 6. Potential pitfalls for new (and experienced) users

Inadequate controls

A serious problem that comes with revisiting existing data is the lack of relevant controls for the current analyses. The

importance of proper experimental design (including the use of appropriate controls) has been discussed in the literature,23

but how can this be achieved for analytical techniques that were not known during the preparation stage? It is even more

important in these situations to make sure the data are critically assessed for usability, particularly if they are lacking adequate

controls. Data can still be run, but it is important to understand the limitations of the existing data set when interpreting the

results, such as a lack of batch controls affecting the resulting computations.

Data quality

The reason humans are better at pattern recognition than computers is because computers are much more sensitive and

precise when considering data. To humans, cells that are similar (but not identical) are considered the same. Batch variability

(from human, experimental or instrumental error) therefore becomes a serious issue when using automated analyses.

Humans can control for these errors through checks at each point of analysis (e.g. using manual gating to shift a gate if a

signal dropped between experimental runs). There are algorithms available that are capable of normalizing data (either

between samples or experimental batches), but the resulting data or conclusion must be confirmed in a suitable manner (such

as inspecting with manual gating).

Inconsistency in human versus computer analyses

Humans are at best capable of thinking in three dimensions, yet we commonly settle for two-dimensional plots to represent

data. This greatly limits the comprehension of data in more than two dimensions (all flow cytometry data will include

forward- and side-scatter parameters). Gating through 10 two-dimensional plots is not equivalent to computing in 20

dimensions: it is still only two dimensions. When using algorithms that compute in high-dimensional space, it is easier to

find differences between populations of cells, for the same reasons two-dimensional plots can provide clearer separation of

subsets than one-dimensional histograms, although this does not guarantee statistically significant differences. The most

common approach to validate data is manual gating, as humans can naturally control for many issues that will negatively

influence algorithms. However, it is not always possible to reproduce the findings of an algorithm by manual gating (even if

the data are of high quality). Although algorithms have been developed to generate minimum gating strategies, including

Hypergate58 and GateFinder,59 in these situations, it is important to understand the context of the work, particularly the

markers that are being expressed on the cells. Does the finding make sense biologically? Are there further experiments that

could be done to support this finding? Are the same results reproduced when a different algorithm is used? It is important to

question the output of algorithms, but it is just as important to be critical of the validation.
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for example. A limitation of MSTs is that the cluster

relationships may not be meaningful without some

biological context. This issue highlights the need for

validation and cyclical analysis. Different MST tools have

different limitations; for example, in SPADE, nodes that

are close to each other are related but nodes that are

distant from each other are not necessarily unrelated.

Similar to UMAP/tSNE, MST plots are most useful for

visualizing the data set.

Force-directed plots

Force-directed plots, such as single-cell analysis by fixed

force- and landmark-directed (SCAFFoLD),57 arrange the

data using “forces” that are created by the user based on

existing biological data. Force-directed plots are,

therefore, more useful for analyzing single cells than

clusters. Cytometry data are represented in two

dimensions, using nodes, representing markers (e.g. cell

type) and edges (lines), representing “relatedness” of

nodes. Nodes repel each other and edges attract each

other; therefore, the plot accurately reflects relatedness of

populations. The result is that similar data points

eventually reside in close proximity, whereas dissimilar

data points are distant.

A useful analogy to integrate all of these approaches

can be as simple as planning a meal. Opening the fridge

allows you to see everything that you have (UMAP/

tSNE). Organizing the fridge allows you to group similar

items together, for example, meat, vegetables, dairy

(clustering and MST/force directed plots). Quantifying

how much of each food type you have and whether you

BOX 7. Glossary

Abundance : relative or absolute size of a population.

Arcsinh transformation: a method to transform data to reduce unfair weighting when comparing datapoints with high versus

low values.

Barcoding: labeling of individual samples with a combination of parameters (barcode) that allow subsequently mixed

samples to be stained and acquired on a cytometer as a single mixed sample. Debarcoding of data allows analysis of the

original individual samples.

Batching: coordinated sample processing and acquisition of groups of samples or runs to minimize between-sample

variability.

Bivariate plots: graphs showing expression of two parameters.

Classifier(s): algorithms that assign data points (such as individual cells) to predetermined groups (such as cell subsets or

clusters). Classifiers can be established on a training data set and validated on a testing data set.

Cluster: a group of individual cells put together based on similarity of parameters.

Cluster silhouette index: a method used to determine consistency within clusters.

Dimensionality reduction: a calculation that summarizes the data in a smaller number of dimensions than the original data;

useful for visualization.

Elbow point validation: a method of determining the variance in multiple clusters to determine the number of clusters

required to interpret the data set. As the number of clusters increases, the summed variance decreases; the elbow point is

where the summed variance plateaus—at this point, a higher number of clusters would provide no additional benefit.

Scaling: the process of transforming values (e.g. expression values) to create a standardized range across multiple datapoints,

while still retaining the variance.

Supervision: the guidance provided to a clustering algorithm to generate useful clustering data. Unsupervised analyses weigh

all parameters equally; supervised analyses make use of rules, usually based on previously established data, to create clusters.

Variance: the spread of values for a given parameter; for example, the range of the expression within a marker.

Weight: the impact of a value on the result of the clustering—high-weighted parameters have more impact on the number

and composition of clusters than low-weighted parameters.
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have enough variety to make a meal requires a detailed

analysis of each cluster (Box 6).

Concluding thoughts

High-dimensional cytometry continues to evolve, but the

steps involved in making the most of the technology

remain the same. Fundamentals, such as framing a clear

research question, logical panel construction and careful

experimental design, allow high-quality high-dimensional

data to be generated. The means by which data are

analyzed are also changing. These include increased

understanding of molecular interactions and expression

of molecules in cell subsets, as well as standardized gating

strategies. Large changes between groups are likely to be

noticed by humans, as well as by computers, but it is

subtle changes that algorithms are able to identify that

make their use worthwhile. Any set of data can be

analyzed an almost infinite number of ways: gates can be

readjusted countless times to result in different outcomes.

For this reason, it is not possible to find all changes by

using a single method of analysis. Running previous data

through a clustering algorithm will undoubtedly reveal

new differences, because of its ability to process in a

higher number of dimensions. The question is whether

the resulting changes are real and/or relevant. Validation

of results is essential but can reveal new messages that

were previously missed. This is most efficient when

answering a specific research question (either the same or

new), to provide a more focused approach (Box 7).
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