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Gram-negative pathogens are enveloped by an outer mem-
brane that serves as a double-edged sword: On the one hand, it
provides a layer of protection for the bacterium from environ-
mental insults, including other bacteria and the host immune
system.On the other hand, it restrictsmovement of vital nutrients
into the cell and provides a plethora of antigens that can be
detected by host immune systems. One strategy used to overcome
these limitations is the decoration of the outer surface of gram-
negative bacteria with proteins tethered to the outer membrane
through a lipid anchor. These surface lipoproteins (SLPs) fulfill
critical roles in immune evasion and nutrient acquisition, but as
more bacterial genomes are sequenced, we are beginning to
discover their prevalence and their different roles and mecha-
nisms and importantly how we can exploit them as antimicrobial
targets. This review will focus on representative SLPs that gram-
negative bacteria use to overcome host innate immunity, specif-
ically the areas of nutritional immunity and complement system
evasion. We elaborate on the structures of some notable SLPs
required for binding target molecules in hosts and how this in-
formation can be used alongside bioinformatics to understand
mechanisms of binding and in the discovery of new SLPs. This
information provides a foundation for the development of ther-
apeutics and the design of vaccine antigens.

Introduction to surface lipoproteins

Lipoproteins are soluble hydrophilic proteins that remain
associated with a lipid bilayer through a covalently attached
lipid anchor (1). It is well known that many lipoproteins are
found in the periplasm and are tethered to the inner leaflet of
the outer membrane (OM) or the outer leaflet of the inner
membrane. Due to a previous underappreciation of lipoprotein
export pathways, improvements in technology to detect and
characterize surface proteins, and an interest in finding vaccine
antigens, there have been a growing number of reports of li-
poproteins coating the outer surface of gram-negative bacteria.
These surface lipoproteins (SLPs) are structurally and func-
tionally diverse and play critical roles in nutrient acquisition,
immune evasion, cellular adhesion, and cell signaling (2).
Although gram-positive organisms display SLPs as well, their
synthesis and display vary from those of gram-negative
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organisms (3) and are beyond the scope of this review. In
gram-negative organisms, the lion’s share of SLP-mediated
immune evasion occurs by overcoming host nutritional im-
munity and the host complement system. Thus, the impor-
tance of SLPs to bacterial virulence and accessibility to host
antibodies make SLPs ideal targets for vaccine design.

Nutritional immunity is the process by which hosts limit the
availability of metals in circulation by expressing metal chelating
proteins (i.e., transferrin [Tf], lactoferrin [Lf], S100 proteins),
ensuring that invading pathogens are starved for these critical
nutrients (3). In a more aggressive defensive mechanism, the
complement system provides the primary innate immune
response, driving the formation of immune attractants and la-
beling invading pathogens for lysis and/or phagocytosis (4).
Pathogen SLPs facilitate immune evasion from nutritional im-
munity or complement by binding the host proteins of these
systems, reversing their roles andmaking them advantageous for
the bacterium. To overcome nutritional immunity, SLPs bind
directly to host metal sequestration proteins and facilitate the
piracy of metal nutrients from the host. Likewise, to evade the
complement system, SLPs bind host complement regulatory
proteins whose presence on the surface inhibits the assembly of
complement machinery and prevents damage to the bacteria.

In this review, we will provide an overview of our current un-
derstanding of immune evasionSLPs fromgram-negative bacteria,
reviewing their biosynthesis, molecular mechanisms, and viability
as vaccine antigens. Pharma has already examined the value of
SLPs as potential vaccine antigen endeavors that have culminated
in the use of SLPs as antigens in Bexsero and Trumenba, Food and
Drug Administration–approved vaccines from Glaxosmithkline
andPfizer, that havebeendeveloped toprotect against serogroupB
Neisseria meningitidis (5, 6). The development of new SLP-based
vaccines to protect against other bacterial pathogens first re-
quires initial SLP identification, through either bioinformatics or
other biochemical techniques. Further understanding of SLP
structure–function relationships, as we will discuss, can aid in the
generation of mutants that can improve antigen effectiveness by
optimizing stability or reducing target binding.

The SLP journey: cytoplasm to surface display

SLP biogenesis and processing

SLPs undergo a series of processing and trafficking events in
order to reach the cell surface. These events have been
intensely characterized in the model organisms, Escherichia
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coli and Neisseria species. Bacterial lipoproteins synthesized in
the cytoplasm are kept in an unfolded, or translocation-
competent, state by the chaperone secretory (Sec)B and
delivered to the SecYEG channel for translocation across the
inner membrane, which is driven by the SecA motor and relies
on ATP hydrolysis (7). The nascent protein emerges from the
ribosome with a Sec signal sequence that begins with a posi-
tively charged region followed by a hydrophobic stretch and a
C-terminal polar region (7). Bacterial lipoproteins contain a
consensus sequence in their N-terminal region called the
lipobox motif, [LVI][ASTVI][GAS]C, which contains an
invariant Cys residue that undergoes lipid modifications and
becomes the first residue (+1 Cys) of the mature protein after
the signal peptide is cleaved (8). While most lipoproteins
including Neisserial SLPs go through the Sec translocon, li-
poproteins with the TAT signal sequence, with the motif S/
TRRXFLK, move across the inner membrane via the tat
translocon (7, 9). The tat translocon relies on the proton motif
force and can transport folded proteins (7).

Upon translocation across the inner membrane, pre-
prolipoproteins undergo a series of post-translational modifi-
cations (Fig. 1A). First, the inner membrane protein
diacylglycerol transferase (Lgt) catalyzes the transfer of diac-
ylglyceryl from phosphatidylglycerol to the sulfhydryl group of
the lipobox Cys (10, 11). The signal peptide of the intermediate
prolipoprotein is cleaved by signal peptidase II (LspA), which
relies on two catalytic aspartic acid residues and can be
inhibited by the peptide antibiotic globomycin (12). Apolipo-
protein N-acyltransferase (Lnt) catalyzes the transfer of an acyl
chain from phosphatidylethanolamine onto the amino termi-
nus of +1 Cys, which results in a triacylated protein (13).

The Sec-mediated translocation and subsequent processing
of lipoproteins is largely conserved between gram-negative and
gram-positive organisms (14). Additionally, Lgt and LspA are
essential in proteobacteria, while Lnt is dispensable in some
gram-negative species such as N. gonorrhoeae, which transport
diacylated lipoproteins to the OM (15). The absence of Lnt is
likely tolerated in these organisms owing to differences in the
downstream ABC transporter machinery, which may have
altered specificity for lipid modifications (15).

Localization to the OM

SLPs anchored in the inner membrane must be released and
trafficked to the OM in order to perform their cell surface
functions (Fig. 1A). The localization of lipoprotein (Lol)
pathway has been well studied in E. coli and is also involved in
SLP trafficking in N. meningitidis (16). LolCDE is an ABC
transporter responsible for the release of lipoproteins from the
inner membrane (17). Release is dependent on ATP hydrolysis
and LolA, which shuttles the SLP to LolB, an OM lipoprotein
that facilitates insertion of the SLP into the inner leaflet of the
OM through an unknown mechanism (17–19). LolA docks
onto LolC and receives lipoproteins from LolE (20, 21).
Although the structure of LolCDE alone or in complex with a
lipoprotein substrate has yet to be solved, the structures of
LolA and LolB have shed insights into the mechanism of
2 J. Biol. Chem. (2021) 296 100147
transport. LolA and LolB form incomplete β-barrel structures
with alpha helical lids forming a hydrophobic cavity for
encapsulating the acyl chains of lipoproteins for transport
through the aqueous periplasm. Site-specific photo-cross-
linking revealed that LolA and LolB interact in a mouth-to-
mouth manner, where their hydrophobic cavities meet
facilitating lipoprotein transfer to LolB (22). To ensure
unidirectional transfer, LolB has a higher affinity for lipopro-
tein acyl chains and LolA contains a 310 helix to prevent
nonspecific localization to membranes and therefore retro-
grade transfer to the inner membrane (22, 23).

Studies have demonstrated that amino acids adjacent to +1
Cys dictate whether a lipoprotein is retained in the inner
membrane or released by the LolCDE complex. In E. coli,
aspartic acid at position +2 causes retention of lipoproteins in
the inner membrane (24). In Pseudomonas aeruginosa, lysine
at position +3 and serine at position +4 are important for inner
membrane localization. However, the existence of specific
sorting signals dictating interactions with the lol machinery is
questionable as recent work has shown that the LolCDE ma-
chinery from E. coli can correctly sort lipoproteins in a
LolCDE-deficient strain of P. aeruginosa (25). It has been
proposed that the amino acid composition at the N terminus
of lipoproteins determines the affinity for inner membrane
phospholipids and thus retention (25).

Examining the prevalence of the Lol protein machinery in
bacteria raises questions whether additional factors are
important in SLP trafficking. LolA and LolCDE are highly
conserved in gram-negative bacteria, and LolB is found only in
β- and γ-proteobacteria (2). N. gonorrhoeae lacks LolC and
LolE but instead contains LolF which appears to be a LolC and
LolE hybrid, and this may account for the ability of this Lol
system to transport diacyclated SLPs (15). While LolCDE is
essential, LolA and LolB deletions are tolerable. Deletion of
LolA and LolB causes the toxic buildup of lipoproteins like lpp
in the inner membrane which can form cross-links with
peptidoglycan and cause cell lysis (26). Deletion of these toxic
lipoproteins results in viable cells that correctly traffic OM
lipoproteins such as BamD, which suggests an alternative Lol-
independent pathway downstream of LolCDE for lipoprotein
localization exists (26). The ability of SLPs to traverse the
periplasm to the inner leaflet of the OM also requires passage
through the peptidoglycan, a mechanism that has yet to be
completely elucidated.

SLP delivery to the cell surface

Different strategies exist for delivery of lipoproteins across
the OM to the cell surface. We provide a description of how
SLPs are transported to the surface via the newly discovered
Slam outer membrane protein (OMP) (discussed below) and a
brief overview of other systems that have been shown to be
involved in the translocation of specific lipoproteins.

The type II secretion system (T2SS) is a large apparatus
thought to span both the inner membrane and OM (Fig. 1B) of
many pathogenic and nonpathogenic gram-negative bacteria
(27). A wide variety of folded proteins enter the T2SS from
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either the cytoplasm or the periplasm and are secreted through
to the extracellular space by ATP hydrolysis. Among the
substrates of the T2SS is the pullulanase lipoprotein from
Klebsiella oxytoca, which functions as a starch-debranching
enzyme (28).

Lipoproteins can also belong to the type V secretion system.
Often called autotransporters, proteins of the type V secretion
system contain a β-barrel translocation domain that facilitates
transport of a secreted, so-called passenger domain across the
OM (29). The Bam complex facilitates insertion of the auto-
transporter β-barrel into the OM. The inserted auto-
transporter then acts as a channel through which the
passenger domain can translocate through to the cell surface
(Fig. 1B) (30). The passenger domain is kept in an unfolded
state by chaperones, and it is thought that the folding of this
domain provides the energy for translocation (31). The Neis-
serial protein NalP is a lipoprotein consisting of an N-terminal
β-barrel transport domain and a C-terminal passenger domain
(30). After transport across the OM, folded NalP cleaves itself
from its autotransport domain but remains associated with the
cell surface (via its lipid anchor) where it functions in pro-
cessing other Neisserial surface proteins (32).

The Bam complex is responsible for the insertion of β-barrel
membrane proteins into the OM. In a recent report from
enterobacteria, the lipoprotein RcsF was found to be trans-
located by the conformation cycling of BamA (Fig. 1B) (33). In
this model, a folded RcsF binds to the inner lumen of BamA
and an incoming OMP substrate triggers an inward-to-
outward transition in BamA, resulting in translocation of
both proteins into an OMP–RcsF complex (33, 34).

Many Neisserial SLPs rely on an OMP called surface lipo-
protein assembly modulator, Slam, for transit across the OM
and surface display (16). Slam was first discovered in
N. meningitidis using a transposon mutagenesis screen to find
genes important for transferrin-binding protein B (TbpB)
surface localization and is required for Neisserial virulence
(16). Slam consists of an N-terminal domain containing two
tetratricopeptide repeats (TPRs) and a predicted C-terminal
14-stranded β-barrel (16). Two Slam homologs were identified
in N. meningitidis that differ in their substrate specificity:
Slam1 translocates TbpB and the Lf-binding protein (LbpB),
while Slam2 is specific for HpuA (16). Although TbpB was
shown to interact with Slam during translocation, it is still
unclear whether Slam is a translocon or a chaperone that acts
in concert with another OMP assembly complex such as Bam
or Tam (35).

Slams are a family of OMPs present in a wide range of gram-
negative bacteria (36). They are found predominantly in all
clades of the proteobacteria, including human and animal
pathogens, commensals, and bacteria found in the environ-
ment (36). Genes encoding Slam can be found adjacent to their
substrate SLPs in many cases (36). Recent work found that
there are different classes of Slams that can be clustered ac-
cording to the lifestyle of the bacteria (animal pathogen, for
example) and the type of substrate they are predicted to export
such as lipidated SLPs or nonlipidated substrates (37). It is
conceivable that Slams could play a role in secretion of
proteins into the extracellular environment as TbpB with a
mutated Cys residue can be found in the culture supernatant,
suggesting that lipidation is not a strict requirement for
translocation (38). A more recent example comes from the
discovery of a novel secreted heme-scavenging protein called
hemophilin produced by Haemophilus haemolyticus (39).
Hemophilin is architecturally similar to the Neisserial SLPs,
and we discovered that it is adjacent to a putative Slam-
encoding gene, further implicating Slam in secretion. Most
of our knowledge of Slams comes from one subcluster
involved in translocation of lipidated Neisserial SLPs (37),
highlighting the need to begin examining Slams from other
classes. This may reveal new insights into Slam function and
expand our knowledge of the repertoire of Slam-dependent
substrates, an area of critical importance as Slams have been
discovered in many pathogenic proteobacteria (36). Finally, the
lack of Slam homologs in other phyla of bacteria that display
SLPs suggests that additional translocation systems remain to
be discovered.

SLP roles in overcoming nutritional immunity

With the knowledge of SLP biogenesis in hand, we can
begin to understand the functions SLPs perform in immune
evasion and nutrient acquisition. Bacteria require transition
metals such as Fe, Zn, Mn, Co, Ni, and Cu for growth and
survival (3). These trace nutrients play critical structural and
enzymatic roles in processes ranging from DNA replication to
cell metabolism and respiration (3). Mammals sequester these
metals, limiting their availability to invading bacteria as a
method of growth restriction, a mechanism termed nutritional
immunity (3). This term was initially applied to iron, the most
abundant metal cofactor well studied for its role in bacterial
pathogenesis. The definition of nutritional immunity has since
been broadened to apply to other key nutrients.

Mammalian restriction of metals in the mucosa and blood is
mediated by several proteins. Iron is stored within ferritin
intracellularly, and any free ferric iron is tightly sequestered by
the glycoproteins transferrin and Lf in sera and at mucosal
surfaces, respectively (40). Coupled with its poor solubility at
physiological pH, ferric iron exists at a concentration of
10−18 M in extracellular fluids, far below the 10−7 to 10−5 M
requirement for optimal bacterial growth (41). Approximately
70% of iron in humans is found in heme, 95% of which is
bound to proteins (42). Heme concentrations are under tight
control as any hemoglobin (Hb) released from red blood cell
lysis is bound by haptoglobin for clearance in the liver (42).
Free heme released into the blood by Hb oxidation is also
scavenged by the high-affinity heme-binding proteins, hemo-
pexin and serum albumin (42).

Zinc is another important metal for enzymatic reactions and
structural motifs, and manganese plays an important role in
the bacterial response to counter oxidative stress caused by the
immune system (43). Like iron, these trace nutrients are not
freely available, with Zn levels reported to be in the picomolar
range in blood (44). Restriction of Zn and Mn is achieved by
the S100 proteins, a family of homo-dimeric EF-hand calcium-
binding proteins (43). S100A8 and S100A9 form a heterodimer
J. Biol. Chem. (2021) 296 100147 3
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called calprotectin that binds Zn and Mn with high affinity,
while S100A12 binds to zinc and copper. S100A7 also seems to
have antimicrobial properties through chelation of zinc and is
released by neutrophils at sites of infection (43).

Both obligate and opportunistic pathogens must overcome
nutrient restriction to colonize and infect the host. Pathogens
have evolved nutrient acquisition systems ranging in
complexity from those based on simple diffusion (porins), as
well as more elaborate protein machinery, including a family of
SLPs that work in conjunction with membrane-imbedded
TonB-dependent transporters (TBDTs), reviewed more thor-
oughly in (45). In this system, TBDTs bind and extract metals
from host proteins, transporting them into the periplasm. SLPs
function by extending beyond the membrane and lipopoly-
saccharide coating, thus being more accessible to their host
protein targets. SLPs increase the local concentration of host
metal carrier proteins at the surface and eventually hand off
the target protein to a TBDT.

Acquiring iron with TbpB and LbpB

A plethora of mammalian pathogens bind to the iron
transport protein transferrin (Tf) through an SLP defined as
TbpB, or the transferrin-binding protein. These pathogens
include N. meningitidis/gonorrhoeae, Moraxella bovis, and
Actinobacilus suis, which infect humans, cows, and pigs,
respectively. TbpB is a bilobed protein, made up of an N-ter-
minal β-handle and an eight-stranded C-terminal β-barrel.
The crystal structure of the TbpB–Tf complex (Fig. 2) shows
that the N-lobe of TbpB binds and stabilizes the iron-loaded
C-lobe of Tf (46, 47). The interface between the SLP and its
target is large, burying a surface of �1450 Å2, and is made up
primarily of hydrophobic interactions and a hydrogen bonding
network; however, charge reversal mutants at the interface
greatly reduced interaction affinity (46). It is presumed that
once TbpB is bound to Tf, a hand-off of Tf to transferrin-
binding protein A (TbpA) occurs, after which TbpA, a
TBDT, extracts iron from Tf by wedging an α-helix into the
iron-binding cleft of Tf, freeing iron for transport into the
periplasm (47). TbpB binds only to iron-loaded Tf (hTf),
whereas TbpA was shown to bind both apo and holo trans-
ferrin, suggesting that SLPs may also play a role in screening
for only holo forms of target proteins (48). Size exclusion and
electron microscopy analyses suggest that a ternary TbpB–Tf–
TbpA complex may assemble (47). Binding studies using the
TbpA/B system from porcine pathogens indicated that the
lipid linker peptide is a requirement for ternary complex for-
mation; however, it remains to be seen how critical ternary
complex formation will be to proper function of the TbpA/B
system (49, 50).

The sequestration of iron provides hosts with an innate
defense, and subsequent bacterial iron piracy through TbpB
has made transferrin the subject of pathogen-driven evolution
(51). After many rounds of coevolution, the result is a path-
ogen adapted for infection of a single host species (52). An
exception to this can be found in Haemophilus somnus, which
has been shown to possess two different systems for the
4 J. Biol. Chem. (2021) 296 100147
acquisition of iron from transferrins of multiple species (53). It
has been recently proposed that two receptors HsTbpA and
HsTbpA2 work in conjunction with an SLP, HsTbpB, to
broaden the transferrin recognition range to include trans-
ferrins from ovine, bovine, and caprine, allowing for Histo-
philus somni infection in these species (54).

Several Neisseriaceae and Moraxellaceae species have
extended their iron piracy to include the use of Lf as an iron
source. This glycoprotein has striking similarities to serum
transferrin, including the ability to tightly but reversibly bind
iron, as well as a high degree of structural and sequence
similarity (55). As such, the bacterial mechanisms for high-
jacking iron from Lf are also similar in nature; indeed, it is
likely that Lf receptors were derived from transferrin receptors
(56). Structures of the N-terminal lobe of SLP LbpB (Lf-
binding protein B) show that it shares its core architecture
with TbpB (Fig. 2). The LbpB N-terminal lobe is made up of an
eight-stranded β-barrel and antiparallel β-strand handle
domain (57, 58). Like TbpB and hTf, LbpB has been shown to
favor binding to the iron-loaded form of hLf (59). Unlike
TbpB, the C-terminal lobe of LbpB is made up of flexible
anionic regions which have made structural determination of
constructs with this domain difficult. However, this unstruc-
tured anionic domain may function to protect the bacteria
from cationic antimicrobial peptides, suggesting the LbpB may
play a role in multiple immune evasion strategies (60).

Acquiring iron from heme with the HpuA–HpuB bipartite
system

The Neisseriaceae family relies on a bipartite receptor
composed of a surface lipoprotein (HpuA) and TonB-
dependent transporter (HpuB) for heme acquisition (61–63).
HpuA and HpuB are both required for growth on Hb and
hemoglobin–haptoglobin (HbHp) as iron sources; however,
HbHp is more supportive of growth (61, 64). Similar to other
heme transporters, HpuAB does not strip heme of its iron and
instead transports the intact heme molecule (65). Unlike
transferrin acquisition by TbpAB, binding to hemoglobin is
not a host-restricted phenomenon (66), nor is HpuAB selective
of a heme-loaded substrate as shown by receptor binding to
apo Hp (64).

Evidence for bipartite receptor formation comes from pro-
tease accessibility experiments in which the cleavage patterns
of both receptors alone and together suggest complex forma-
tion (66). Binding experiments also showed robust Hb binding
to cells in the presence of both HpuA and HpuB, with a re-
ported kd of 150 nM (66). The ability of HpuA and HpuB to
form a coreceptor is advantageous as a flow cytometry–based
cell assay demonstrated that HpuB binds to less hemoglobin
on its own compared with cells expressing the HpuAB com-
plex (64). Furthermore, HpuA expands the repertoire of sub-
strates that HpuB can access as HpuB on its own binds weakly
to HbHp (64).

The first glimpse into the molecular mechanism of Neis-
serial heme uptake came from the recent X-ray crystal struc-
ture of Kingella denitrificans HpuA bound to hemoglobin



Figure 1. Overview of lipoprotein trafficking to the outer membrane. A, preprolipoproteins are directed to the SecYEG or Tat translocon by a specific
signal sequence for translocation across the inner membrane. Lgt, LspA, and Lnt are involved in lipoprotein precursor maturation, catalyzing removal of the
signal peptide and addition of a lipid anchor. Lipoprotein trafficking to the outer membrane is facilitated by the Lol pathway, where a number of Lol
proteins release the mature lipoprotein from the inner membrane (LolCDE), shuttle it across the periplasm (LolA), and facilitate insertion into the inner
leaflet of the outer membrane (LolB). Slam is involved in the final step of translocating SLPs across the outer membrane and is hypothesized to secrete
proteins containing a consensus secretion signal lacking a lipobox motif. These secreted substrates are likely delivered to Slam in a translocation competent
state by periplasmic chaperones. B, additional protein machinery has been demonstrated to export lipoproteins to the bacterial cell surface. This includes
the BAM complex, which mediates the insertion of outer membrane proteins such as OmpA in complex with the RcsF lipoprotein and NalP, a type V
secretion system consisting of a C-terminal β-barrel and N-terminal lipoprotein passenger domain. The type II secretion system in Klebsiella oxytoca has also
been shown to export the surface lipoprotein, PulA. SLP, surface lipoprotein.
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(Fig. 2) (67). In contrast to structures of bacterial heme scav-
engers, HpuA binds hemoglobin and not heme. HpuA consists
of an N-terminal β-sandwich structure nested against a C-
terminal 8-stranded β-barrel. HpuA binds to an α/β-hemo-
globin dimer, on the face opposite to haptoglobin. Pull-downs
confirmed HpuA binding to Hb and HbHp (67). HpuA con-
tains two extended loops, L1 in the β-sandwich and L5 in the
barrel that bind through various hydrophobic residues to the
β- and α-subunits of Hb, respectively. Interaction with Hb is
mediated through the globin chain and not heme, and no
major conformational change occurs upon HpuA binding.
Interestingly, L1 and L5 contain sites of positive selection,
which may be explained by cycles of Hb escape and recapture
as part of the molecular arms race between bacteria and their
hosts (68). It remains to be elucidated if and how HpuA trig-
gers heme release from Hb. The structure of the ternary
complex (HpuAB–Hb/HbHp) is required for a complete pic-
ture of the molecular details of bipartite receptor formation,
host hemoprotein binding, and heme transfer to HpuB.

There has been interest in using HpuA as a vaccine antigen
because of its surface exposure and presence in the human
pathogens, N. meningitidis and N. gonorrhoeae. Furthermore,
HpuA is implicated in bacterial pathogenesis as 90% of
disease-causing meningococcal isolates express HpuA along
with another hemoglobin TonB-dependent transporter, HmbR
(69). While HpuA is phase variable, it is present in the ON
state in 90% of disease-causing isolates compared with 71% of
carriage isolates (69). Unfortunately, the presence of HpuA in
commensal Neisserial species and lack of bactericidal activity
of polyclonal anti-HpuA sera raises concerns about the use of
this SLP as an effective vaccine antigen (70, 71).

Other nutritional bipartite systems

Recent structures of SLP bipartite systems in Bacteroidetes
involved in oligopeptide and glycan uptake (72, 73) demonstrates
that the field is expanding to include the study of SLPs that are
involved in the uptake of nutrients that are not restricted by host-
specific proteins. Bacteroidetes possess enzymes that degrade
complex, inaccessible sugars and proteins to produce simpler
molecules more amenable to uptake for growth and perhaps
signaling (72, 73). X-ray and cryo-electronmicroscopy structures
coupled with functional studies support a model in which the
Bacteroidetes starch utilization system and receptor antigen gene
SLPs function as a lid that operates according to a pedal bin
mechanism. The SLP lid opens, binds its substrate, and closes for
transport. In thismodel, the SLP is important for establishing the
specificity of the bipartite receptor. Interestingly, Bacteroidetes
do not contain Slams, and how these lipoproteins get to the cell
surface is an area of future research.
SLPs’ role in complement system evasion

SLPs also provide protection against other components of the
immune system. The complement system is an ancient branch
of the immune system that is responsible for the identification
and removal of pathogens through a series of cascading
J. Biol. Chem. (2021) 296 100147 5



Figure 2. Structures of Slam-dependent surface lipoproteins involved in overcoming nutritional immunity. TbpB, LbpB, and HpuA are surface li-
poproteins that work as bipartite receptors with their partner TonB-dependent receptors to capture and transport host-restricted nutrients across the outer
membrane. Important residues involved in the binding interface are shown as stick representations and labeled. Individual structures of LbpB and its
substrate lactoferrin are shown as the structure of the complex remains to be solved. The structure of the LbpB N-lobe has been solved, and a model of the
C-lobe generated by I-Tasser is shown in gray scale. The C-lobe contains a highly charged helical region in dark gray that interacts with the lactoferrin N-
lobe. HpuA loops 1 and 5 are labeled as these loops are important for binding β and α hemoglobin, respectively.
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enzymatic reactions. The early stages of the complement system
can be divided into 3 pathways categorized by how target foreign
bodies are recognized. In the classical pathway, the complement
C1q complex recognizes antibodies (IgG and IgM) that have
recognized specific antigens on an invader (74). In the lectin
pathway, C1q is recruited bymannan-binding proteins that have
recognized specific sugar patterns on bacterial surfaces (75).
Finally, the alternative pathway is not dependent on a specific
recognition factor but instead is initiated on random surfaces.
The three pathways differ in how their respective enzymatic
cascades are initialized, but all pathways converge in the for-
mation of an enzyme complex called the C3 convertase, which
drives the deposition of C3 (76). The surface buildup of C3 leads
to phagocytosis of the opsonized body, or alternatively, the
presence of C3 can drive the formation of the C5 convertase.
The C5 convertase begins an enzyme cascade that results in the
formation of the membrane attack complex which will lyse the
invading cell (77).

The nature of the complement system requires that the host
have a response to complement activation on host cells. It is
crucial that the complement system is tightly regulated,
especially in the case of the alternative pathway where com-
plement is activated on random surfaces. Complement regu-
latory proteins come in two flavors, those that are membrane
bound and expressed on the surface of host cells and those
that are free-floating soluble proteins. Among the soluble
group are C1-INH, Factor H (FH), the C4b-binding protein,
and vitronectin (Vn) (78). Most examples of SLP-mediated
complement evasion involve recruitment of a soluble
6 J. Biol. Chem. (2021) 296 100147
regulator from the host, with FH binders being the most
prevalent. We have chosen to highlight a diverse set of SLPs
that function in complement evasion, the targets of which
include heparin and the complement regulators FH and Vn.

Neisserial heparin–binding antigen: an SLP for the general
means of complement escape

The Neisserial heparin–binding protein (NHBA) is
responsible for capturing host heparin, a natural glycosami-
noglycan. The NHBA is made up of a disordered N-terminal
region followed by a 2-stranded β-hairpin and an 8-stranded
C-terminal β-barrel domain (Fig. 3) (79). The structure of
the C-terminal domain of the NHBA was first solved by so-
lution NMR (80) and was later crystalized (81). The core
structure of the β-barrel is identical in both structures, but
there are differences in the observed conformations of the β-
barrel loops, suggesting a degree of conformational flexibility
here. Also, there are major structural differences in the posi-
tioning of the N-terminal β-hairpin, which was found to lie
along one face of the β-barrel in the crystal structure, forming
several hydrophobic contacts. In contrast, the β-hairpin from
the NMR structure displayed a high degree of flexibility, which
is thought to be the result of the presence of detergent in the
NMR sample. As such, the crystal structure likely represents a
more physiologically relevant structure. The β-barrel of the
NHBA is structurally very similar to the barrels found in
TbpB/LbpB and FH-binding protein (FHbp), but loops and the
handle domain within these proteins contain key residues for
binding their discrete substrates.



Figure 3. Structures of surface lipoproteins involved in innate immune evasion. NHBA and FHbp are Neisserial Slam-dependent surface lipoproteins
involved in innate immune evasion achieved through the binding of heparin and Factor H, respectively. The NHBA binds to its ligand heparin through an
arginine-rich region; however, it was not resolved in the available crystal structure. FHbp is shown bound to complement control protein domains 6 and 7 of
human complement Factor H, and residues in the binding interface are shown as stick representations and labeled. OspE and protein E are surface li-
poproteins not present in Neisserial species and are important for immune evasion. The mechanism of export is not known for these lipoproteins. Protein E
residues K85 and R86 are critical for interaction with vitronectin, while residues R66, D73, N77, S82, and Y114 in OspE form the binding interface with Factor
H. NHBA, Neisserial heparin–binding protein.
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Neither of the NHBA structures to date contains the pre-
dicted disordered N-terminal domain, which contains the
arginine-rich region responsible for heparin binding (80, 81).
The mechanisms of why heparin binding is beneficial to the
bacteria remain poorly understood, but binding does result in
increased serum resistance in bacteria expressing functional
NHBA. It is thought that the presence of heparin on the
bacterial cell surface aids in evasion of the complement system
as heparin has been shown to bind to several complement
regulatory factors (82, 83). It is possible that heparin-mediated
complement factor recruitment only functions to increase the
surface concentration of regulatory factors so that they may be
picked up by additional SLPs like FHbp, discussed below.
Alternatively, heparin may form a polyanion shield around the
cell surface, acting similar to the polysaccharide capsule pre-
sent in some strains of N. meningitidis (84).

FH-binding SLPs

The soluble complement regulator FH is a 150-kDa glyco-
protein and major target of bacterial SLPs. Structurally, FH is
made up of 20 complement control protein (CCP) regions that
are sometimes called sequence consensus repeat regions. The
presence of FH impedes the function of the C3 convertase either
by accelerating the decay of the convertase or by acting as a
cofactor for Factor I, an enzyme responsible for the decay of C3b
into an inactive form. Both mechanisms effectively halt the
cascade required for full complement activation (85, 86). Of the
20 CCP regions in FH, regions 1 to 4 are responsible for regu-
lation of complement activity, and as such, bacteria do not bind
to this area in order to preserve FH activity. There are two main
binding sites that bacterial SLPs use to bind FH, CCPs 6 and 7,
and CCPs 19 and 20, both of which contain glycosaminoglycan
(i.e., heparin)-binding sites that are critical to the host. Detailed
experimental data on the role of Neisserial FHbp and how it
binds FHCCPs 6 and 7 has provided insight into this interaction
and how it could be exploited. CCPs 19 to 20 are bound by awide
range of pathogens including P. aeruginosa, Haemophilus
influenzae, Bordetella pertussis, and others (78). However, we
will limit our discussion to OspE from Borrelia burgdorferi as it
has been crystalized in complex with FH domains (76, 87)
providing structural and mechanistic details.

FHbp of N. meningitidis

The most well-characterized example of a bacterial hijacker
of FH is N. meningitidis through its FHbp, an antigen which is
used in both Trumenda and Bexsero vaccines (79). By binding
FH to its surface, N. meningitidis is protected from
complement-mediated cell killing (87, 88). The 27-kDa struc-
ture of FHbp is made up of two domains, both of which form
contacts with FH, that are made up of β-strand and helical el-
ements (87). The N-terminal barrel is made up of 6 antiparallel
β-strands facing 2 shorter strands and a short α-helix. This is
followed by an eight-stranded β-barrel and a short 310 helix. The
FH CCP regions 6 and 7 are bound to FHbp through extensive
contacts (Fig. 3), burying a surface area of over 2800 Å2 (87).
This is facilitated primarily through interactions between CCP
and both barrel domains of FHbp, although there are alsominor
contacts to CCP 7 (87). The FHbp of circulatingN. meningitidis
strains can be divided into three variant groups (V1, V2, andV3),
all of which are capable of binding FH with nanomolar affinity
J. Biol. Chem. (2021) 296 100147 7
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(89). Interestingly, each variant displays different residues that
are critical for binding FH (89). Despite the extensive interface
between FHbp and FH, there are several key residues that can
modulate binding affinity in V1 variants. These residues are
mostly polar in character. Point mutations of R195 and H313
showed at least a 5-fold reduction in FH affinity (90), while a
double mutant E283A/E304A showed a 10-fold reduction in kd
(87). A single FHbp mutation, R106S, was able to abolish FH
binding, and use of this mutant in vaccinations in mice resulted
in an enhanced protective antibody response (91). Clearly
mutational analysis can be used to fine-tune the immunogenic
properties of an SLP antigen, but caremust be taken as the FHbp
double mutant, E283A/E304A, showed reduced serum bacte-
ricidal activity when compared with vaccinations using wild-
type protein (92).

OspE from B. burgdorferi

TheBorrelia genus is an extreme example of an SLP producer
having over 80 predicted SLPs (93). The Borrelial SLPOspAwas
used in a vaccine that protected humans against Lyme disease.
This vaccine was pulled from the market owing to side effects
that were not detected in phase III clinical trials, and there is
currently no available vaccine (94). Borrelia along with Bacter-
oidetes was found to produce SLPs, but no Slam homolog was
found, a notable exception suggesting that there may be novel
translocation mechanisms or novel Slams that remain to be
discovered (36). It remains to be seen if any one Borrelial SLP is
the most critical as each is likely important to different condi-
tions based on tick feeding patterns. We chose to review OspE
(outer surface protein E) as it was one of the few examples where
the SLP–ligand complex structure has been solved.

OspE is a 17-kDa protein that begins with a classic un-
structured region followed by a repeating structure of 4 β-
strands followed by an α-helix (-strands 1–4,-helix1,-strands
5–8,-helix2). Strands 1 and 8 are held together through a
network of hydrogen bonds, giving the protein an overall
structure of an asymmetric β-barrel (95). From the structure of
OspE complex with FH CCPs 19 to 20, it is clear that the
OspE-binding site on FH overlaps with the binding site of
heparin, mimicking the natural ligand. Residues making up the
core of the OspE interaction are present on β-strands 2 to 4
and are D73, R66, N77, Y114, and S82 (Fig. 3). CCPs 19 to 20
on FH bind to heparin on endothelial cells. The OspE-binding
site on FH overlaps with the natural heparin-binding site,
indicating that B. burgdorferi mimics the host cells in order to
bind FH. This is similar to N. meningitidis binding CCP 6 to 7.
These sites do not change because they are functionally crit-
ical. Binding of OspE to its binding site not only leaves the
functional CCPs 1 to 4 untouched but also leaves the C3b-
binding site available. This is exemplified by a recent
example of the tripartite structure (96).

The Vn-binding SLP, protein E from H. influenzae

H. influenzae is an important respiratory pathogen that can
cause meningitis and sepsis (97). Like N. meningitidis,
H. influenzae is divided into serotypes that are either
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encapsulated or noncapsulated. Current vaccine formulations
do not provide protection for the noncapsulated serotypes of
H. influenzae, and an SLP-based vaccine may be more effective
in combating these strains (98). Our recent bioinformatics
search for Slams predicted H. influenzae to have a Slam in the
proximity of the SLPs (36), including Protein H, an antigen
present in recent vaccine formulations undergoing phase two
clinical trials (99). H. influenzae also displays Protein E, a 16-
kDa SLP, responsible for binding several host factors
including the complement regulator Vn (100). Vn is a multi-
functional 75-kDa glycoprotein that functions to regulate a
later stage of complement than FH. Similar to FH, Vn binds
directly to complement proteins to modulate their function.
Vn is proposed to bind the C5b-7 complex, preventing its
insertion into the target membrane, and inhibit the attachment
and polymerization of C9 (101). Surface plasmon resonance
detected that recombinant Protein E was able to bind immo-
bilized Vn with a kd of 400 nM (102). A lipid anchor–free
protein E exists in solution as a dimer, a stoichiometry that
was maintained in the asymmetric unit of the crystal structure
(103). The protein E monomer is made up of a long alpha helix
that is packed into the concave face of a β-sheet comprised of 6
antiparallel β-strands (Fig. 3). The alpha helix is associated to
the β-sheet through electrostatic interactions but is also teth-
ered to the sheet through a conserved disulphide bridge (res-
idues 99–148). The protein E dimer in the asymmetric unit of
the crystal packs together on the convex side of the β-sheet
through a surface that only comprises 625 Å2.

There is no current structure of Protein E in complex with
Vn, though the core of protein E (84–108) was found to be the
site of Vn binding. K85 and R86 of Protein E were shown to be
critical for interaction with Vn (104).

Discussion

The widespread emergence of antibiotic resistance in bac-
terial pathogens necessitates the need for novel therapeutics
and preventative measures (105). Recent advances in the field
of bacterial SLP biology has discovered that pathogens display
these proteins on their surface where they carry out funda-
mental roles in bacterial survival, such as overcoming host
nutritional immunity and the complement system. SLPs
represent a class of underutilized and attractive candidates for
therapeutic development, as they are constitutively surface
exposed. Indeed, there have been several examples of lipo-
proteins being evaluated in vaccines (106–109).

SLPs are likely going to be targets better suited for vaccine
development rather than more traditional small-molecule in-
hibitors. The design of small molecule–based inhibitors tar-
geting SLPs involved in nutrient acquisition would be difficult
because a significant amount of sequence variation may pre-
clude the binding of a broad spectrum inhibitor. Efficacy of a
small molecule may also be short-lived owing to development
of resistance. Furthermore, redundancy is present in SLPs that
bind complement regulatory proteins. For example, many
Borrelia SLPs are geared toward complement evasion (110).
Ergo designing a single therapeutic to inhibit all expressed



Figure 4. Schematic diagram of SLP vaccine development pipeline. Bioinformatics and reverse vaccinology can be used to identify candidate SLPs. This
can be facilitated by searching for translocation machinery such as Slams. Pictured is a pruned phylogenetic tree (see text for details) of pathogenic gram-
negative bacteria. Bacteria containing putative Slams are indicated with red dots. Notice that Slams have not been discovered in the more phylogenetically
distant Spirochetes and Bacteroidetes, implying novel translocation machinery may be present in these bacteria. Once a candidate SLP is chosen, structure–
function analysis can be used to generate optimized antigens. Two examples include the TbpB-based scaffold, LCL, which has been used to generate TbpA–
TbpB hybrids (118), as well asnon-binding FHbp. Both of these examples have improved antigenic properties. This antigenic optimization process can be
repeated iteratively to create superior antigens acceptable for human vaccine trials. LCL, loop-less C-lobe; SLP, surface lipoprotein.
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proteins would be challenging. Additionally, therapeutics
designed to mimic ligands of SLPs could be potentially haz-
ardous as SLPs bind ligands at positions that are used in
physiologically relevant interactions. As demonstrated in the
examples discussed above, FHbp, protein E, OspE, and TbpB
all bind to their respective ligands at positions that are also
used by the host (46, 87, 95, 100). Despite these concerns,
recent work using phage display has discovered peptide-based
inhibitors of the N. gonorrheae SLP AniA, demonstrating
that small-molecule inhibitors are still a possibility for some
SLPs (111).

Like all vaccines, the development of an SLP-based vaccine is
a long and difficult process, as outlined in Figure 4. Important
first steps include finding new antigens, a goal that can be ob-
tained through bioinformatics and reverse vaccinology, both
powerful tools for the discovery of new antigens (112). Search-
ing genomes for the characteristic lipobox at the N terminus of
SLPs can be useful in finding novel lipoproteins but says little
about their subcellular localization, which must be experimen-
tally validated. Searching forOM translocationmachineries (i.e.,
Slams) in the genomic proximity of SLPs has been used as a
strategy to discover novel SLPs (36). This strategy could be
applied to a wide variety of pathogenic bacteria where putative
Slams have been discovered. Shown in Figure 4 is a pruned
global phylogenetic tree based on a concatenated alignment of
31 universal genes (113). Species containing a putative Slammay
produce novel SLPs and are indicated on the tree by a red dot
(36). However, this method is limited to Slam homologs andwill
overlook SLPs that are translocated by unknown methods. For
example, Spirochetes and Bacteroides have both been hypoth-
esized to have a Slam-like ‘flippase’ in the OM, suggesting a
novel translocation system has yet to be discovered (114, 115).
Bioinformatics can also reveal the sequence variance of a target
within the population of circulating strains. For instance, FHbp
can be divided into 2 subfamilies which have >83% sequence
identity within each subfamily but only 65 to 73% identity be-
tween subfamilies (116). Care must be taken to ensure a vaccine
formulation is representative of circulating strains. In the case of
a novel SLP discovery, researchers can use bioinformatics to
choose a central variant that may result in cross protection
across all strains. Alternatively, this information can be used to
select how many variants will be required to increase strain
coverage.

Once a candidate SLP sequence is chosen, exploring its
structure–function relationships is an important next step.
Structural elucidation of SLP–ligand complexes has proven
J. Biol. Chem. (2021) 296 100147 9



Table 1
Overview of bacterial SLPs of known structure

Organism SLP Function PDB Reference

Actinobacilus pleuropneumoniae TbpB Nutrient acquisition 3HOL (121)
Bacteroides thetaiolaomicron BT2657 Pilus formation 4QDG (122)

BT2263 Pilus formation 5FQ4 (122)
SusD Nutrient acquisition 3CKC (72)

Borrelia burgdorferi BB0365 Unknown 6RIG (123)
BB0689 Unknown 4D53 (124)s
BBA15 (OspA) Cell survival in ticks 2G8C (125)
BBA16 (OspB) Cell survival in ticks 1RJL (126)
BBA24 (DbpA) Heparin binding 4ONR (127)
BBA65 Unknown 4BG5 (128)
BBA66 Unknown 2YN7 (129)
BBA68 (Crasp-1/CspA) Complement evasion 4BL4 (130)
BBA69 Unknown 6QO1 (131)
BBA73 Unknown 4AXZ (132)
BBB19 (OspC) Cell migration 1G5Z (133)
BBE31 Unknown 6FXE, 6FZE (134)
BBH06 (Crasp-2, CspZ) Complement evasion 4BGO, 4CBE (135)
BBK32 Complement evasion 6N1L (136)
BBN38 (Crasp-3, ErpP, OspE) Complement evasion 4J38 (137)
ErpC (Crasp-4) Complement evasion 4BXM, 4BOD, 4BF3 (137)
VlsE Unknown 1L8W (138)

Borrelia turicatae VspA/Vsp1 Unknown 1YGJ (139)
Borrelia spielmani BSA64 Unknown 6HPN (128)
Campylobacter jejuni JlpA Cell adhesion 3UAU (140)

Cj0090 Unknown 4GIO (141)
Escherichia coli LptE LPS assembly 4NHR (142)
Francisella tularensis Flpp3 Unknown 6PNY (143)
Haemophilus parasuis TbpB Nutrient acquisition 4O4X (117)
Haemophilus influenza Protein E Complement evasion 6GUS (103)
Helocobacter pylori Lpp20 Unknown 5OK8 (144)
Kingella denitrificans HpuA Nutrient acquisition 5EE4 (67)
Klebsiella pneumoniae PulA Nutrient acquisition 2YOC (28)

LptE LPS assembly 5IV9 (145)
Legionella pneumophila MIP Proline isomerase 1FD9 (146)
Leptospira interrogans LipL32 Cell adhesion 2ZZ8 (147)
Leptospira santarosai LipL32 Cell adhesion 2WFK (148)
Yersinia pestis LptE LPS assembly 5IXM (145)
Neisseria gonnorehae AniA Anaerobic respiration 5UE6 (111)
Neisseria meningitidis AniA Anaerobic respiration 1KBW (149)

FHBP Complement evasion 2w80 (87)
FrpD Unknown 5EDJ (150)
GNA 1162 Unknown 4HRV (151)
NHBA Complement evasion 6CUJ (81)
TbpB Nutrient acquisition 3PQU (46)
LbpB Nutrient acquisition 1lfg (58)

Porphromonas gingivatis RagB Cell survival 5cx8 (152)
Ihtb Nutrient acquisition 5Y1A (153)

Pseudomonas aeruginosa LptE LPS assembly 2N8X (145)
Treponema pallidum TP0435 Unknown 4U3Q (154)
Xanthomonas citri OmlA Unknown 2PXG (155)

SLP, surface lipoprotein.
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to be a very useful tool in solving mechanisms and
designing nonbinding mutants, which have enhanced
immunogenic properties (91, 117, 118). Although the
number of solved SLP structures continues to grow
(Table 1), a large number of SLPs remain to be structurally
characterized. SLP–ligand complex structures can be diffi-
cult to solve, especially for SLPs that bind complex glyco-
proteins such as FH and Vn. These host ligands are large
and heavily glycosylated proteins that are not amenable to
crystallography. There are, however, several reports that use
a divide and conquer approach to successfully address these
difficulties, by isolating only the interacting regions of the
host-binding partners and cocrystallising them with their
SLP-binding partner (58, 87, 95). The ‘resolution revolution’
in cryo-electron microscopy could provide an alternative
pathway to SLP–ligand complex structures, especially as the
resolution of samples below 100 kDa improves (119).
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With an SLP-based antigen in hand, an initial animal vac-
cine trial can be done to assess safety, immunogenicity, and
dosage. This can be done in parallel with further structural
studies that could give insights into what possible mutations/
alterations should be made to the antigen. The generation of
nonbinding mutants, such as FHbp R106S (Fig. 4), can result
in antigens with superior immunogenic properties (91). Mu-
tations can also be used to optimize the fold stability of the
antigen, which can have a profound effect on the amount of
protection a vaccine can produce (120). The design and con-
struction of hybrid antigens can also improve immunogenicity.
Our group has shown that the TonB-dependent receptor
TbpA of N. meningitidis is more well conserved across all
strains relative to its SLP counterpart, TbpB. This information
was used to engineer a novel antigen in which four loops on
the C-lobe of TbpB were shortened to create a scaffold (the
loop-less C-lobe or LCL) (Fig. 4) onto which the more
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conserved TbpA loops were grafted (118). In the case of some
loops, a more cross-protective antigen was created. The above-
mentioned processes can be carried out in an iterative manner
(Fig. 4), with gradual improvements, until a final vaccine
formulation is reached and is ready for human trials.
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