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Abstract

How neuronal diversity emerges from complex patterns of gene expression remains poorly

understood. Here we present an approach to understand electrophysiological diversity

through gene expression by integrating pooled- and single-cell transcriptomics with intracel-

lular electrophysiology. Using neuroinformatics methods, we compiled a brain-wide dataset

of 34 neuron types with paired gene expression and intrinsic electrophysiological features

from publically accessible sources, the largest such collection to date. We identified 420

genes whose expression levels significantly correlated with variability in one or more of 11

physiological parameters. We next trained statistical models to infer cellular features from

multivariate gene expression patterns. Such models were predictive of gene-electrophysio-

logical relationships in an independent collection of 12 visual cortex cell types from the Allen

Institute, suggesting that these correlations might reflect general principles relating expres-

sion patterns to phenotypic diversity across very different cell types. Many associations

reported here have the potential to provide new insights into how neurons generate func-

tional diversity, and correlations of ion channel genes like Gabrd and Scn1a (Nav1.1) with

resting potential and spiking frequency are consistent with known causal mechanisms. Our

work highlights the promise and inherent challenges in using cell type-specific transcrip-

tomics to understand the mechanistic origins of neuronal diversity.

Author summary

Brain cell types have different electrical features, determined by the genes that each cell

expresses. By combining data from hundreds of articles studying individual cell types in

isolation, we developed a dataset that combines neuron gene expression patterns with

their electrical characteristics. We asked if patterns of gene expression could predict a neu-

ron’s electrical features; for example, if a neuron that expresses more of a sodium channel

also tends to fire action potentials more frequently. We found hundreds of such statistical

correlations that also replicated across brain cell types and regions. These relationships

provide a starting point for understanding how alterations in the gene expression result in

alterations in electrical functioning of neurons and brain circuits.
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Introduction

A major goal of neuroscience has been to understand the mechanistic origins of neuronal

electrophysiological phenotypes. Such electrical features help define the computational func-

tions of each neuron [1,2], and further, specific electrophysiological deficits contribute to

brain disorders such as epilepsy, ataxia, and autism [3–5].

The molecular basis of neuron electrophysiology is complex. There are over 200 mamma-

lian ion channel and transporter genes whose products influence a neuron’s electrophysiologi-

cal phenotype [6–9]. Numerous additional genes regulate channel functional expression

through initiating gene transcription and alternative splicing, post-translational modifications,

and trafficking channels to and from the membrane surface [10–12]. Even morphological fea-

tures contribute to cellular electrophysiology [13]. Recent genetic studies in human epileptic

and neuropsychiatric patients provide convergent evidence, as mutations in many genes

reflecting multiple functional pathways are associated with these disorders [4,14–16]. In light

of this complexity, the gold standard employed by neurophysiologists is to use gene knockouts

or pharmacology to assay how electrophysiological function changes following protein disrup-

tion [7,8]. However, these single-gene focused methods are relatively low-throughput and

many potentially relevant genes have yet to be studied for their electrophysiological function.

Cell type-specific transcriptomics, enabling genome-wide assay of quantitative mRNA

expression levels, provides a lucrative avenue for discovering novel genes that might contribute

to specific aspects of cellular physiology [17,18]. Correlation-based approaches have been pro-

posed that pair single-cell expression profiling with patch-clamp electrophysiology [19–21].

These approaches leverage the biological variability observed across a collection of cells to

identify gene expression patterns correlated with cellular phenotypic differences. Generalizing

from these studies has proven challenging however, since they typically have been focused on a

limited number of cell types. Similarly, and perhaps more critically, there are typically hun-

dreds to thousands of genes correlated with electrophysiological variability[22]. Thus it has

been difficult from this data to pin down how individual genes might shape specific cellular

phenotypes. Though making use of larger and more diverse collections of cell types could pro-

vide a potential solution, collecting such reference data is immensely resource- and labor-

intensive.

Here, we present an approach for correlating cell type-specific transcriptomics with neuro-

nal electrophysiological features. We leverage neuroinformatics methods to build a novel refer-

ence dataset on brain-wide neuronal gene expression and intrinsic electrophysiological feature

diversity. The compiled dataset reflects the neuronal characterization efforts of hundreds of

investigators as well as our efforts to compile and normalize these data for unified mega-analy-

sis [23–25]. From this data, we identified hundreds of genes whose expression levels signifi-

cantly correlate with specific electrophysiological features (e.g., resting potential or maximum

spiking frequency). Illustrating the generalizability of these results, we could use these correla-

tions to predict the ephys parameters of an independent neocortex-specific dataset from the

Allen Institute. In addition, many of these genes have been further found to directly regulate

neuronal electrophysiology, suggesting that some of the correlations reported here likely reflect

novel causal relationships. Our findings present a major step for understanding how a multi-

tude of genes contribute to cell type-specific phenotypic diversity.

Results

Our overall approach was to first compile a reference dataset of brain cell type-specific tran-

scriptomes paired with cell type-specific electrophysiological (ephys) profiles. We then

assessed the ability of gene expression to statistically explain variance in specific ephys
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properties. We next validated whether these gene-ephys relationships generalized using an

independent dataset on visual cortex neurons collected by the Allen Institute for Brain Science

(AIBS). Lastly we made use of literature review to establish whether any of these gene-ephys

correlations had been previously shown to be causal.

Discovery and validation datasets

To construct our primary dataset for gene-ephys correlation analysis, we adapted and com-

bined two databases developed and curated by our group. The first, NeuroExpresso, a database

containing microarray-based transcriptomes collected from samples of purified mouse brain

cell types under normal conditions [23]. The second, NeuroElectro, a database of rodent neu-

ronal electrophysiological profiles manually curated from the published literature reflecting

intracellular ephys characterization of normal, non-treated cells [24,25]. From NeuroElectro’s

initial publication, we have massively expanded the resource from 331 to 968 articles and have

made essential improvements that allow more fine-grained annotation of neuron subtypes and

curation of more electrophysiological features.

Given the methodological heterogeneity of the primary data comprising these databases, we

applied a number of quality control filtering and cross-laboratory standardization approaches

(see Methods and S1 Fig). These include careful re-analysis of neuron type-specific transcrip-

tomes for cellular contamination (e.g., astrocytes, glia) and statistical approaches to normalize

ephys measurements for lab-specific experimental conditions (e.g., animal age and slice

recording temperatures). We obtained neuron type-specific paired gene expression and ephys

data by carefully aligning these databases on cell type identity, making use of our detailed

annotations of each sample’s specific cell type (Fig 1A, left). This harmonization allows us to

merge cell types defined using orthologous criteria, e.g., gene expression data derived from

transgenic lines with ephys data collected from cells defined by traditional morpho-electric cri-

teria [26]. The final “discovery” reference dataset is composed of 34 neuron types sampled

throughout the brain and reflects cell types with diverse circuit roles, neurotransmitters, and

developmental stages (summarized in Table 1 and S2 Table).

For validation we utilized an independent dataset characterizing neurons from adult mouse

primary visual cortex collected by the Allen Institute for Brain Science. Here, genetically

labeled cells were characterized either for their transcriptomic profiles, using single-cell RNA

sequencing (scRNAseq) [27], or their electrophysiological properties, using patch-clamp

electrophysiology in vitro with standardized protocols (http://celltypes.brain-map.org/).

Importantly, for both expression and ephys characterization, the same mouse lines for geneti-

cally labeling specific populations of cells were used, making it straightforward to combine

samples post-hoc, yielding a final “validation” dataset composed of 12 unique cell types (Table

2). Averaging data across labeled single cells within a mouse line also helps mitigate the influ-

ence of cell-to-cell variability and technical “dropouts” in the scRNAseq data [18]. Given the

smaller number of cell types present in the AIBS dataset we chose to use these data primarily

for validation and generalization of findings made using the discovery dataset. Note that for

both the discovery and validation datasets, electrophysiological and gene expression values are

from separate cells.

Analysis approach

Our primary analysis focus was to understand how cell type-specific expression of individual

genes might statistically explain the variance in electrophysiological parameters observed

across cell types (Fig 1A, right). For example, how does Scn1a (Nav1.1) expression correlate

with neuronal maximum firing rates? Which genes are most correlated with cellular resting

Gene expression correlates of intrinsic electrophysiology
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membrane potentials? We primarily chose to employ a single-gene focused approach (utilizing

Spearman rank correlations) because of sample size considerations, reasoning that we did not

have enough unique cell types in both the discovery or validation datasets to rigorously pursue

a combinatorial gene approach. However, as this single-gene focus limits our ability to identify

highly combinatorial and/or redundant or degenerate gene-ephys relationships [28,29], we

further pursued a machine learning approach where we used sparse, regularized linear models

to relate multivariate gene expression to ephys features.

Fig 1. Correlating cell type-specific gene expression with electrophysiological diversity. A) Illustration of transcriptomic and ephys data

compilation by cell type (left) and correlation analysis of single gene expression by ephys parameter diversity (right). B) Top row: Gene expression levels

of Nkain1 across 34 neuron types sampled from the combined NeuroExpresso/NeuroElectro dataset. Each dot reflects a unique transcriptomic sample

collected from purified cells and y-axis is in units of log2 expression (i.e., each increment reflects a 2-fold change in expression level). Dashed line at 6

indicates approximate level of background expression. Bottom row: Input resistance values for the same cell types in top row. Individual dots reflect

population mean electrophysiological values manually curated from individual articles represented in the NeuroElectro database, following experimental

condition normalization. C) Same data as in B, but data has been summarized by the mean (expression, x-axis) or median (ephys, y-axis) value within

each cell type. rs indicates Spearman rank correlation and padj indicates Benjamini Hochberg false discovery rate. Note that cell types with high Rin, such

as cerebellar granule cells and midbrain dopaminergic cells, express high levels of Nkain1 whereas cell types with low Rin, including neocortical and

hippocampal pyramidal cells, express low levels of Nkain1. D) Corresponding summary data from the Allen Institute for Brain Science (AIBS) Cell Types

dataset. Dots reflect averaged values from 12 individual mouse cre-lines and are detailed in Table 2. Expression values are based on single-cell RNAseq

(scRNAseq), quantified as Transcripts Per Million (TPM). Ephys values are based on single-cell characterization in vitro.

https://doi.org/10.1371/journal.pcbi.1005814.g001
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Correlation of neuronal transcriptomics with electrophysiological

properties

For each of the 34 neuron types in the NeuroExpresso/NeuroElectro discovery dataset, we

obtained a gene expression profile for 11,509 genes and 5–11 intrinsic electrophysiological

properties (mean = 9 +/- 2 ephys properties per cell type; described in S1 Table). We first

asked whether there are individual genes whose quantitative mRNA expression levels correlate

with systematic ephys diversity in both the discovery and AIBS validation datasets. Using the

discovery dataset, after first filtering for genes with sufficiently high and variable expression

across cell types (see Methods), we found a total of 653 genes (of 2694 tested) correlated with

at least 1 of the 11 ephys properties at padj < 0.05 (padj indicates Benjamini-Hochberg false

Table 1. Descriptions for neuron types composing the NeuroExpresso/NeuroElectro discovery data-

set. References for individual transcriptomic and electrophysiological samples are available in S2 Table.

Neuron Type Abbreviation

Basal forebrain cholinergic cells BF ACh

Basolateral amygdala pyramidal cells BLA Pyr

Brain stem cholinergic cells BS ACh

Cerebellum Golgi cells CB Golgi

Cerebellum granule cells CB gran

Cerebellum Purkinje cells, P14 CB Purk P14

Cerebellum Purkinje cells, P3 CB Purk P3

Cerebellum Purkinje cells, P56 CB Purk P56

Cerebellum Purkinje cells, P7 CB Purk P7

Dentate gyrus granule cells DG gran

Frontal cortex layer 5 pyramidal cells ORB L5 Pyr

Hippocampus CA1 pyramidal cells CA1 Pyr

Hippocampus GIN (SST) interneurons HIP GIN

Hypothalamus hypocretinergic cells HY orexin

Locus cereuleus noradrenergic cells LC NAdr

Midbrain serotonergic cells MB 5HT

Neocortex corticostratial pyramidal cells Ctx CStr Pyr

Neocortex corticothalamic pyramidal cells Ctx CThal Pyr

Neocortex G42 (PV) interneurons, P10 Ctx G42 P10

Neocortex G42 (PV) interneurons, P15 Ctx G42 P15

Neocortex G42 (PV) interneurons, P25 Ctx G42 P25

Neocortex G42 (PV) interneurons, P7 Ctx G42 P7

Neocortex GIN (SST) interneurons Ctx GIN

Neocortex Glt25d2-expressing pyramidal cells Ctx Glt Pyr

Neocortex Htr3a-expressing cells Ctx Htr3a

Neocortex layer 2–3 pyramidal cells Ctx L2-3 Pyr

Neocortex layer 6 pyramidal cells Ctx L6 Pyr

Neocortex Oxtr-expressing cells Ctx Oxtr

Somatosensory cortex layer 5 pyramidal cells SSp TT Pyr

Striatum cholinergic cells Str ACh

Striatum Drd1-expressing medium spiny neurons Str Drd1 MSN

Striatum Drd2-expressing medium spiny neurons Str Drd2 MSN

Substantia nigra pars compacta dopaminergic cells SNc DA

Ventral tegmental area dopaminergic cells VTA DA

https://doi.org/10.1371/journal.pcbi.1005814.t001
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discovery rate adjusted p-value). 1095 genes were identified at padj < 0.1 and 217 genes were

identified at padj < 0.01.

As an illustrative example of one gene-ephys correlation, we found that expression levels of

the gene Nkain1 correlated with input resistance (Rin) values across cell types in the discovery

dataset (Fig 1B and 1C; Spearman correlation, rs = 0.86; padj = 1.7�10−7). We also saw this

trend recapitulated when only considering within-cell type changes observed across cortical

basket cell and Purkinje cell development, with Nkain1 expression and Rin decreasing dramati-

cally as these cells mature (S2 Fig). In the AIBS validation dataset, after summarizing the sin-

gle-cell data to the level of cell types, we further found a consistent Nkain1- Rin correlation

amongst adult visual cortex cell types (Fig 1D; rs = 0.71). Little is known about Nkain1 protein

function, except that it interacts with the Na+/K+ pump β-subunit and likely modulates the

pump’s function and membrane localization [30]. Intriguingly, the Na+/K+ pump has a

known role in establishing cellular volumes and input resistance [31].

We provide a summary of the total number of genes identified as significantly correlated

with each of the 11 ephys properties in Fig 2A and the full list of gene-ephys correlations in S3

Table. We initially noticed that different ephys properties were significantly correlated with

varying numbers of genes. For example, at the somewhat conservative threshold of padj < 0.05,

we found no genes correlated with action potential threshold voltage (APthr), despite there

being many genes previously implicated with this feature [5,32]. In contrast, there were over

200 genes significantly correlated with either Vrest or AHPamp. However, we consider it

unlikely that all of these genes reflect a direct causal relationship, as gene-gene correlations

driven by gene co-regulation create ambiguity.

We note that in the discovery dataset, not all ephys properties were available for each cell

type, with 19–34 cell types quantified per ephys property. Furthermore, since correlation p-val-

ues are in part related to sample size, we found a positive relationship between the total num-

ber of genes associated with each ephys property and the number of cell types where the ephys

property was quantified (R2 = 0.30; S3 Fig). Next, given that ephys properties tend to be corre-

lated with one another [21,25], we asked if pairs of correlated ephys properties also tend to

share associated genes. For example, cellular measurements of membrane capacitance (Cm)

and Rin are highly anti-correlated (rs = -0.69 in the discovery dataset); furthermore, of the 80

genes significantly associated with Cm, 36 were also associated with Rin. Though some pairs of

Table 2. Descriptions for neuron types composing the Allen Institutes for Brain Sciences cell types validation dataset. Mouse line indicates cre-

driver lines used to label specific populations of cells in the adult mouse visual cortex. N cells indicates number of cells assayed per cre-line via single-cell

RNAseq or patch-clamp electrophysiology. Color indicates cell type color used within this manuscript.

Mouse line (cre-driver) N cells (scRNAseq) N cells (ephys) Color

Ctgf 13 12 midnightblue

Cux2 122 55 olivedrab1

Gad2 69 11 thistle1

Htr3a 123 81 firebrick4

Nr5a1 48 62 blue2

Ntsr1 90 37 deepskyblue

Pvalb 88 141 firebrick2

Rbp4 173 61 mediumseagreen

Rorb 51 106 skyblue3

Scnn1a.Tg2 19 28 cyan

Scnn1a.Tg3 99 52 lightskyblue

Sst 105 107 orchid

https://doi.org/10.1371/journal.pcbi.1005814.t002
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ephys properties share common biophysical mechanisms and could be thus regulated via com-

mon genes (e.g., Cm and Rin are both dependent in part on cell size), correlations between

ephys properties likely limit the specificity of the relationships reported here.

We next used the AIBS dataset to validate the significant correlations observed in the dis-

covery dataset. We predicted that gene-ephys correlations discovered in our brain-wide dataset

should generalize to the transcriptomic and electrophysiological diversity among adult visual

cortex cell types. Because of the limited number of cell types available in the validation dataset

relative to the discovery dataset, we were generally underpowered to identify statistically signif-

icant relationships using the AIBS dataset alone for most electrophysiological properties (S3

Table and S4 Table). We therefore chose to compare results between the discovery and valida-

tion datasets as: 1) overall consistency, defined by the global rank correlation between results

from the two datasets (Fig 2B); and 2) consistency for the subset of gene-ephys relationships

meeting our threshold for significance in the discovery dataset (padj < 0.05). Overall, we found

positive, but modest, agreement between the two datasets, with most ephys properties showing

a positive correlation (Table 3). However, APthr, Rheo, and Tau are notable exceptions and

might reflect challenges in normalizing these ephys features from the cross-study NeuroElectro

database [25]. Focusing specifically on significant gene-ephys correlations identified in the dis-

covery dataset, we found that the majority of these, 61.2%, reflecting 420 individual genes,

were consistent in the validation dataset, with consistency defined as a matching correlation

direction and with an absolute value of rs > 0.3 (Table 3).

The degree of consistency between the NeuroExpresso/NeuroElectro and AIBS datasets is

encouraging given their dissimilarity in design and content. For example, the AIBS cell types

Fig 2. Identification and validation of transcriptomic—electrophysiological correlations. A) Count of

genes significantly correlated with various electrophysiological properties, broken down by statistical

significance of Benjamini-Hochberg FDR-adjusted correlation p-values (padj). Names and descriptions of

ephys properties are provided in S1 Table. B) Comparison of correlations calculated using NeuroExpresso/

NeuroElectro discovery dataset (NeuExp/NeuElec, x-axis) versus correlations calculated using Allen Institute

validation dataset (AIBS, y-axis). Dots reflect correlation values of individual genes. Subpanels indicate

correlations computed across various electrophysiological properties and p-values are provided in Table 3.

https://doi.org/10.1371/journal.pcbi.1005814.g002
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dataset is sampled from a single brain region (visual cortex) at one developmental stage

(adult). Moreover, there are considerable technical differences between the datasets, such as

transcriptome quantification via single-cell RNAseq vs pooled-cell microarrays or between

standardized versus heterogeneous ephys data collection.

In the remainder of the manuscript, we focus on incorporating multivariate methods and

further characterizing the significant gene-ephys correlations from the discovery dataset that

have evidence for further validating in the AIBS dataset.

Predicting cell type-specific electrophysiological values from gene

expression

Given the relatively high correlation between the expression of single genes and specific ephys

properties, we next wondered if we could construct statistical models to predict ephys parameters

from gene expression patterns. Using the discovery dataset, we trained sparse, regularized statisti-

cal models to predict cell type-specific ephys values from multivariate gene expression (using a

consensus set of 2603 genes with high variance in the discovery dataset that were also available in

the AIBS validation dataset). Across the set of 11 ephys properties, we used leave-one-out cross-

validation (LOOCV) to evaluate how well gene expression patterns can predict the ephys parame-

ters of cell types not used for model training. For most ephys properties, such as action potential

amplitude (Fig 3A, R2
LOOCV = 0.63) and maximum firing rate (Fig 3C, R2

LOOCV = 0.58), we

found considerable predictive power between cell type-specific gene expression and ephys (sum-

marized results across ephys properties shown in (Fig 3E). We further noted that, qualitatively,

ephys properties with relatively poor predictive performance also tended to be those with fewer

genes identified as significantly correlated with that feature, such as APthr and APhw (Table 3).

Next, we asked if the statistical models that were originally trained on the discovery dataset

could further be used to predict the ephys properties of the cell types in the AIBS validation

dataset, even though technical differences would likely limit the accuracy of such cross-dataset

prediction. We first applied simple normalizations to help align the RNAseq-based expression

values and ephys measurements to those from the discovery dataset (see Methods). After using

Table 3. Consistency of gene-electrophysiological property correlations between NeuroExpresso/NeuroElectro discovery and AIBS validation

datasets. Overall AIBS consistency indicates overall Spearman rank correlation between the full set of gene-electrophysiological correlations calculated in

both the discovery and validation datasets, as shown in Fig 2B. P-values based on 1000 random reshuffles of cell type labels in the AIBS validation dataset.

Discovered genes, padj < 0.05 reflects count of genes significantly correlated with each ephys property with in discovery dataset (only includes genes that are

also present in AIBS scRNAseq dataset). AIBS consistency, |rs|> 0.3 reflects count and percentage of discovered genes that further show a consistent rela-

tionship in the AIBS validation dataset. P-value also based on 1000 shuffled samples of cell type labels in the validation dataset.

Ephys Property Overall AIBS consistency Discovered genes;

padj < 0.05

AIBS consistency;

|rs| > 0.3

Spearman corr. p-value count count % p-value

AHPamp 0.45 0.009 285 204 72 0.005

APamp 0.404 <0.001 169 119 70 0.006

APhw 0.04 0.323 4 3 75 0.056

APthr -0.146 0.877 0 - - - - - - - - -

Cm 0.384 0.037 80 55 69 0.015

FRmax 0.209 0.074 21 7 33 0.159

Rheo -0.049 0.649 15 5 33 0.162

Rin 0.346 0.004 144 68 47 0.029

SFA 0.298 0.01 2 1 50 0.277

Tau -0.106 0.713 6 5 83 0.007

Vrest 0.332 0.029 279 148 53 0.025

https://doi.org/10.1371/journal.pcbi.1005814.t003
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Fig 3. Multivariate gene expression can predict cell type-specific electrophysiological parameters. A)

Comparison of observed action potential amplitudes (APamp; x-axis) to predicted values (y-axis) using gene

expression-based statistical models trained using the NeuroExpresso/NeuroElectro discovery dataset. The y-

value of each point (a cell type) is based on leave-one-out cross-validation (LOOCV). R2
LOOCV indicates the

calculated R2 across the set of cell type predictions and grey line indicates the unity line. B) Same as A, but

observed and predicted values are based on the AIBS validation dataset. Ephys predictions on y-axis are

made by applying the discovery dataset-based models (as in A) to the AIBS-dataset multivariate gene

expression profiles. R2
AIBS is calculated across the set of predictions made for the AIBS cell types and grey

line indicates best linear fit. C,D) Same as A and B, but for maximum firing rate (FRmax). E) Summarized

performance of gene expression-based statistical models for predicting ephys parameters. Large dots

indicate the R2
LOOCV from the NeuExp/NeuElec discovery dataset (pink), R2

AIBS values from the validation

dataset (green), and R2
LOOCV values on a version of the NeuExp/NeuElec discovery dataset where cell type

labels were randomly shuffled (blue). Boxplots are based on 100 bootstrap resamples of the discovery

dataset and small dots indicate boxplot outliers.

https://doi.org/10.1371/journal.pcbi.1005814.g003

Gene expression correlates of intrinsic electrophysiology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005814 October 25, 2017 9 / 28

https://doi.org/10.1371/journal.pcbi.1005814.g003
https://doi.org/10.1371/journal.pcbi.1005814


the models to predict AIBS ephys values from the single cell-based gene expression patterns,

we found good accuracy for some ephys properties, such as APamp (Fig 3B, R2
AIBS = 0.37) and

FRmax (Fig 3D, R2
AIBS = 0.98). We tended to find similar generalization performance between

the discovery and validation datasets for a number of ephys properties, with membrane time

constant (Tau) and cellular capacitance (Cm) being notable outliers (Fig 3E). While individual

poorly predicted ephys properties and cell types should be investigated further, these results

speak to the generalizability of the gene expression-ephys relationships described here. Such

findings suggest that these relationships could be used to potentially inform on cellular pheno-

types when only expression data are available.

Causal relationships between discovered gene-electrophysiological

correlations

A key question is whether any of the univariate gene-ephys correlations we observed are due

to direct causal relationships supported by specific evidence. To this end, we made use of the

existing literature on gene-ephys relations. We focused on ion channel genes (Fig 4A), reason-

ing that these would be most likely to have been directly tested for electrophysiological func-

tion. We manually searched the literature for such experiments, since at present this data is

not reflected within a comprehensive database (the current NeuroElectro database reflects

experiments done under standard or control conditions, not genetic or pharmacological

manipulations).

We present a brief summary of our gene-centered literature search alongside highlights

from our correlation-based analysis below, with the complete results provided in S5 Table. Of

31 significant and validated ion channel-ephys correlations, we found 17 had been directly

tested through genetic manipulations or channel-specific pharmacology (reflecting 12 unique

ion channel genes). To compare our correlations to individual results from direct experiments,

we first mapped our correlations to predicted causal effects; for example, knocking out a gene

whose expression is positively correlated with maximum firing rate should tend to lower firing

rates, all else being equal. We found that of 17 total tested ion channel-ephys correlations, 11

were consistent with literature evidence, 2 showed mixed evidence, 1 showed no effect on the

ephys property, and 3 were inconsistent. Here, we defined inconsistent evidence as those

where a predicted increase (or decrease) in an ephys property was reflected by a change in the

opposite direction in the literature; mixed evidence were those where some manipulations

were consistent but others were inconsistent (e.g., pharmacology versus gene knockout).

Below, we provide specific illustrative examples from this literature search.

Scn1a, encoding the sodium channel Nav1.1, was positively correlated with maximum fir-

ing rate (Fig 4B; NeuExp/NeuElec rs = 0.86, AIBS rs = 0.36), with the highest Scn1a expression

observed in adult cortical PV interneurons and Purkinje cells. In a mouse model of Dravet syn-

drome with a hemizygous gene deletion (i.e., Scn1a +/-), it was observed that fast-spiking PV

interneurons cells could no longer fire at their characteristically high frequencies (Fig 4C),

with a smaller but significant effect also observed in Sst-expressing Martinotti cells [5]. How-

ever, the same change was not seen in layer 5 pyramidal cells, which express ~3–4 fold less

Scn1a relative to PV cells (in NeuroExpresso and AIBS), potentially suggesting that total

expression levels might mediate the effect of hemizygous Scn1a deletion. Intriguingly, in a hap-

loinsufficiency model of Dravet syndrome, directly upregulating Scn1a expression using long

non-coding RNAs rescued the firing phenotype in PV cells and lowered seizure number and

duration [36].

We found 4 (of 5 total) ion channel genes correlated with Vrest that were consistent with lit-

erature evidence. Hcn3, encoding a slow HCN channel variant [6], was positively correlated
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with Vrest (Fig 4D; NeuExp/NeuElec rs = 0.82, AIBS rs = 0.57). Blocking HCN-current using

ZD7288 across multiple cell types consistently made Vrest more hyperpolarized (Fig 4E)

[34,37]. Gabrd, Kcnk1, and Itpr1, were each negatively correlated with Vrest and each gene

reflects a different mechanistic route towards Vrest hyperpolarization (Fig 4F and S4 Fig). For

example, Gabrd encodes the δ-subunit of the GABAA receptor and mediates extrasynaptic

tonic inhibition, effectively turning the GABAA receptor into a chloride channel[38]. Thus,

increased Gabrd expression, or pharmacologically increasing its activity (Fig 4F and 4G)[35]

would tend to hyperpolarize cells through the chloride reversal potential (median ECl = -72

mV, based on reported internal and external solutions). Similarly, Kcnk1, encoding the K2P1.1

2-pore potassium channel, hyperpolarizes Vrest through the potassium reversal potential (EK ~

-100 mV) [39]. Itpr1 activity releases calcium from intracellular stores and hyperpolarizes Vrest

through calcium-activated potassium channels [40,41]. Taken together, each of these genes

reflect distinct and potentially degnerate routes towards modulating cellular Vrest.

We found evidence for two ion channel subunits, Kcna1 and Kcnab2, regulating multiple

distinct electrophysiological properties (S4 Fig). For example, Kcna1, encoding the delayed

rectifier potassium channel Kv1.1, was negatively correlated with action potential half width

(NeuExp/NeuElec rs = -0.70, AIBS rs = -0.52) and positively correlated with rheobase

(NeuExp/NeuElec rs = 0.69, AIBS rs = 0.66). These correlations were corroborated by Kcna1
genetic knockouts or pharmacological block in auditory brainstem neurons and are consistent

with known mechanistic insight about Kv1.1 function [42–44].

While the previous examples are encouraging, not all of our findings were concordant with

previous literature. For example, we saw that Kcnb1, encoding the Kv2.1 channel, was nega-

tively correlated with spike afterhyperpolarization amplitude (AHPamp) (S5A and S5B Fig;

NeuExp/NeuElec rs = -0.70, padj = 0.0033; AIBS rs = -0.62). Based on this correlation, we

would expect that decreasing Kv2.1 functional expression should increase AHPamp values.

However, convergent genetic and pharmacological evidence suggests the opposite: decreasing

Kv2.1 activity or expression decreases AHPamp values [45,46]. Delving deeper, the Kcnb1-
AHPamp correlation appears driven in part by gross differences between excitatory and non-

excitatory cell types, with excitatory cells strongly expressing Kcnb1 and also having small

AHPamp relative to non-excitatory cell types (S5C Fig). Thus though there is likely some mech-

anistic explanation for why excitatory cells tend to express more Kcnb1, this does not appear to

be directly related to AHPamp per-se. This example suggests that caution is needed before

interpreting each correlation reported here as a direct causal relationship.

To summarize, we found multiple examples of direct regulation of specific ephys properties

by individual genes identified through our correlation-based methodology. In the remainder

of the results, we highlight additional genes that may be of relevance in future studies.

Fig 4. Ion channel specific gene-electrophysiological correlations and literature evidence for causal regulation. A)

Heatmap showing NeuExp/NeuElec dataset gene-ephys correlations for ion channel genes. Genes filtered for those with at

least one significant ephys correlation (padj < 0.05) and with validation supported in AIBS dataset. Gene names in bold

indicate those we found to be previously studied for specific predicted ephys properties, based on our literature search.

Symbols within heatmap: �, padj <0.1; *, padj <0.05; **, padj <0.01; /, indicates inconsistency between discovery and AIBS

validation dataset. B) Correlation between cell type-specific Scn1a (Nav1.1) gene expression and maximum firing rate

(FRmax) from discovery dataset (NeuExp/NeuElec, left) and Allen Institute dataset (AIBS, right). Grey trend lines indicate

linear fit. C) Replotted data from [33], showing evoked firing rates at 300 pA current injection for parvalbumin positive

interneurons in control and Scn1a heterozygous mice (Scn1a +/-). Data plotted as mean +/- SEM. D) Same as B, but for

Hcn3 and resting membrane potential (Vrest). E) Replotted data from [34], where Vrest from CA1 OLM interneurons was

measured before and after the application of ZD7288, a selective antagonist of HCN channels. F) Same as B, but for Gabrd

and Vrest. G) Replotted data from [35], showing Vrest recorded from dorsal motor nucleus of vagus neurons after application

of THIP, a selective agonist of Gabrd-mediated tonic inhibition.

https://doi.org/10.1371/journal.pcbi.1005814.g004
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Further analysis of specific gene-electrophysiology correlations

Encouraged that many of the univariate ion channel gene-ephys associations discovered

through our analysis were consistent with previous experimental manipulations, we next

expanded our attention to other classes of genes. From the larger list of correlations identified

in our analysis (S3 Table), we have highlighted below a small number of individual gene-

ephys correlations.

Multiple genes known to regulate ion channel functional expression and localization were

identified in our analysis (Fig 5A and 5B). For example, two genes regulating the localization

of sodium channels, L1cam and Fgf14, were correlated with Vrest in our analysis and the direc-

tion of correlation was further supported by previous experiments [47,48]. Along this theme,

our analysis identified novel associations between Nedd4l and Slmap with Vrest, Ank1 with

maximum firing frequency, and Nkain1 with Rin (as shown in Fig 1). Nedd4l, identified as an

epilepsy gene through whole-exome sequencing [14], ubiquitinates voltage-gated sodium and

potassium channels [49]; Slmap, associated with Brugada syndrome, controls the trafficking

and surface expression of voltage-gated sodium channels in cardiac and muscle cells but

remains unstudied in neurons [50]. Ank1, a member of the ankyrin family, has recently been

shown to coordinate the localization of specific Nav subunits to nodes of Ranvier [51]. Though

we found the highest expression of Ank1 in fast-spiking cells, including Purkinje and PV inter-

neurons, its function remains completely uncharacterized in these cells.

We noted several transcription factors in our list of associated genes, including some that

have known roles in the nervous system that are compatible with possible, but unknown, roles

in the regulation of cellular ephys (Fig 5C). For example, we found Zbtb18 (a.k.a., RP58,

Zfp238) to be negatively correlated with Vrest. Though Zbtb18 has yet to be studied for its

potential electrophysiological effects, this gene has been shown to be required for the normal

development of neocortical glutamatergic cells [52,53] and its human homolog has recently

been identified as a causative gene for autism and neurodevelopmental disorders [54]. As

another example, Zscan21 (a.k.a., Zipro1 or Zfp38) positively correlated with input resistance

here and has been shown to be involved in the normal proliferation of progenitor cells into

cerebellar granule cells [55].

Among genes correlated with membrane capacitance and input resistance, we noticed that

many of these were cytoskeletal proteins or otherwise associated with regulating neuronal dif-

ferentiation and dendritic morphology, including Cap2, Chn1, Stmn4, Bex1, and Tpm4 (S6 Fig).

In summary, this analysis presents suggestive evidence for many novel gene-ephys relation-

ships. Though we do not expect all of these novel associations to reflect direct causal relation-

ships, by focusing on gene classes that are compatible with possible regulation of ephys, we can

further hone the list of associated genes to those that might be of further interest for follow-up

investigation.

Discussion

The relationship between gene expression and cellular phenotypes like electrophysiology or

morphology is complex and largely unknown. Here, we have enumerated a subset of potential

gene-electrophysiology relationships by identifying genes whose expression significantly cor-

relates with specific electrophysiology parameters across a brain-wide collection of neuron

types. The majority of these relationships generalized in an independent sample of visual cor-

tex cell types and further allow the prediction of ephys features from multivariate gene expres-

sion patterns. Beyond correlation, some of these genes, such as Scn1a/Nav1.1 and Gabrd, have

been experimentally shown to be causally responsible for specific ephys properties. The major-

ity of genes discussed here, such as Nkain1 and Slmap, have yet to be investigated in the
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context of neuronal intrinsic electrophysiology. These genes present opportunities for further

study and potential avenues for targeted manipulation of electrophysiological features.

The combined NeuroExpresso/NeuroElectro reference dataset is a first-of-its-kind resource

of cell type-specific transcriptomes paired with electrophysiological profiles across a large collec-

tion of neuron types. The community resource directly reflects the efforts of hundreds of investi-

gators to characterize the rich diversity of neuron types throughout the brain. It further reflects

our considerable neuroinformatics-focused efforts in curating and standardizing this heteroge-

neous data [23–25]. The dataset includes cell type-specific samples from a wide range of cell

types varying in sub-threshold and spiking patterns, morphologies, and developmental stages.

We have made the combined dataset available here, as it could be a useful resource and bench-

mark for future analyses. Moreover, our cell type-based integration approach could be expanded

to incorporate additional cellular phenotypes, like neuronal morphology or synaptic physiology,

and newer genomic data sources including from RNA-seq, epigenomics, or proteomics [56–58].

In our framework, a causal gene-ephys relationship implies that a consistent change in a

gene’s expression would result in a corresponding change in an ephys phenotype, all else being

equal. Based on the diversity of cell types present here, we hypothesize that these gene-ephys

relationships might further be relatively independent of cell type identity. Indeed, we found

examples during our literature search where the specific experiment to confirm a causal gene-

Fig 5. Summary of gene-ephys correlations for selected functional gene sets. A) Genes regulating ion

channels and transporter function. B) Ion transporters. C) Transcription factors. Genes filtered for those with

at least one statistically significant correlation with an ephys property (padj < 0.05) and validating in AIBS

dataset. Symbols within heatmap: �, padj <0.1; *, padj <0.05; **, padj <0.01; /, indicates inconsistency between

discovery and AIBS dataset.

https://doi.org/10.1371/journal.pcbi.1005814.g005
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ephys relationship was performed in a cell type not present in either the discovery or AIBS

datasets, including auditory and autonomic brainstem neurons (Fig 4, S4 Fig). Not only do

these examples provide direct support for the gene-ephys relation, but we also infer the same

causal relationship in other cell types, beyond those tested directly. Though additional experi-

ments are needed to determine whether these relationships are truly cell type-independent,

this possibility is exciting as it suggests that there could be some genes that contribute to simi-

lar ephys functions across very different cell types.

Every novel correlation reported here presents a specific, testable causal prediction. The

results from our ion channel-focused literature search are encouraging, as 13 of 17 tested

gene-ephys relationships showed some evidence for direct experimental support. However, it

is overly optimistic to conclude that most novel ephys-correlated genes reported here will

prove causal. Instead, we advocate further in-depth analysis of gene function when prioritizing

individual genes for future experiments. For example, the correlation between Nkain1 and

input resistance (Rin) is plausibly causal because the Nkain1 protein interacts with the Na+/K+

pump complex [30] and the pump’s activity regulates Rin through helping maintain cellular

volumes [31]. Similarly, the correlation between Ank1 and FRmax is intriguing because Ank1,

an isoform of the autism gene Ank3, helps coordinate the localization of Nav subunits to the

nodes of Ranvier [51]. Though we found Ank1 to be highly expressed in adult PV and Purkinje

cells here, its function in these cells has yet to be characterized. Specific transcription factors

identified might regulate the expression of downstream genes relevant to ephys. For example,

Zbtb18, correlated with resting potential here, is required for normal glutamatergic cell devel-

opment and has recently been implicated in human neurodevelopmental disorders through

genome sequencing [52–54]. Ultimately, these genes could provide novel means for manipu-

lating cellular ephys in the context of disease. For example, upregulating Scn1a expression

using anti-sense RNA approaches has been shown to be an effective means of reducing sei-

zures in a model of Dravet syndrome [36].

Limitations and caveats

The results presented here are restricted to a limited range of situations. First, we can only

identify genes where mRNA, as measured in dissociated cells [59], is an adequate readout of a

gene’s functional activity at the protein level. Future datasets employing RNA-seq, proteomics,

or techniques to capture non-somatic mRNA will likely be able to identify more genes where

alternative splicing and post-translational modifications are essential for understanding gene

function [10–12].

Second, the univariate approach that forms the majority of our study assumes a gene’s con-

tribution to electrophysiology is similar and monotonic across cell types. This single-gene

focused analysis likely misses genes that contribute to complex ephys features in ways that are

biologically degenerate and are highly non-linear or combinatorial [28,29]. For example,

Kv3-family ion channels, including Kcnc1/Kv3.1, have been implicated in helping fast-spiking

cells maintain narrow spike widths [32,60], but we did not identify Kcnc1 as correlated with

AP width in our analysis. Further utilizing multivariate approaches (like shown in Fig 3) and

incorporating other information sources, such as how proteins interact to form functional

complexes, might reveal additional signals and help mitigate spurious correlations. However,

pursuing such approaches will likely necessitate larger datasets than are currently available.

Third, the focus of our analysis is to explain how ephys differences across cell types emerge

through gene expression. It remains an open question whether the same genes driving large

across cell type differences would also be the same genes that are defining subtler within cell

type differences, like amongst olfactory bulb mitral cells or CA1 pyramidal cells [1,2,58]. As
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the patch-seq methodology, enabling transcriptomic and ephys characterization from the

same single-cell [19,20], is further developed and applied, we eagerly anticipate testing these

hypotheses. However, small changes in expression of individual genes, as expected within a

single cell type, are difficult to reliably detect using current technologies, in part, due to rela-

tively limited sample sizes and technical challenges like “dropouts” [18]. Indeed, while these

patch-seq studies have demonstrated their utility in classifying individual cells into types

[19,20], how variance in expression of specific genes gives rise to within cell type ephys differ-

ences remains largely unaddressed.

Fourth, ephys property correlations and gene co-expression limits the potential specificity

of any causal prediction made here. For example, some pairs of ephys properties, like AHPamp

and Rin, are correlated but probably do not share common biophysical underpinnings (S3B

Fig). Because of this common correlation, genes significantly associated with one ephys feature

are more likely to be also associated with other ephys features, potentially spuriously. Similarly,

many pairs of genes show correlated expression across samples (i.e., gene co-expression).

Gene co-expression often reflects biologically meaningful signals, such as co-regulation by

common transcription factors or shared membership in biological pathways and cellular com-

partments [61]. However, co-expression makes interpreting individual gene-ephys associa-

tions difficult and likely contributes to why we found many more genes for some ephys

properties than we would naively expect, such as Vrest and AHPamp. Future analysis approaches

that explicitly consider co-expression might prove useful [62].

Lastly, the heterogeneous nature of the compiled NeuroExpresso/NeuroElectro dataset

[23,25,59] might limit our power to see possible biologically relevant signals and could explain

our failure to find genes for some ephys features. For example, because data in NeuroElectro

are compiled from different studies collected in the absence of standards for how some ephys

properties are defined [24,63], this likely limits our downstream attempts at normalization.

Similarly, the cell types reflected in the aggregated dataset are likely composed of multiple tran-

scriptomic or morphologically-defined subtypes [27,64]. However, the overall consistency

with the AIBS Cell Types dataset, where data were collected using standardized conditions and

protocols, suggests that the results shown here are not entirely the result of technical artefacts

due to data compilation.

Future directions

Our findings suggest a number of directions for future study. Can specific gene-ephys relation-

ships be used as biomarkers to detect electrophysiological changes in a disease or treatment

context? For example, if Scn1a/Nav1.1 is upregulated in a cell type, does that serve as a reliable

indicator of hyper-excitability? Given the relative ease and growing popularity of single-cell

transcriptomics on dissociated cells and nuclei [18,27], could the multivariate gene expres-

sion-based statistical models we developed be useful in imputing ephys phenotypes from tran-

scriptomic signatures alone? Lastly, are the gene-ephys correlations reported here predictive of

cell-to-cell variability reported within the same cell type?

In summary, our results suggest that large-scale transcriptomics can prove useful in helping

elucidate the biophysical basis for the rich electrophysiological diversity seen amongst neuron

types throughout the brain.

Methods

NeuroExpresso database description

To obtain neuron type-specific transcriptomic data, we made use of the NeuroExpresso data-

base (neuroexpresso.org), described previously [23]. Briefly, the database contains
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transcriptomic studies collected from mouse brain cell types sampled under normal condi-

tions. We specifically utilized the microarray-specific subset of NeuroExpresso. These samples

were collected using purified, pooled-cell microarrays with transcriptomes quantified using

the Affymetrix Mouse Expression 430A Array (GPL339) or Mouse Genome 430 2.0 Array

(GPL1261). We further only used probesets that were shared between both platforms. Tran-

scriptomic samples were quality controlled and manually curated for cell type identity and

basic sample metadata, including animal age, array platform, and purification method. Tran-

scriptomic samples are from adult mice unless explicitly mentioned. The samples were sub-

jected to RMA normalization and an additional round of quantile normalization in order to

obtain a uniform distribution of signals across samples. When a single gene was represented

by multiple probesets, the probeset with highest variability across samples was chosen to repre-

sent the gene. We note that we have re-annotated the cell type labels used here from those used

in the NeuroExpresso database and web resource.

For the purpose of obtaining a large corpus of cell types, we made use of a small number of

cell type-specific transcriptomic samples excluded from analysis in the original NeuroExpresso

publication (e.g., developmentally immature samples). Specifically, for two major cell types

with transcriptomic data collected at varying ages, cortical parvalbumin-positive (PV) inter-

neurons labelled by the G42 mouse line and cerebellar Purkinje cells [22,65], we kept samples

collected at different ages separate and used of samples collected from animals aged less than

P14. We further included data representing cortical Htr3a- and Oxtr-expressing cells from

Gene Expression Omnibus (GEO) accession GSE56996 [66] and layer 2–3 and layer 6 pyrami-

dal cells from GSE69340 [67]. The complete listing of transcriptomic samples, annotated cell

types, and references is provided in S2 Table.

Gene filtering and sample summarization

Following data compilation, we filtered genes to retain only those with 1) high mean expres-

sion; and 2) highly variable expression across cell types in the combined dataset. Specifically,

for each gene, g, we calculated its expression mean, μg, and standard deviation, σg, across the

collection of 34 cell types in the combined discovery dataset. Next, we calculated a global

mean, μglobal defined as mean(μg1:gN), and standard deviation, σglobal defined as mean(σg1:gN)

across the total set of genes. Here, μglobal = 7.5 and σglobal = 0.75; for context, background

expression levels were approximately ~6.0 (log2 expression units). We filtered genes where μg

> μglobal and σg > σglobal, leaving 2694 from 11667 total genes quantified. Lastly, we summa-

rized each cell type by the mean expression per gene across samples.

NeuroElectro database description and normalization

To obtain neuron type-specific electrophysiological measurements, we used an updated version

of the NeuroElectro database (neuroelectro.org), originally described in [24,25]. Briefly, we pop-

ulate the NeuroElectro database using manual curation to extract information on electrophysio-

logical measurements such as resting membrane potential and input resistance (described in S1

Table) from the results sections of published papers using intracellular electrophysiology. These

ephys features were chosen because they were frequently reported across articles and were cal-

culated using relatively consistent criteria from article to article. Curators also annotate a set of

relevant methodological information, including species, animal age, electrode type, preparation

type, recording temperature, and use of liquid junction potential correction.

NeuroElectro database. We note the following major improvements to the NeuroElectro

database, beyond an increase in the overall database size (from 331 to 968 articles as of Decem-

ber 2016).
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First, we have now curated and manually standardized a greater number of electrophysio-

logical properties, including after hyperpolarization amplitude (AHPamp), maximum spiking

frequency (FRmax), and spike frequency adaptation (SFA). For example, in the process of data

curation we have standardized electrophysiological properties for the use of different baselines,

for example, AHP amplitude reported as an absolute voltage as opposed to amplitude relative

to spike threshold (e.g., -70 mV vs 10 mV). We note that because of raw data unavailability, we

do not recalculate measurements in NeuroElectro from raw ephys traces. Thus, we could not

ensure that ephys properties such as SFA or AHPamp were calculated using a consistent stimu-

lation protocol across different studies. These differences where present would tend to contrib-

ute to study-to-study variability.

Second, when curating specific neuron subtypes reported in the literature, we now take

care to manually annotate the specific features the authors used to define each cell subtype

(e.g., the mouse line used, brain region, gene or protein expression, firing pattern, etc.); for

example, “barrel cortex layer 2–3 somatostatin-expressing interneuron from the GIN mouse

line” or “hypothalamus orexin-expressing cell”. This level of fine-grained cell type curation

allows us to better harmonize relevant electrophysiological to transcriptomic datasets post hoc.

NeuroElectro data preprocessing. Electrophysiological data was filtered for: 1) record-

ings from acute brain slices in vitro (thus removing in vivo recordings and from slice and cell

cultures); 2) from mice, rats, or guinea pigs; 3) with an animal age greater than 2 days old. Ani-

mal ages, when reported as a range (e.g., P14-P20), were summarized using the geometric

mean. When animal age or recording temperature was not reported, we used median imputa-

tion to fill in missing values (which typically was rare). To address the correction of liquid

junction potential (LJP), we manually removed or “uncorrected” the correction of LJP when it

had previously been performed and when the original authors provided the explicit voltage

correction value used (i.e., LJP offset). We then used a custom LJP metadata field denoted

‘PostCorrected’ to define these cases.

Experimental condition-based data normalization. Building on the approach described

previously, we used statistical regression models to normalize ephys data for study-to-study

differences in experimental methodologies [25]. Here, we used elastic-net penalized regression,

implemented using the cv.glmnet function within the R glmnet package [68] with an alpha

value of .99 and nlambda = 100. The regression model for each ephys parameter (EphysProp)

was fit using the following formula:

EphysProp ¼ NeuronTypeþ Speciesþ JxnPotentialþ ElectrodeTypeþ bsðlog
10
ðAnimalAgeÞÞ

þ bsðRecTempÞ

where bs indicates the use of bsplines with 5 degrees of freedom. Here, NeuronType, Species,

JxnPotential, and ElectrodeType each indicate nominal metadata types. AnimalAge and Rec-

Temp refer to animal age and slice recording temperature and reflect continuous parameters.

For example, ElectrodeType indicates the use of patch-clamp, perforated patch, or sharp elec-

trodes whereas JxnPotential indicates whether the liquid junction potential was explicitly cor-

rected, not corrected, or unmentioned within the article’s methods section. The ephys

properties, Rin, Tau, APhw, Cm, Rheo, FRmax, were log10-transformed prior to metadata

modeling.

We used the filtered NeuroElectro dataset to fit regression models to model study-to-study

variability in ephys measurements. After fitting these models, we then used the models to

adjust ephys data for the influence of major differences in experimental conditions between

studies.
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To summarize electrophysiological measurements per each unique cell type, we first took

the mean of measurements reported within a single paper and then calculated the median

ephys value across the multiple papers characterizing each cell type.

Harmonizing cell types across NeuroExpresso and NeuroElectro

Because it was uncommon for a single study to characterize both a cell type’s transcriptomic

and electrophysiological parameters, we developed a neuroinformatics-based strategy for pair-

ing gene expression and ephys datasets from different studies based on common cell type

identity.

We first manually re-annotated the cell type identity of each transcriptomic sample from

NeuroExpresso using a descriptive semantic label (shown in S2 Table), defined by a minimally

sufficient number of defining features (including brain region and marker gene expression or

projection pattern [69]). For example, the transcriptomic samples corresponding to cerebellar

granule cells in NeuroExpresso were purified using the L10a-Neurod1 mouse line, where GFP

is specifically expressed in the ribosomes of these cells [70]. Here, we merely annotated these

samples using the label, “cerebellar granule cells” (CB gran). We next identified all curated

electrophysiological data within NeuroElectro corresponding to this same major cell type,

making use of the manual annotations for each electrophysiological sample’s cell type identity

(n = 9 articles for CB granule cells). We note that subtle differences between how CB granule

cells are labelled in the L10a-Neurod1 mouse line and how CB granule cells are targeted by

lamina and morphology for ephys recordings would tend not to be preserved after this data

harmonization step. Lastly, we note that these cell types reflect broad cellular classes and likely

encompass multiple morpho-electric or transcriptomic subtypes [27,64].

To pair transcriptomic to ephys datasets explicitly defined by different ages (e.g., P7 and

P25), we matched animal ages +/- 2.5 days. For example, the samples corresponding to “Ctx

G42 P15” reflect neocortical parvalbumin-positive interneurons labeled by GFP in the G42

mouse line aged P15 +/- 2.5 days. Because we tended to have fewer data points after subsetting

the cortical G42 cells into different age groups, for one ephys property, APthr, we excluded

APthr values from these cells since they varied widely (~10mV) across studies from the same

time point.

Allen Institute for Brain Sciences cell types dataset

Single cell transcriptomic samples. We made use of an Allen Institute for Brain Sciences

(AIBS) Cell Types dataset employing single-cell RNAseq to characterize diversity of cells in

adult mouse visual cortex labelled by different mouse cre-lines. Specifically, we obtained data

originally reported in [27] from GSE71585, representing data from 1809 single-cells. We made

use of the summary data file where expression for each gene was summarized as reads per kilo-

base sequenced per million (TPM) with 24,057 genes quantified per cell.

Single cell electrophysiological samples. We made use of the AIBS Cell Types dataset

employing in vitro patch clamp electrophysiology to characterize mouse visual cortex cellular

intrinsic electrophysiology using standardized protocols. For each cell in the AIBS Cell Types

database (http://celltypes.brain-map.org/), representing 847 single cells as of December 2016,

we downloaded its corresponding raw and summarized ephys data (summary measurements

included input resistance and resting potential). For all spiking measurements except maxi-

mum firing rate and spike frequency adaptation, we used the voltage trace corresponding to

the first spike at rheobase stimulation level. For a few ephys properties, like action potential

half width, we calculated these from the raw ephys traces, as these were not available in the

pre-calculated summarized data. Membrane capacitance was defined as the ratio of the
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membrane time constant to the membrane input resistance. Maximum firing rate and spike

frequency adaptation were calculated using the voltage trace corresponding to the current

injection eliciting the greatest number of spikes. Spike frequency adaptation (SFA) was defined

as the ratio between the first and mean inter-spike intervals during this maximum spike-elicit-

ing trace (i.e., neurons with greater SFA will show values closer to 0).

Data summarization and harmonization. We summarized single cell transcriptomic

and ephys data to the level of cell types by averaging measurements within the same cre-line

(i.e., defining cell types by unique cre-lines). We filtered cre-lines that were sampled by at least

10 cells in each of the transcriptomic and ephys data, leaving a total of 12 cell types / cre-lines.

We also filtered single cell transcriptomic samples to include only those corresponding to neu-

ronal cells (i.e., removing glial cells erroneously labelled by the cre-line). We did not further

attempt to make use of the novel transcriptomics-based cellular subtypes as defined in [27],

since we cannot make a correspondence between these subtypes (defined on the basis of multi-

variate gene expression in the absence of ephys or morphological characterization) with indi-

vidual cells sampled in the ephys data. We matched genes across the AIBS and

NeuroExpresso/NeuroElectro datasets using NCBI entrez gene identifiers. Of the total 2694

genes present in the discovery dataset after expression level-based filtering, there were 2603

total genes in common with the AIBS scRNAseq dataset.

Data availability

The harmonized and processed cell type-specific data for the discovery and validation datasets

has been made publically available at http://hdl.handle.net/11272/10485.

Statistical analysis and methodology

Gene-electrophysiological property correlation analysis. For each gene in the filtered

NeuroExpresso/NeuroElectro data matrix, we calculated its Spearman rank correlation and

uncorrected p-value (two-sided test) with each the 11 ephys properties, using the function cor.

test from the R stats package, with ‘method =“spearman”‘. We also calculated the Spearman

correlation (rs) for each gene and ephys property in the AIBS validation dataset. We chose to

use the Spearman correlation here to mitigate the impact of outliers and the undue influence

of genes highly expressed in one or a small number of cell types.

Corrections for multiple comparisons. We used the Benjamini-Hochberg correction for

False Discovery Rate (FDR) to correct for comparisons performed across multiple genes[71],

implemented using the function p.adjust from the R stats package. Here, for ease of interpreta-

tion, we refer to the Benjamini-Hochberg FDR as padj. Because of ephys property correlations,

we did not further correct for multiple comparisons across ephys properties.

Comparing results across discovery and validation datasets. To evaluate the consistency

between discovery and validation datasets, we defined two separate measures. First, to obtain a

measure of the overall consistency per ephys property, we calculated the rank correlation

across the set of 2603 genes in common to both datasets (after filtering genes for expression

levels based on the discovery dataset). Second, to specifically focus on gene-ephys correlations

meeting our threshold for significance in the discovery dataset (padj < 0.05), we defined consis-

tent correlations as those with matching correlation directions and also with the absolute value

of the gene-ephys rank correlation in the validation dataset exceeding 0.3 (i.e., |rs, validation|>

0.3). For both criteria, we obtained p-values through randomly shuffling cell type labels in the

validation dataset between ephys and gene expression data. We obtained an expected p-value

null distribution through performing 1000 random shuffles and recalculating gene-ephys cor-

relations per shuffle. Our final list of gene-ephys correlations are those that are significant in
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the discovery dataset (i.e., padj, discovery < 0.05) that further validated in the AIBS dataset (|rs, val-

idation|> 0.3).

Modeling ephys properties using multivariate gene expression. We trained statistical

models to model the relationship between each ephys property and multivariate patterns of

gene expression. We first normalized the gene expression values from the discovery dataset

using z-score normalization and log10-transformed the ephys properties Rin, Tau, APhw, Cm,

Rheo, FRmax, prior to model training. We used elastic-net penalized regression to model uni-

variate ephys properties as a function of the expression of multiple genes (using the complete

set of 2603 genes as input). Penalized regression was implemented using the cv.glmnet function

within the R glmnet package [68] with an alpha value of 0.99 and nlambda = 100 (identical to

how we modeled ephys properties as a function of experimental condition parameters). Fol-

lowing the approach outlined in [19], models were fit in two stages, where the first stage was

used to decide the optimal amount of regularization (using nested cross-validation to decide

the L1 regularization parameter lambda with the lowest prediction error) and which set of

genes to use for prediction. In the next stage, we refit the model using only this set of selected

genes. To evaluate model accuracy in the discovery dataset, we used leave-one-out cross-vali-

dation (LOOCV), where each cell type was iteratively left out and then predicted using a

model constructed without that cell type. We evaluated model accuracy by calculating the

R2
LOOCV using the set of ephys values from all predicted cell types. As an explicit null-compari-

son, we repeated these steps on a version of the discovery dataset where cell type labels had

been shuffled randomly between the ephys and expression data. In addition, for the purpose of

obtaining variance estimates, we further used bootstrap resampling where we randomly sam-

pled with replacement from the underlying NeuroElectro and NeuroExpresso datasets before

constructing the final combined cell types dataset used for model training. We implemented

this bootstrapping procedure to ensure that the full set of 34 cell types were present prior to

model training. Lastly, we fit a final model for each ephys property that uses the full set of cell

types in the discovery dataset.

To apply the statistical models originally trained on the discovery dataset to the AIBS vali-

dation dataset, we first log2-transformed the AIBS cell type-summarized expression data

(quantified as TPM+1) and subsequently normalized these to z-scores, putting them on a simi-

lar scale to the discovery dataset-based expression data. Similarly, because ephys data from the

discovery and AIBS datasets were collected and normalized using different methods, we log10-

transformed Rin, Tau, APhw, Cm, Rheo, FRmax, and next z-score transformed all ephys proper-

ties to help reconcile some of these methodological discrepancies. After these normalization

steps, we predicted cell type-specific ephys values using the discovery dataset-based models

and normalized expression values from the AIBS dataset. We evaluated generalization accu-

racy by calculating the R2 value across this set of predicted ephys values (termed R2
AIBS).

Gene lists

To obtain specific gene sets, we made use of Gene Ontology annotations (as of August 2016).

We used the GO term 0005216 corresponding to “ion channel activity” to identify ion chan-

nels; the term 0015075 corresponding to “ion transmembrane transporter activity” in addition

to Nkain1 to identify ion transporters; the term 0007010 corresponding to “cytoskeleton orga-

nization” to identify cytoskeletal genes; the term 0007399 corresponding to “nervous system

development” to identify developmental genes; and the term 0034765 to identify “regulation of

ion transport” in addition to the genes L1cam, Slmap, and Ank1. To obtain a comprehensive

manually curated listing of transcription factors, we used the Transcription Factor Checkpoint

resource [72].
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Ion channel focused literature search

Literature search methodology. We performed a systematic literature search to identify

causal experiments consistent or inconsistent with the individual gene-ephys correlations

reported here. Specifically, we started with a set of 23 ion channel genes identified by our anal-

ysis (defined by GO term 0005216) that further validated in the AIBS dataset.

For each gene, we manually searched for articles where these genes had been perturbed,

either using genetic approaches to knockout or knockdown the gene’s expression or using

channel-specific pharmacology. When searching for individual genes, we made use of com-

mon gene name synonyms, for example, that Kv1.1 is a synonym for the gene Kcna1. We fur-

ther searched for papers where the individual ephys properties suggested by our correlative

analysis (e.g., APhw, rheobase) had been explicitly measured. To this end, we used Google

Scholar with the gene name or gene name synonym and the associated ephys property as

search terms. When the name of a pharmacological blocker of an ion channel was known it

was included in search terms. We also checked the top 40 papers related to a gene on its NCBI

Gene page for those in which the gene was manipulated and ephys properties of interest were

measured. For some widely studied ion channel genes, such as Kcna1/Kv1.1 and Kcnd2/Kv4.2,

we did not attempt to systematically review each article studying these genes and typically

ended our search after 3–5 relevant articles were identified. We further limited our assessment

to perturbations involving mammalian neurons.

When our search yielded pertinent articles, we annotated relevant information, including:

the kind of manipulation (e.g., genetic manipulation and type; pharmacological compound

used, etc.); cell type; and direction and magnitude of effect. Quantitative values from each

group comparison were extracted manually from either the article text or digitized from Figs.

To categorize effects, we assessed whether the perturbation resulted in an increase or decrease

in the value of the ephys property and whether this change was further either statistically sig-

nificant or non-significant. In a small number of cases, there was effectively no change or a

negligible change between the control and perturbed condition that were curated as “negligible

changes”.

When scoring whether an individual gene-ephys correlation was either consistent or incon-

sistent with literature evidence, we assessed the direction effect. For example, for an ion chan-

nel gene that our analysis found as positively correlated with Vrest, we would expect that

knocking out the gene would make Vrest to become more negative and more hyperpolarized,

all else being equal. Similarly, applying an agonist of the ion channel should make Vrest more

positive and depolarized. In cases with multiple lines of evidence linking specific ion channel

perturbations to ephys changes (e.g., both pharmacological and genetic changes), we aggre-

gated these along the following categories: consistent, inconsistent, mixed, and no effect.

Gene-ephys correlations supported by both consistent and inconsistent literature evidence

were marked as “mixed”. Those with consistent evidence and also some evidence for a negligi-

ble change but no inconsistent evidence were marked as “consistent”, and similarly for incon-

sistent evidence.

Supporting information

S1 Fig. Cartoon of data collection, curation, and normalization. Top row: Schematic of con-

struction of NeuroExpresso database. As originally described in [23], following characteriza-

tion and public depositing of cell-type specific expression datasets, raw transcriptomics

datasets were obtained and QCed before being quantile normalized and summarized at the

level of individual cell types by gene expression. Bottom row: Schematic of construction of

NeuroElectro database. As originally described in [24,25], following characterization and
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publication of neuron-type specific electrophysiological summary data, data were systemati-

cally curated and normalized for methodological differences before summarization at the level

of cell types and electrophysiological properties.

(EPS)

S2 Fig. Example of cell type-specific transcriptomic and electrophysiological changes

across development. A) Gene expression levels of Nkain1 across development of cortical G42

parvalbumin-expressing interneurons. Dots reflect unique transcriptomic samples. B) Same as

A, but for cerebellar Purkinje cells. C) Values of input resistance sampled from cortical G42

parvalbumin-expressing interneurons at various points in development. Individual dots reflect

population means from individual articles represented in the NeuroElectro database and lines

are based on loess smoothing. D) Same as C, but for cerebellar Purkinje cells.

(EPS)

S3 Fig. Factors affecting numbers of genes identified as significantly correlated with differ-

ent electrophysiological properties. A) Scatterplot illustrating the relationship between the

numbers of genes identified as significantly correlated with each ephys property (padj < 0.05)

versus the number of cell types with ephys data in the NeuroExpresso/NeuroElectro dataset.

B) Pairwise correlations between electrophysiological properties, based on cell types in com-

bined NeuroExpresso/NeuroElectro sample. Heatmap colors indicate the absolute value of

measured Spearman correlations between ephys property pairs. Inset values indicate the num-

ber of significant genes shared between each pair of ephys properties (padj < 0.05). Numbers in

parentheses on y-axis and values along diagonal indicate number of significant genes identified

for each ephys property (i.e., as in y-axis in A).

(EPS)

S4 Fig. Further evidence for causal regulation of specific gene-ephys correlations. A) Corre-

lation between cell type-specific Kcnk1 (K2P1.1/TWIK1) gene expression and resting mem-

brane potential (Vrest) from discovery dataset (NeuExp/NeuElec, left) and Allen Institute

dataset (AIBS, right). B) Replotted data from [39], showing effects of siRNA-induced knock-

down of Kcnk1 expression in dentate gyrus granule cells. C, E, I, G, K) Same as A but shown

for specific ephys properties and genes. D) Replotted data from [40], showing effects of antago-

nizing Itpr1 function through the use of 2-APB. F, H) Replotted data from [42], showing effects

of knocking out Kcna1 (Kv1.1) on action potential half width (APhw) and rheobase (Rheo) as

measured in auditory brainstem neurons. J, L) Replotted data from [44], showing effects of

knocking out Kcnab2 (Kvbeta2) on rheobase and input resistance (Rin) as measured in lateral

amygdala pyramidal neurons.

(EPS)

S5 Fig. Specific evidence for gene-electrophysiology correlation not implying causation. A)

Correlation between cell type-specific Kcnb1 (Kv2.1) gene expression and action potential

after-hyperpolarization amplitude (AHPamp) from discovery dataset (NeuExp/NeuElec, left)

and Allen Institute dataset (AIBS, right). B) Replotted data from [46], showing measured

AHPamp values from entorhinal cortex pyramidal neurons during control and under perfusion

of Guangxitoxin-1E, a specific blocker of Kv2-family currents. Data illustrates that effect of

Kv2.1 blockade results in increased AHPamp, the opposite of expected result based on correla-

tions shown in A. C) Same data shown in A, but broken down by major cell types, illustrating

that Kcnb1-AHPamp correlation is in part related to major differences in Kcnb1 expression and

AHPamp values between excitatory glutamatergic and non-excitatory cell types.

(EPS)
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S6 Fig. Summary of gene-ephys correlations for additional functional gene sets. Top: Ner-

vous system development genes. Bottom: Cytoskeletal organization genes. Genes filtered for

those with at least one statistically significant correlation with an ephys property (padj < 0.05)

and validating in AIBS dataset. Symbols within heatmap: �, padj <0.1; �, padj <0.05; ��, padj

<0.01; /, indicates inconsistency between discovery and AIBS dataset.

(EPS)

S1 Table. Description of electrophysiological properties used in this study.

(CSV)

S2 Table. Description of cell types composing the combined NeuroExpresso/NeuroElectro

dataset.

(CSV)

S3 Table. List of significant gene-electrophysiological correlations. Column headers are as

follows: EphysProp refers to the electrophysiology property, GeneSymbol, GeneName, Gen-

eEntrezID all refer to information about the gene tested and DiscProbeID indicates the Affy-

metrix probe ID used in the discovery dataset. DiscCorr refers to the gene-ephys Spearman

correlation calculated in the NeuroExpresso/NeuroElectro discovery dataset and DiscFDR and

DiscUncorrPval refers to the Benjamini-Hochberg FDR and uncorrected p-value based on

this correlation. AIBSCorr, AIBSUncorrPval, and AIBSFDR refer to the gene-ephys rank cor-

relation, uncorrected p-value, and Benjamini-Hochberg FDR calculated in the AIBS replica-

tion sample. AIBSMeanExpr (log2 TPM+1) indicates the mean expression values in the AIBS

dataset. AIBSConsistent refers to consistency of correlation direction between the discovery

and replication datasets with an absolute value of rs > 0.3 in the AIBS dataset.

(CSV)

S4 Table. Summarized counts of gene-ephys significance in discovery and AIBS datasets.

Counts of genes significantly associated with individual electrophysiological properties at vari-

ous statistical thresholds (indicated by FDR) for Discovery and AIBS datasets and the count of

genes in common between these (Overlap).

(XLSX)

S5 Table. Complete dataset of literature search for ion channels predicted to be signifi-

cantly correlated with electrophysiological diversity.

(XLSX)
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