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Affective disorders, such as anxiety and depression, are common comorbidities associated with chronic insomnia disorder (CID).
However, the underlying neural mechanisms of these comorbidities are still not clear. The present study is aimed at investigating
structural changes in the amygdala of CID patients using surface-based shape analysis. A total of 65 medication-naive patients with
CID and 55 healthy controls (HCs) matched for age, sex, and years of education were enrolled in this study and were subjected to
structural magnetic resonance imaging (MRI). The Oxford Centre for Functional MRI of the Brain (FMRIB) created an Integrated
Registration and Segmentation Tool (FIRST) that was employed in this study to assess the volumetric and surface alterations in
patients with CID. Shape correlations between the amygdala and clinical features were also analyzed. Atrophic changes in the
amygdala were observed at the local level, not for the entire amygdala volume. The left atrophic changes in the amygdala were
in the superficial and basolateral nuclei while right atrophic changes were in the basolateral nuclei in CID patients. Insomnia
severity was associated with the centromedial right amygdala while anxiety was linked with the basolateral nuclei. These findings
indicate localized amygdala atrophy in CID. Separate amygdala regions are associated with insomnia and anxiety in CID. This
evidence helps elucidate the neural mechanisms underlying the bidirectional relationship between insomnia and anxiety.

1. Introduction

Chronic insomnia disorder (CID) affects an estimated 10% of
the population and is associated with an impaired quality of
life and the presence of mental health disorders, especially
affective disorders and suicidal behavior [1–3]. Anxiety and
depression are affective symptoms that are frequently experi-
enced in patients with CID. However, for many patients suf-
fering from depression and anxiety, insomnia is a pervasive
problem. Several longitudinal epidemiological studies have
indicated that insomnia is bidirectionally related to anxiety
and depression [4–6]. Despite insomnia being widely associ-
ated with affective disorders, the neuropathology of comorbid
anxiety and depression in CID is still poorly understood. In

particular, many of the etiological theories have suggested
that heightened emotional reactivity may play a key role in
the pathophysiology of insomnia disorder and its associated
affective symptoms [6, 7].

The amygdala is located in the medial temporal lobe and
plays a key role in emotional processing [8, 9]. Serving as a
hub of emotional circuits, the amygdala participates in strong
bidirectional interactions with the prefrontal and anterior
cingulate cortex and is involved in emotional regulation;
it also receives inputs from subcortical neurons including
gamma-aminobutyric acid (GABA)ergic, dopaminergic,
serotonergic, and noradrenergic neurons associated with
the arousal system [10, 11]. Amygdala dysfunction has been
implicated in the neuropathology of a majority of emotional
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disorders such as schizophrenia, social anxiety disorder,
major depressive disorder, and obsessive-compulsive disor-
der [12–14], as well as insomnia [7, 15]. Recently, several
neuroimaging studies have revealed abnormal amygdala
function in chronic insomnia. For instance, Baglioni et al.
demonstrated that patients with insomnia show amygdala
hyperactivity in response to sleep-related stimuli [7, 16].
Using a resting state functional magnetic resonance imaging
(fMRI) method, Huang et al. found that the amygdala-based
intrinsic emotional network is abnormal in patients with pri-
mary insomnia and the functional connectivity between the
amygdala and premotor neurons is positively correlated with
insomnia severity [15]. With regard to structural neuroimag-
ing, previous studies have shown a decreased brain volume in
the medial frontal and middle temporal gyrus, middle cingu-
late cortex, and hippocampus using voxel-based morphome-
try (VBM) [17–19]; however, these studies do not show any
significant alterations in the amygdala. More recently, Koo
et al. used a FreeSurfer-based analysis and reported atrophy
in subcortical structures including the hippocampus, amyg-
dala, basal ganglia, and thalamus in patients with chronic
insomnia; nonetheless, the study did not report the details
of localized shape alterations or the association between
shape alteration and emotional symptoms [20]. To our
knowledge, no study has investigated amygdala shape alter-
ation and its association with emotional features in patients
with CID. Accordingly, elucidating the relationship between
the altered amygdala structure and affective symptoms in
patients with CID requires further investigation.

The Oxford Centre for Functional MRI of the Brain
(FMRIB) developed an Integrated Registration and Segmen-
tation Tool (FIRST); it is a new automated structural MRI
analysis tool available in the FMRIB software library (FSL)
for subcortical nuclei. FIRST can achieve an individual level
segmentation to the outer surface of substructure nuclei
[21]. FIRST segmentation of the amygdala is comparable
with expert manual segmentation and offers advantages in
small subcortical structures in a scan-rescan [22, 23]. Fur-
thermore, FIRST evaluates structural volume alterations
and can be used for shape analysis as it can examine local
changes in the subcortical nuclei. Thus, it is a useful tool
for amygdala morphometric analysis in neural mechanism
research, especially in neuropsychiatric diseases [24, 25].

In the present study, FIRST was used along with shape
analysis to investigate potential structural alterations of the
amygdala in patients with CID compared to healthy controls
(HCs) with adequate, quality sleep. Also, a surface-based
vertex-wise correlation analysis was used to detect local asso-
ciations between amygdala morphology and insomnia sever-
ity as well as affective symptoms (anxiety and depression) in
CID patients. We hypothesized that amygdala atrophy would
be observed locally in the CID group; moreover, the amyg-
dala shape, not its volume, would be associated with insom-
nia and affective symptoms in patients with CID.

2. Materials and Methods

2.1. Participants.A total of 65 medication-naive patients with
CID and 55 HCs matched for age, sex, and years of education

were enrolled in the present study. In the enrollment period,
all participants completed a self-rated medical history ques-
tionnaire and underwent a structured clinical interview by
2 senior trained neurologists (LG and DL) according to the
3rd version of International Classification of Sleep Disorders
(ICSD) and the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-V). Patients with CID met
the following inclusion criteria: [1] diagnostic criteria for
CID according to the 3rd version of the ICSD [26]; [2] at least
3 months of difficulty falling asleep, maintaining sleep, or
early wakening; [3] no hypnotic or antidepressant medica-
tion used in the 2 weeks before the neuropsychological and
MRI assessments; and [4] aged 18–55 years with an age of
insomnia onset under 50 years. The exclusion criteria for
the CID group were as follows: [1] history of another neuro-
psychiatric disorder, such as major depressive disorder or
general anxiety; [2] other sleep disorders, such as sleep-
related breathing disorders (sleep apnea syndrome), central
disorders of hypersomnolence, circadian rhythm sleep-
wake disorders, sleep-related movement disorders, parasom-
nia, or hypersomnia; [3] abuse of substances such as caffeine
and alcohol [27]; [4] contraindications to MRI; and [5] a
brain lesion detected during T2-weighted image (T2WI)
MRI. HCs were required to meet the following criteria: [1]
quality sleep, positive mood, and normal cognitive function;
[2] no history of neurological or psychiatric disease, seizures,
head injury, stroke, or transient ischemic attack; [3] no caf-
feine, drug, or alcohol abuse; and [4] no brain lesions
detected by T2WIMRI. The study was approved by the Insti-
tutional Review Board of the Hospital of Chengdu University
of Traditional Chinese Medicine. All participants signed the
informed consent form.

2.2. Assessments. The Pittsburgh Sleep Quality Index (PSQI)
was employed to evaluate insomnia severity in the CID group
[28, 29]. The self-rating depression scale (SDS) was used to
assess depression and the self-rating anxiety scale (SAS)
was used to measure anxiety.

2.3. Image Acquisition. MRI data were acquired between 4
p.m. and 6 p.m. for all participants. Imaging was performed
using a 3.0-Tesla MRI scanner (GE Healthcare Discovery
MR750, Milwaukee, WI, USA) equipped with an 8-channel
head coil. Structural images were acquired using a high-reso-
lution, spoiled gradient-recalled echo with the following
parameters: repetition time = 2900 ms, echo time = 2:48 ms,
flip angle = 7°, acquisitionmatrix = 256 × 256, field of view =
256 × 256 mm2, thickness = 1:0 mm (with no gap), number
of slices = 188, and voxel size = 1 × 1 × 1 mm3.

2.4. Image Preprocessing. MRI data analyses were performed
using the tools from the FSL (version 5.0.9, https://fsl.fmrib
.ox.ac.uk/fsl; FMRIB Software Library, Oxford University,
Oxford, UK) [30]. The default parameters in the FSL were
used. Before the subcortical region segmentation, the total
intracranial volume (TIV), white matter volume (WMV),
and gray matter volume (GMV) for each participant were
estimated using SIENAX (part of the FSL, https://fsl.fmrib
.ox.ac.uk/fsl/fslwiki/SIENA). The SIENAX method includes
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4 steps: [1] brain and skull images are extracted from the
input image; [2] the brain images are affine-registered to
standard Montreal Neurological Institute (MNI) 152 space;
[3] tissue-type segmentation with partial volume estimation
is performed to acquire TIV, WMV, and GMV; and [4] brain
volumes are standardized to a “normalized” skull size [31].

Then, the amygdala and other subcortical volume and
shape information were preprocessed by FIRST (https://fsl
.fmrib.ox.ac.uk/fsl/fslwiki/FIRST, part of the FSL, version
5.0.9) [21], an automated tool that can segment the subcorti-
cal nuclei and has been used to study several neuropsychiat-
ric disorders [24, 25]. This approach is based on Bayesian
statistical models; the shape and appearance of subcortical
structures are constructed from 336 manually labeled brain
images provided by the Center for Morphometric Analysis,
Massachusetts General Hospital, Boston. FIRST processing
consists of 4 steps: [1] raw individual brain images are regis-
tered to MNI152 space by 12 degrees of freedom and accu-
rately registered to a subcortical mask; [2] subcortical
structures are established by deformable meshes consisting
of vertices and edges; [3] subcortical structures are automat-
ically segmented based on a Bayesian framework; [4] then
both surface mesh and volumetric outputs are generated;
[5] the quality of segmentation for each person was checked
manually (2 patients with CID were excluded). Afterwards,
FIRST outcome files were used for volume and surface-
based vertex analyses.

2.5. Surface-Based Shape Analysis.A new vertex-wise analysis
algorithm was employed to investigate localized shape differ-
ences in the bilateral amygdala adjusting for age and sex
(first_utils and “Randomise” algorithm, FSL 5.0.9). General
linear models and permutation testing utilized the “Rando-
mise” FSL module [32]. This approach calculates the group
differences on a per-vertex basis. The threshold-free cluster
enhancement (TFCE), a new method for finding significant
“clusters” in a statistical image without defining clusters in
a binary manner, was used to identify vertex clusters with
significant shape deformations in CID with a family-wise
error (FWE) rate included for multiple comparison correc-
tion [33]; the FWE-corrected p values were set as the
default (p < 0:05). As the traditional surface-based vertex
analysis comprises the vectors in each significant vertex, it
was used to display the direction of group differences. In
groups demonstrating TIV differences, an additional analy-
sis was conducted to verify whether the results remained
significant after including total intracranial volume as an
additional covariate.

Furthermore, a vertex-wise correlation analysis was
employed to detect potential associations between amygdala
morphology and clinical features (duration of disease, PSQI,
SAS, and SDS scores) in the CID group, controlled for age
and sex. A significant clinical feature and amygdala shape
correlation assessment was also conducted by using the
“Randomise” algorithm with TFCE and FWE correction.
Additionally, as the hippocampus is most often reported to
have an abnormal subcortical structure in CID [18, 34, 35],
group differences in bilateral hippocampal shape were calcu-
lated using the same method.

2.6. Statistical Analysis. A two-sample t-test was conducted
to compare various demographic data between the 2 groups,
while the chi-square test was used to compare data between
sexes. An analysis of covariance was used to estimate group
differences in the volume of the entire brain (WMV, GMV,
and TIV), bilateral amygdala volume, and bilateral hippo-
campal volume, with age and sex as covariates (SPSS 20,
Inc., Chicago, IL, USA). A Pearson correlation was employed
to examine the relationship between bilateral amygdala and
hippocampal volumes; disease duration; and the PSQI, SAS,
and SDS scores in the CID group. Statistical significance
was set at p < 0:05, adjusted for multiple comparisons using
a Bonferroni correction (p < 0:00625 = 0:05/8).

3. Results

3.1. Demographic Information and Clinical Features. As
shown in Table 1, no significant group differences were
found in age, sex, or years of education (p > 0:05). In the
CID group, disease duration was not significantly correlated
with PSQI, SDS, or SAS scores (all p > 0:05), and PSQI results
were not significantly correlated with those of the SDS
(r = 0:09, p = 0:47), but were positively associated with SAS
scores (r = 0:35, p = 0:004). Moreover, SDS scores were posi-
tively correlated with SAS scores in the CID group (r = 0:36,
p = 0:003).

3.2. Brain Volumes. The TIV and WMV showed no signifi-
cant difference between the 2 groups. The GMV in the CID
group was smaller than that in the HC group (p = 0:02).
There was no significant difference in bilateral amygdala
or hippocampal volumes between CID and HC participants
(Table 1). The partial correlation analyses revealed that the
right amygdala volume was negatively correlated with PSQI
scores in the CID group (r = −0:287, p = 0:021); however,
the correlation was not significant after multiple compari-
son correction.

3.3. Shape Analysis: Group Comparisons. As shown in
Figure 1, vertex analysis revealed that the superficial (SF)
and basolateral (BL) nuclei of the left amygdala and the BL
nuclei of the right amygdala had significant group differences
in CID patients compared to HCs (TFCE corrected). The
traditional surface-based vertex analysis showed an inward
displacement in these significantly different regions of the
amygdala (Figure 2), while the shape analysis findings
indicated localized amygdala atrophy in the CID group
compared to the HC group. No significant areas of hyper-
trophy were observed. Furthermore, no significant group
differences were found via bilateral hippocampus shape
analysis. The additional analysis showed the same results
whether age, sex, and TIV were used as covariates in the
group comparisons.

3.4. Shape Analysis Correlations. Figure 3 illustrates the cor-
relation of localized amygdala shape with PSQI and SAS
scores. As demonstrated in Figure 4, the inward correlation
indicates a negative association of the right amygdala shape
with PSQI and SAS scores in the CID group. Interestingly,
the PSQI-associated region was mainly in the centromedial
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(CM) amygdala, while the SAS-associated region was in the
BL amygdala. These results suggest that different neural
mechanisms may be responsible for insomnia and anxiety
in CID. There were no correlations between the left amygdala
shape and clinical features in the CID group. Disease dura-
tion and SDS scores showed no significant association with
bilateral amygdala shape in the CID group.

4. Discussion

The present study investigated the potential association of
amygdala morphology alterations with insomnia and emo-
tional symptoms in patients with CID using vertex-based
shape analysis. The key results are as follows: [1] atrophic
changes in the amygdala are local, not encompassing the
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Figure 1: The localized shape differences between HC and CID groups using vertex-wise surface analyses of the amygdala are shown. The
regions in orange indicate the areas shown to be smaller in patients with CID than in those in HC group. (a) The left amygdala group
differences are in the superficial and basolateral nuclei of the amygdala. (b) The right amygdala group differences are in the basolateral
nuclei of the amygdala. Abbreviations: CID: chronic insomnia disorder; HC: healthy control; Corr: TFCE corrected; Raw: raw results;
TFCE: threshold-free cluster enhancement; A: anterior; P: posterior; S: superior; I: inferior.

Table 1: Demographic, clinical characteristics, and brain volume data for the two groups.

Characteristic CID (n = 65) HCs (n = 55) T/χ2 value p value

Age (years) 38:46 ± 11:38 41:03 ± 13:77 1.11 0.27

Gender (female/male) 42/25 23/27 3.22 0.07†

Year of education 13:35 ± 3:88 12:76 ± 3:29 0.86 0.38

Duration (months) 58:78 ± 63:07 — — —

PSQI score 13:92 ± 1:95 — — —

SDS score 53:50 ± 8:11 — — —

SAS score 53:55 ± 5:31 — — —

Gray matter volume 792:12 ± 95:96 827:01 ± 50:32 2.42 0.02

White matter volume 740:24 ± 83:36 753:78 ± 41:57 1.09 0.27

Total intracranial volume 1562:23 ± 172:77 1580:79 ± 83:35 0.79 0.35

Left amygdala volume 1:17 ± 0:26 1:12 ± 0:32 1.25 0.21

Right amygdala volume 1:18 ± 0:43 1:10 ± 0:37 0.66 0.38

Left hippocampus volume 3:56 ± 0:74 3:64 ± 0:76 0.95 0.24

Right hippocampus volume 3:60 ± 0:73 3:77 ± 0:54 1.44 0.15

Notes: †the p value was obtained by a chi-square test; other p values were obtained by a two-sample t-test. Abbreviations: CID: chronic insomnia disorder; HC:
healthy control; PSQI: Pittsburgh Sleep Quality Index; SDS: self-rating depression scale; SAS: self-rating anxiety scale.
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whole amygdala, in CID; [2] the left atrophic amygdala was
in the SF and BL nuclei while the right atrophic amygdala
was in the BL nuclei in patients with CID; [3] both insomnia
and anxiety were associated with the right amygdala shape
but were independent of the nuclei. Taken together, these
findings indicate localized amygdala atrophy in patients with
CID. Moreover, the subregional, specialized association of
the amygdala with insomnia and anxiety will help elucidate
the neural mechanisms underlying the bidirectional relation-
ship between these 2 CID characteristics.

Localized shape analysis of the subcortical nuclei is a
relatively new approach to detect structural alterations in
neuropsychiatry diseases; accordingly, it has rarely been
implemented in CID research. The present volumetric anal-
ysis did not show significant group differences between CID
and HC groups; however, regional bilateral amygdala atro-
phy was detected by shape analysis. The present findings
are not fully consistent with the previous structural findings
obtained via the VBM approach for the GMV or the overall
amygdala volume [17, 18]. Methodologically, the VBM
approach is considered a sensitive method to explore cortical
structure changes; however, due to the poor and variable
intensity contrast in subcortical structures, it has a limited
ability to precisely localize atypical brain region alterations
[36]. The present results indicate that the overall amygdala
volume estimate may not capture structural alterations in
patients with CID. Thus, we propose that a shape-based mor-
phology analysis could be a useful tool to detect early subcor-
tical atrophy in CID.

Histologically, the amygdala is composed of 3 main
nuclear complexes: the BL, CM, and SF nuclei [37]. Recently,
these 3 clusters have been investigated in the human brain by

connectivity-based parcellation using diffusion and resting-
state functional MRI data [38]. The amygdala is anatomically
connected with and functionally modulates the brainstem
centers involved in arousal and sleep regulation [11, 39, 40].
Recent studies have established amygdala dysfunction in
patients with insomnia [7, 15, 41]. However, due to the low
structural resolution of the subcortical nucleus, these func-
tional neuroimaging studies on insomnia did not report
detailed information about alterations in amygdala subre-
gions. The 3T structural MRI-based shape analysis, used in
the present study, provides more information about the amyg-
dala alterations in insomnia. Consistent with our hypothesis,
the findings show that amygdala atrophy was present in the
left SF and BL nuclei as well as the right BL nuclei in patients
with CID. The BL amygdala nuclei are important for environ-
mental information processing and self-relevant cognition
integration, while SF nuclei are highly tuned to social informa-
tion processing [38]. We speculate that the observed amygdala
atrophy in SF and BL nuclei might reflect abnormal environ-
mental information processing, self-relevant cognition, and
social information in CID patients.

Patients with CID frequently experience intrusive
thoughts during the sleep-onset period. According to the
2 component theory of intrusive thoughts, “rumination” is
associated with a negative mood, while “worry” is linked to
an anxious mood and involves catastrophizing about stress-
ful events [42, 43]. In the present study, a single dissociation
of affective states was associated with amygdala subregion
nuclei in patients with CID. Namely, anxiety, not depression,
was associated with right amygdala shape alterations in the
insomnia group. This result supports the pathway of emo-
tional valence in the cognitive activity of insomnia and indi-
cates that the amygdala has a role as a mediator in the
association between anxiety and insomnia [6].

The CM amygdala nuclei have large numbers of
GABAergic neurons and have direct projections to the hypo-
thalamus, brainstem, and ascending cholinergic and mono-
aminergic systems [11, 44]. Functionally, the CM nuclei
play a major role in autonomic arousal regulation [38]. Thus,
the association of the PSQI score with the right CM amygdala
nuclei in the present study supports the notion that the
CM nuclei are involved in sleep regulation. Additionally,
the BL amygdala nucleus extensively projects to the pre-
frontal cortex, medial temporal lobe, and striatum; it receives
and integrates sensory information and assigns an affective
value to the stimuli [45, 46]. The present finding of anxiety
being associated with atrophy in the BL nuclei indicates
abnormal integration and assignment function in patients
with CID. Importantly, this study demonstrated a dissocia-
tion between the right amygdala subregion and the severity
of insomnia and anxiety symptoms in CID. Therefore, these
findings signify that although a clinical relationship between
insomnia and anxiety severity is observed in CID, there may
be different underlying neural mechanisms for the 2 comor-
bid conditions.

The present study has several limitations. First, the
results of this cross-sectional design study cannot be inter-
preted as a causal relationship between amygdala shape and
insomnia symptoms in patients with CID. Second, CID is a
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Figure 2: Vector graphs of the amygdala according to a traditional
surface-based vertex analysis displayed by three-dimensional mesh
are shown. The color bar indicates the statistic values; as the color
increases from red to blue, a lower to higher statistical significance
is indicated. The small arrows shown on the surface indicate the
direction of change. Inward arrows indicate that the diseased
amygdala is smaller/thinner in that location than it is in the
healthy control group. Abbreviations: Left: left amygdala; Right:
right amygdala.
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heterogeneous clinical disorder that includes different patho-
physiology subtypes in terms of cognitive performance,
emotional deficits, personality traits, childhood trauma, life
events, and family history [47]; therefore, it would be difficult
to find consistent brain alterations in different neuroimaging
study modalities in insomnia [48, 49]. Future studies should
enroll a more homogenous participant population or involve
a homogenous analysis. Finally, anxiety and depression states
in the present study were evaluated based on self-rating
scales. Further research should employ more comprehensive
neuropsychological tests to detect amygdala atrophy associ-
ated with the cognitive and emotional performance in CID.

5. Conclusion

The current study is the first to localize alterations in the
amygdala associated with insomnia severity and anxiety
states in patients with CID using surface-based shape anal-
ysis. The amygdala was atrophied in the SF and BL subre-
gions in CID patients. Furthermore, the novel relationship
revealed between localized amygdala atrophy, insomnia,
and anxiety will help elucidate the underlying brain mech-
anisms of the bidirectional relationship between these 2
CID characteristics.
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