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Resting-state functional magnetic resonance imaging (rsfMRI) is being widely used
for charting brain connectivity and dynamics in healthy and diseased brains.
However, the resting state paradigm allows an unconstrained fluctuation of brain
arousal, which may have profound effects on resting-state fMRI signals and
associated connectivity/dynamic metrics. Here, we review current understandings
of the relationship between resting-state fMRI and brain arousal, in particular the
effect of a recently discovered event of arousal modulation on resting-state fMRI.
We further discuss potential implications of arousal-related fMRI modulation with a
focus on its potential role in mediating spurious correlations between resting-state
connectivity/dynamics with physiology and behavior. Multiple hypotheses are formulated
based on existing evidence and remain to be tested by future studies.
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INTRODUCTION

The advent of resting-state functional magnetic resonance imaging (fMRI) (Biswal et al., 1995;
Fox and Raichle, 2007) has revolutionized our understanding of large-scale brain networks,
including their intrinsic organization (Fox et al., 2005), developmental and aging profiles (Fair
et al., 2007; Stevens et al., 2008), state-dependent re-organization (Horovitz et al., 2009; Barttfeld
et al., 2014), genetic basis (Wiggins et al., 2012), and most importantly their modulations in various
brain diseases (Zhang and Raichle, 2010). The majority of studies in this research field has been
focused on inferring functional brain connectivity with fMRI correlations. The majority of these
studies estimated functional connectivity based on an entire session of typical 5–10 min, which
implicitly assumes stationary relationships between different brain regions and ignores temporal
brain dynamics at finer time scales of seconds. Recently, the non-stationary nature of resting-
state fMRI (rsfMRI) became a hot topic of this research field (Chang and Glover, 2010) and a
set of methods/metrics has been proposed to extract and quantify time-varying information in
rsfMRI data, which is expected to provide information supplementary to those stationary analyses
(Hutchison et al., 2013; Preti et al., 2017).

The approaches for quantifying rsfMRI dynamics can be divided into multiple categories. The
most straightforward class is sliding window approaches, which quantify rsfMRI connectivity
within short time windows of 1–2 min and then examine its temporal variability accordingly.
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The connectivity metrics could be either conventional
correlation/coherence (Chang and Glover, 2010; Allen et al.,
2012) or more sophisticated metrics, such as network parameters
from graph-theory based quantifications (Braun et al., 2015;
Shine et al., 2016). A group of single-volume resolved methods
has also been proposed to quantify rsfMRI dynamics. These
methods treat fMRI volumes at single time points as basic
units of analyses and try to identify repeated patterns of brain
co-activations using different algorithms, including the temporal
functional mode (TFM) extracted with temporal independent
component analysis (ICA) (Smith et al., 2012), the co-activation
patterns (CAP) identified by clustering (Liu and Duyn, 2013b;
Liu et al., 2013), and the brain states defined using hidden
Markov model (HMM) (Chen et al., 2016; Vidaurre et al.,
2017). Subsequent quantification can then be applied to quantify
temporal dynamics, such as occurrence rate and transitioning
probabilities, of these single-volume fMRI events. The third
category of dynamic approaches expands the second type
by focusing on spatiotemporal structures in rsfMRI signals.
Different algorithms were employed to derive quasi-periodic
patterns (QPP) (Thompson et al., 2014) and lag threads (Mitra
et al., 2015a) from rsfMRI data that may represent propagating
activities of the brain.

These dynamic approaches have been applied to rsfMRI
data to quantify brain dynamics and investigate its associations
with behavior (Vidaurre et al., 2017) and modulations under
pathological conditions (Mitra et al., 2015b). A very consistent
observation across studies and species is the sensitivity of fMRI
dynamics to brain states showing distinct arousal levels (Barttfeld
et al., 2014; Tagliazucchi and Laufs, 2014; Liang et al., 2015;
Mitra et al., 2015c; Ma et al., 2016; Laumann et al., 2017). The
brain arousal is conventionally defined as a transient intrusion of
being awake into sleep stages or an abrupt temporary increase
of the vigilance level (Atlas Task Force, 1992; Halász et al.,
2004), and the sleep and anesthesia conditions are known to
show distinct arousal levels. In particular, the application of
a wake-sleep classifier trained based on dynamic functional
connectivity of a small EEG-fMRI data set to a large cohort
of 1,147 rsfMRI datasets has found that 30% subjects actually
fell asleep within 3 min into resting-state scanning (Tagliazucchi
and Laufs, 2014). These findings not only suggest an important
role of arousal in generating/modulating rsfMRI signals and thus
connectivity/dynamics measures derived from it, but also imply
its prevalent influence on human rsfMRI studies. Consistent
with these observations, a characteristic neurophysiological
event signifying a transient arousal modulation was identified
recently and shown to have profound effect on concurrently
acquired fMRI signals (Liu et al., 2015, 2018), which give us
an opportunity of further looking into the relationship between
the arousal and rsfMRI signals. In this perspective, we will first
review the relationship between the brain arousal and global
rsfMRI signal and a recently discovered neurophysiological
event that may underlie this relationship. We will then
discuss potential implications of these findings on different
aspects of rsfMRI research (Figure 1), including the motion-
rsfMRI, physiology-rsfMRI, and disease-rsfMRI relationships in
different sections.

FIGURE 1 | Arousal modulations may introduce spurious correlations between
rsfMRI connectivity/dynamics and other measures by modulating both.

A NEUROPHYSIOLOGICAL EVENT
UNDERLYING THE GLOBAL RSFMRI
SIGNAL

The global rsfMRI signal averaged over the entire brain and
spatially non-specific fMRI correlations it induces have been
found highly sensitive to brain arousal state (Matsuda et al.,
2002; Schölvinck et al., 2010). The transition into the light sleep
is characterized by a large increase in this global rsfMRI signal
(Fukunaga et al., 2006; Horovitz et al., 2008; Larson-Prior et al.,
2009), and a similar but smaller change was also observed from
an alert eyes-open condition to a sleep-conducive eyes-closed
condition (Wong et al., 2013; Xu et al., 2014; Wei et al., 2018;
Agcaoglu et al., 2019). Caffeine can effectively reduce the global
rsfMRI signal and corresponding EEG vigilance index (Wong
et al., 2013), whereas several hypnotic drugs (Kiviniemi et al.,
2005; Saper et al., 2005; Greicius et al., 2008; Licata et al., 2013)
and sleep deprivation (Yeo et al., 2015) had the opposite effects.
It is also worth noting that multiple studies also showed the
connectivity changes of the default mode network (DMN) under
various states of consciousness (Yan et al., 2009; Vanhaudenhuyse
et al., 2010; Heine et al., 2012; Demertzi et al., 2015). These studies
provided convincing evidence for a close relationship between
the arousal and rsfMRI, particularly its global component, but the
neural basis underlying this relationship had remained unknown
until very recently.

The first clue for the neural basis of the global rsfMRI signal
came from the study of rsfMRI dynamics. It has been suggested
that the rsfMRI connectivity and its dynamics are actually caused
by brain co-activations at different time points that can be
captured by CAPs (Liu and Duyn, 2013b; Liu et al., 2013; Matsui
et al., 2018). Applying the CAP decomposition to rsfMRI data
with and without removing the global signal showed distinct
effects on two types of CAPs. Whereas the global signal regression
(GSR) procedure has very limited effect on higher-order CAPs,
e.g., those related to the DMN, it dramatically changes sensory
CAPs involving the sensorimotor and visual cortices (Liu and
Duyn, 2013a; Liu et al., 2013; Nalci et al., 2017). The finding
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not only confirmed that the global signal is largely driven by
global rsfMRI co-activations occurring only at a proportion of
time points, but also implied the neuronal origin of this fMRI
co-activation since it occurs preferentially with sensory networks
rather than randomly. These results are consistent with another
series of research work on the temporal heterogeneity of the
global rsfMRI signal (He and Liu, 2012; Nalci et al., 2017). With
these findings, the search for the neurophysiological correlate
of the global rsfMRI signal was shifted to the event type of
neuronal processes.

An electrophysiological event signifying a transient arousal
modulation was recently discovered and suggested to underlie
the global rsfMRI signal (Liu et al., 2015, 2018). This sequential
spectral transition (SST) event was first observed in the global
signal of a large-scale electrocorticography (ECoG) recording
from monkeys, showing as a stereotypic time-frequency pattern
of sequential power changes at three distinct frequency bands:
a large, sudden reduction in the middle-frequency (9–21 Hz)
power is followed by an increased broad-band high-frequency
gamma power (>42 Hz) and then a burst of low-frequency
delta waves (1–4 Hz). The SST lasts 10–20 s and shows similar
state-dependency as the global rsfMRI signal (Liu et al., 2015).
Concurrent fMRI-electrophysiology recordings from another
group of monkeys confirmed that the SST induces widespread
fMRI increases, i.e., the global rsfMRI co-activation, shown as
a large peak in the global signal (Liu et al., 2018). In addition
to such one-to-one correspondence between the SST and global
rsfMRI peak, their relationship was further confirmed from
the other two aspects. First, the global rsfMRI co-activation
demonstrated a much larger amplitude in sensory regions,
i.e., the sensorimotor, auditory, and visual cortices, and this
sensory-dominant pattern is consistent with the spatial pattern
of the high-frequency gamma (40–90 Hz) power increase at
the SST event. Second, the global co-activations are associated
with very specific de-activations at subcortical arousal-promoting
areas, i.e., the Nucleus Basalis (NB) at the basal forebrain and
the midline thalamus in the non-specific arousal pathway, in
accordance with a transient arousal drop suggested by the
middle-to-low frequency spectral transition at SST events (Liu
et al., 2018). Consistent with this finding, the inactivation of the
NB in one brain hemisphere of monkeys resulted in a significant
reduction of the global rsfMRI signal in the ipsilateral side
(Turchi et al., 2018). Overall, the finding of the SST event and
its relationship with fMRI signals provide a neurophysiological
understanding of the relationship between the brain arousal
states and rsfMRI connectivity/dynamics.

Arousal-related fMRI changes can have potential implications
in many aspects of rsfMRI research. The sensory-dominant
pattern of SST-induced fMRI changes is expected to introduce
very systematic changes in rsfMRI correlations, which could be
easily misinterpreted as meaningful modulations of functional
brain connectivity. The transient nature of the SST (10–
20 s) will also have profound effects on rsfMRI dynamics
at the time scale of interest to most of dynamic rsfMRI
studies. More importantly, the perils of the arousal-related
fMRI component can go beyond its direct effects on rsfMRI
connectivity/dynamics by potentially introducing their spurious

correlations with other subject measures of physiology, behavior,
and pathology. Arousal state is known to have profound
effects on physiology (Trinder et al., 2001) and also able to
affect behavioral performance (Teigen, 1994) or even head
motions (Van Den Berg, 2006). Many brain diseases, including
Alzheimer’s disease (Musiek et al., 2015), Parkinson’s disease
(Breen et al., 2014), and autism spectrum disorders (ASD)
(Cohen et al., 2014), are known to concur with disrupted sleep
and circadian rhythms (Wulff et al., 2010), and many medications
for these diseases are also known to affect brain arousal state.
Together with the profound effects of arousal modulation on
rsfMRI signals, these may lead to spurious relationships between
rsfMRI connectivity/dynamics and various physiological and
behavioral measurements (Figure 1). The remaining part of this
perspective will have detailed discussions regarding the role of
arousal modulations in mediating the relationship of rsfMRI with
different types of subject measurements.

THE POTENTIAL ROLE OF AROUSAL
MODULATIONS IN MOTION-RSFMRI
RELATIONSHIP

The correlation has been found between the rsfMRI connectivity
and head motions in both intra- and inter-subject analyses
(Power et al., 2012; van Dijk et al., 2012; Yan et al.,
2013). Specifically, more head motions are associated with
increased local but reduced long-range rsfMRI connectivity.
This motion-connectivity association has been interpreted as
a causal relationship with assuming that the head motion
affects fMRI signals and thus their correlations. However, there
are observations inconsistent with this interpretation. First,
the motion-associated rsfMRI signal/correlation change persists
or even reaches its peaks 10 s after motion ceases (Power
et al., 2014; Byrge and Kennedy, 2018). This temporal feature
cannot be caused by the spin-history artifact, which should
have a much short delay to the motion according to simulation
and also monotonically decay over time (Yancey et al., 2011).
Instead, this time delay is in a similar time scale as the
typical hemodynamic delay. Secondly, the associated rsfMRI
connectivity changes showed systematic spatial patterns that
are unexpected from relatively random head motions. Thirdly,
the same amount of head motions causes significant rsfMRI
connectivity changes across subjects but not between different
sessions of the same subjects (Zeng et al., 2014). For these
reasons, the motion-connectivity relationship may not be causal,
but actually mediated by a third factor. We propose that the
arousal modulation could be a candidate that mediates this
relationship for the following reasons. First, a widely used
motion index, differentiated signal variance (DVARS), detects
large fMRI changes, including large global signal peaks that
have been linked to the SST event of arousal modulation.
Secondly, the motion-fMRI correlations also show a sensory-
dominant pattern similar to that of the global co-activations
and SST gamma power (Yan et al., 2013). Thirdly, sleepiness
has been shown to be associated with more head motions
(Van Den Berg, 2006). Transient sleep structures, such as
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microsleep and/or microarousal, and associated physiological
modulations might be direct causes of head motions. Indeed,
a transient respiratory modulation was found to concur with
head motions detected by fMRI changes (Byrge and Kennedy,
2018). For all these reasons, we hypothesize that transient arousal
modulations induce spurious correlations between the head
motion and rsfMRI connectivity, which account for a significant
proportion of the observed motion-rsfMRI relationships. The key
to validating this hypothesis is to differentiate the head motions
of arousal relevance from those caused by discomfort, general
fidgetiness, and other factors, as well as their effects on rsfMRI
signals. It is worth noting that the framewise displacement (FD),
another widely used motion index calculated directly from image
alignment parameters (Yoo et al., 2005), might better serve this
purpose, compared with DVARS, with less contamination from
the arousal-related global signals.

THE POTENTIAL ROLE OF AROUSAL
MODULATIONS IN
PHYSIOLOGY-RSFMRI RELATIONSHIP

Physiological signals, including respiratory volume and cardiac
pulse rate, were also shown to have strong correlations with
rsfMRI signals (Birn et al., 2006; Shmueli et al., 2007; Chang
et al., 2016b; Özbay et al., 2018), which has been regarded
as evidence of non-neuronal contributions to rsfMRI signal
fluctuation. A recent study combing fMRI, physiology, and
electroencephalogram (EEG) provided further insight into this
physiology-rsfMRI relationship (Yuan et al., 2013). It first
confirmed the correlation between the physiology and rsfMRI
but further suggested that they both are also correlated with
the alpha-band EEG power, which is an indicator of brain
vigilance and also shows a large modulation at the SST. Moreover,
this study further showed the physiology-rsfMRI correlation
is dependent on brain states and significant only during the
sleep-conducive eyes-closed condition but not under an alert
eyes-open condition. It is worth noting that the correlations
between rsfMRI and physiological signals also appear to be
much stronger in the sensory regions than the rest of the brain
(Birn, 2006; Shmueli et al., 2007; Yuan et al., 2013; Özbay
et al., 2018). All these findings strongly suggest an involvement
of the arousal in this physiology-rsfMRI relationship. We thus
hypothesize that the physiology-rsfMRI relationship is partly
caused by their co-modulations at transient arousal events, such
as the SST. Given the potential involvement of physiology,
we want to also emphasize that the arousal modulation may
cause fMRI changes via two different routes. It can modulate
neural activities across the cortex via the ascending arousal
pathways, and thus fMRI signal changes through local neuro-
vascular coupling. The SST event and associated global rsfMRI
co-activation are likely evidence for this type of arousal-fMRI
connections. In addition, the brain stem arousal centers are also
able to directly modulate vascular tone, for example, through
sympathetic innervations of the arteries in the brain pial surface
(Hamel, 2005; Özbay et al., 2018), and thus cause global
rsfMRI changes of vascular origin. Large white-matter fMRI

changes associated with cardiac signal changes likely originate
from this type of vascular modulations (Özbay et al., 2018).
Differentiating the contributions from these two mechanisms
remains a challenge for future research.

THE POTENTIAL ROLE OF AROUSAL
MODULATIONS IN DISEASE-RSFMRI
RELATIONSHIPS

Resting-state fMRI connectivity and dynamics have also been
extensively studied under pathological conditions, and significant
modulations were reported in a wide range of neurological
disorder and psychiatric diseases, including the Alzheimer’s
disease, ASD, and major depression (Zhang and Raichle, 2010).
Given that these brain diseases are often associated with
disrupted sleep and circadian rhythms (Wulff et al., 2010), it is
reasonable to suspect that the arousal difference may, at least
partly, account for rsfMRI connectivity modulations observed
in certain brain diseases. A survey of existing literatures indeed
found the evidence for the modulation of the global rsfMRI
signal under certain pathological conditions. A simple example
is schizophrenia. Whereas an early study had suggested that
schizophrenia patients showed hyperconnectivity in the default
network compared with their first-degree relatives and healthy
controls (Whitfield-Gabrieli et al., 2009), it was found later
that these changes may actually arise from an enhanced global
signal in schizophrenia (Yang et al., 2014). A computational
model was also employed to demonstrate that increased neuronal
coupling can indeed enhance the global signal (Yang et al.,
2014). However, based on the evidence we reviewed so far
regarding the relationship between the global rsfMRI signal and
arousal, we argue that the distinct arousal state could be an
alternative explanation for the global rsfMRI signal seen in the
schizophrenia patients.

The global signal could affect rsfMRI findings in a rather
implicit way. Using rsfMRI data from the Autism Brain Imaging
Data Exchange (ABIDE) initiative, a previous study has shown
that interhemispheric rsfMRI connectivity shows a much larger
inter-subject variability in high-functioning ASD adults than
matched healthy controls, and this finding has been interpreted
as idiosyncratic distortions of ASD brains (Hahamy et al., 2015).
The interhemispheric rsfMRI connectivity often shows a sensory-
dominant pattern due to strong bilateral correlations in sensory
regions. Given the sensory-dominant pattern of the global rsfMRI
co-activations of arousal relevance (Liu et al., 2018), the presence
of a strong global signal is also expected to enhance this pattern
and thus its cross-subject similarity. We therefore hypothesize
that the difference in the global rsfMRI signal is responsible
for the interhemispheric connectivity difference between the
ASD and control groups. To test this hypothesis, we examined
ABIDE datasets from three different sites (Figure 2). For two
datasets (CAL: 19 ASD and 19 controls; PBG: 30 ASD and 27
controls) that previously showed a large contrast between the
ASD and control groups, rsfMRI data were actually acquired
under the sleep-conducive eyes-closed condition (Figures 2A–C,
top and middle). Moreover, the control group shows a much

Frontiers in Neuroscience | www.frontiersin.org 4 November 2019 | Volume 13 | Article 1190

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01190 November 2, 2019 Time: 13:11 # 5

Gu et al. Arousal in rsfMRI Connectivity and Dynamics

FIGURE 2 | Distinct global signal in ASD patients may have implicit impact on interhemispheric rsfMRI connectivity. (A) Correlation matrices showing the
inter-subject similarity of interhemispheric rsfMRI connectivity pattern for three datasets collected at different sites. The data from the first two sites, i.e., CAL and
PBG show a big difference between the ASD and control groups with controls showing much higher cross-subject similarities. (B) Conditions for rsfMRI
experiments. The first two sites collected rsfMRI data under sleep-conducive eyes-closed condition. (C) Histograms showing the distribution of all pairwise rsfMRI
connectivity. In the first two datasets, the control groups show overall stronger rsfMRI connectivity compared with the ASD groups. However, this difference was not
observed in the third dataset. (D) RsfMRI connectivity maps with respect to a seed region at the posterior cingulate cortex (PCC) showing the DMN network. In the
first two datasets, the control groups show larger spatially non-specific correlations compared with the ASD groups, presumably due to a larger global signal.
(E) Standard deviation of the global rsfMRI signal. The control groups of the first two datasets are characterized by significantly larger global signal than the ASD
groups, whereas the global signal is smaller and not different in the two groups for the third dataset. ∗0.01 < p < 0.05.

stronger global signal and rsfMRI connectivity than the ASD
group (p = 0.036 for CAL and p = 0.022 for PBG, 2-sample t-test;
Figures 2D,E, top and middle). In contrast, the Utah dataset (58
ASD versus 43 controls) not showing much group difference in
the previous study was acquired under a more alert eyes-open
condition and their global signals are not significantly different
(p = 0.735; Figures 2A–C, bottom). Correspondingly, the global
signal is low in both ASD and control groups for this dataset
(Figures 2D,E, bottom). These preliminary results clearly suggest
that the ASD groups are characterized by the global rsfMRI
signal distinct from healthy controls, especially under the sleep-
conducive eyes-closed condition, which might be attributed to
their abnormal sleep patterns (Devnani and Hegde, 2015).

Arousal might also mediate the correlation between rsfMRI
connectivity/dynamics and certain behavioral measures within
the healthy population in a similar way. Even though the
arousal itself describes a brain state that varies over time,
the ability of regulating arousal could be an individual
trait that is stable within but varies across individuals. If
the healthy population contains subgroups that not only
have distinct ability of regulating arousal but also differ
significantly in certain cognitive functions, rsfMRI connectivity

and dynamics could be spuriously linked to behavioral measures
of cognitive functions via arousal-related rsfMRI changes.
Although this is purely a conjecture to be tested by future studies,
caution needs to be exercised before completely excluding
this possibility.

CONCLUDING REMARKS AND FUTURE
RESEARCH

Here we reviewed the current understanding of the relationship
between the brain arousal and resting-state fMRI, in particular a
newly discovered neurophysiological event underlying the global
rsfMRI signal. We then discussed potential implications
of the arousal-related modulation on rsfMRI research,
i.e., its role in affecting rsfMRI connectivity/dynamics and
mediating their spurious correlations with physiological and
behavioral measures. We also formulated multiple testable
hypotheses based on existing evidence. Future research ought
to validate these hypotheses, which are important not only
for proper interpretations of rsfMRI results but also for better
quantifications of brain connectivity and dynamics using rsfMRI
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with properly dealing with the arousal confounding effects, i.e.,
removing or retaining the arousal-related component based on
research purposes. Before the validation of these hypothesis,
one should be cautious about large global signal and sensory-
dominant pattern in rsfMRI results, which are indicative of
arousal involvement. Researchers may also consider to reduce
the potential arousal influence at the stage of data collection,
for example, by acquiring data at the eye-open state or breaking
down a long scan into multiple shorter ones. The profound
arousal effect on rsfMRI presents additional challenges to
rsfMRI-based measures of brain connectivity/dynamics. But
on the bright side, this would enable fMRI-based arousal
measures (Chang et al., 2016a; Falahpour et al., 2018; Liu
et al., 2018), which may provide new opportunities for
understanding the arousal’s role in affecting brain function and
dysfunction, especially with big neuroimaging data acquired
recently from healthy and diseased populations. It is, however,
worth noting that the performance of these template-based

arousal measures could be dependent on the presence of the
SST events and thus the general vigilance state (Falahpour et al.,
2018). It remains a challenge for future studies to improve
the fMRI-based arousal measure by better understanding
arousal-related fMRI changes.
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