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Abstract: Background: Despite the enormous efforts made towards combating tuberculosis (TB),
the disease remains a major global threat. Hence, new drugs with novel mechanisms against TB are
urgently needed. Fatty acid degradation protein D32 (FadD32) has been identified as a promising
drug target against TB, the protein is required for the biosynthesis of mycolic acids, hence, essential
for the growth and multiplication of the mycobacterium. However, the FadD32 mechanism upon the
binding of FDA-approved drugs is not well established. Herein, we applied virtual screening (VS),
molecular docking, and molecular dynamic (MD) simulation to identify potential FDA-approved
drugs against FadD32. Methodology/Results: VS technique was found promising to identify four
FDA-approved drugs (accolate, sorafenib, mefloquine, and loperamide) with higher molecular
docking scores, ranging from −8.0 to −10.0 kcal/mol. Post-MD analysis showed that the accolate hit
displayed the highest total binding energy of −45.13 kcal/mol. Results also showed that the accolate
hit formed more interactions with FadD32 active site residues and all active site residues displayed an
increase in total binding contribution. RMSD, RMSF, Rg, and DCCM analysis further supported that
the presence of accolate exhibited more structural stability, lower bimolecular flexibility, and more
compactness into the FadD32 protein. Conclusions: Our study revealed accolate as the best potential
drug against FadD32, hence a prospective anti-TB drug in TB therapy. In addition, we believe that
the approach presented in the current study will serve as a cornerstone to identifying new potential
inhibitors against a wide range of biological targets.

Keywords: Mtb-FadD32; drug repurposing; MD simulations; post-MD analysis

1. Introduction

Tuberculosis (TB) is an ancient infectious disease caused by the pathogenic bacillus
Mycobacterium tuberculosis (Mtb); this disease is a major global health problem and is one
of the top 10 causes of death worldwide [1]. The 2019 global statistics of TB reported,
approximately 10 million people developed TB and approximately 1.4 million TB deaths
occurred [1]. Currently, the approved first-line drugs for the treatment of TB are isoniazid
(INH), rifampicin (RIF), pyrazinamide (PZA), and ethambutol (EMB) for a period of 6 to
9 months [2]. However, there is frequent emergence of strains that are resistant to these
drugs, these strains include: multi-drug-resistant (MDR), extensively-drug-resistant (XDR),
and total-drug-resistant (TDR) strains [3,4].

Drug-resistant TB is hindering progress towards combating TB and half a million
people developed rifampicin-resistant TB and 78% had MDR TB in 2019 [1]. The sudden
emergence of the COVID-19 pandemic has caused the situation to worsen, consequently,
reversing the progress made towards reducing the burden of TB [1]. In recognition of the
enormous health, economic and social impacts posed by this disease on the public, research
breakthroughs are needed to rapidly reduce TB cases [5]. Therefore, there is a demand for
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further research into the discovery of new drug targets, and new potent inhibitors with
novel mechanisms of action against TB [6].

Mycolic acid is a major component of the bacterial cell wall, the thick waxy coat
trait renders protection to the bacteria, hence, providing immunity against the host’s
immune system and current antibiotics [7,8]. The mycolic acid biosynthesis pathway is
well-validated and used to identify potential targets for antimycobacterial drug develop-
ment [9]. Fatty acid degradation protein D32 (FadD32) is required for the biosynthesis of
mycolic acids, hence, essential for the growth and multiplication of the mycobacterium [10].
FadD32 is a bifunctional enzyme, it initially catalyzes meromycolic acid and ATP to form
meromycoloyl-AMP, and then catalyzes the acyl chain transfer from meromycoloyl-AMP
to the phosphopantetheinyl arm of the N-terminal ACP domain of Pks13 [10].

FadD32 (Figure 1) has been identified and proposed as a novel drug target for the devel-
opment of potential drugs against TB [10,11]. The structure comprises two distinct domains,
the N-terminal domain (1–483 residues) and the C-terminal domain (484–630 residues) [10].
FDA-approved drugs against FadD32 remain a mystery in literature. Hence, the FadD32
mechanism is not well established. Therefore, unknown FDA-approved drug against
FadD32 has motivated the search for new potent FDA-approved drugs (drug repurposing)
against FadD32, a novel potential target.
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Figure 1. Three-dimensional (3D) structure of FadD32, showing the C-terminal domain (green) and
the N-terminal domain (cyan), with the natural substrate, ATP (orange) [10].

Repurposing FDA-approved drugs is an effective, time-saving, and less expensive
strategy to discover new molecules against drug targets of interest [12]. Hence, it is
uncomplicated to develop the drugs since essential data about them is already available,
which minimizes the risk of failure [13]. Repurposed drugs used in TB treatment include
moxifloxacin, linezolid, clofazimine, amikacin, and meropenem [14,15], these drugs have
proven to be effective against MDR-TB and XDR-TB [15,16]. Inhibitors that have the
potential to target multiple drug targets/sites within the mycobacterial cell are imperative.
To achieve the above, different computational methods can be applied [17].
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Virtual screening (VS) has proven to be a powerful and indispensable tool in discover-
ing small molecular inhibitors which bind to drug targets of interest [18]. The computer-
aided technique screens large libraries of compounds, filters, and discards undesirable
compounds, hit compounds are identified and selected as lead compounds [19]. This
work focuses on structure-based VS, a robust and useful technique that predicts the best
interaction between ligands and target and ranks the ligands according to their affinity for
the target site [20].

Another crucial computational method in this study is molecular dynamics (MD). MD
is a computational simulations technique employed in the study of biological molecules to
analyze the physical behavior of the constituent atoms and molecules [21]. MD simulations
serve as an invaluable tool that gives insight into the structural changes of the protein at
different time scales [22]. The receptor, ligand, and overall complex motions, which are vital
information provided by MD simulations can be exploited for drug design processes [22].

The main goal of the present work is to apply the drug repurposing approach and to
identify potential inhibitors against FadD32. This approach is focused on virtual screening
(VS), molecular dynamics (MD), simulations and post-MD calculations. In addition, the
study provides a molecular understanding of the surrogate structure (FadD32) and how it
interacts with a ligand from a computational standpoint. Hence, the current study applied
VS approach and identify four potential (Figure 2) FDA-approved hits (accolate, sorafenib,
mefloquine, and loperamide).
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We believe the approach ‘drug repurposing’ could be carried out in the procedure of
drug discovery of potential drugs against a wide range of biological targets. To the best of
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our knowledge, this is the first time where computational tools have been applied to reveal
the impact of FadD32 upon the binding of FDA-approved drugs.

2. Results and Discussion
2.1. Molecular Docking and Binding Free Energy

All four hits (accolate, sorafenib, loperamide, and mefloquine) were subjected to
docking followed by MMPBSA calculation to determine the accuracy of the ligand–receptor
binding affinities. As shown in Table 1, the docking scores for all four drugs ranged from
−8.0 to −10.0 kcal/mol.

Table 1. Binding free energy (kcal/mol) and the components of binding free energy of the different
molecules.

FDA-Approved Drugs Docking Score
(kcal/mol)

∆Gbind
(kcal/mol)

∆Evdw
(kcal/mol)

∆Eele
(kcal/mol)

∆Ggas
(kcal/mol)

∆Gsol
(kcal/mol)

Accolate −9.3 −45.13 ± 6.64 −64.54 ± 4.08 −28.89 ± 9.70 −93.44 ± 12.41 48.31 ± 6.95
Sorafenib −10.0 −32.73 ± 3.87 −51.64 ± 2.92 −27.74 ± 8.37 −73.37 ± 8.36 46.65 ± 7.83

Mefloquine −8.0 −26.84 ± 2.63 −34.55 ± 2.74 −23.59 ± 6.18 −58.13 ± 6.15 31.29 ± 4.97
Loperamide −8.5 −21.52 ± 7.40 −33.45 ± 7.95 −11.37 ± 7.48 −59.84 ± 10.21 28.39 ± 6.01

∆Gbind—Total binding energy; ∆Evdw—Van der Waals; ∆Eele—Electrostatic; ∆Ggas—gas-phase energy ∆Gsol—
solvation energy.

To gain insight into the binding free energy profiles, the MM-PBSA approach [23] was
also carried out for all systems. The total binding energies of all the systems ranged from
−45.13 to −21.52 kcal/mol, with accolate (−45.13 kcal/mol) and sorafenib (−32.73 kcal/mol)
showing the highest total binding energy while mefloquine (−26.84 kcal/mol) and lop-
eramide (−21.52 kcal/mol) showing the lowest total binding energy (Table 1). It was
also observed that accolate also had the highest van der Waals and electrostatic contri-
butions towards the total binding free energy (∆Evdw of −64.54 kcal/mol and ∆Eele of
−28.89 kcal/mol) and loperamide showed the lowest contributions (∆Evdw of−33.45 kcal/mol
and ∆Eele of −11.37 kcal/mol). Studies have shown that docking alone cannot deliver
authentic results. Hence, results obtained from MMPBSA are more authentic than the
energy contributions obtained from the docking calculations only.

2.2. Protein–Ligand Interaction Analysis

Per-residue energy decomposition calculation was carried out to gain insight on each
amino acid residue contribution towards the binding [24], the results are as shown in
Figures 3 and 4. All the drugs bound in the N-terminal and C-terminal domain interface,
an ATP binding site (Table S1, Supplementary Materials). Figure 3 displayed more hy-
drophobic interactions in the case of FadD32-Sorafenib (15) while FadD32-Mefloquine
displayed the least hydrophobic interactions (6), and more hydrogen bonds were observed
in the case of FadD32-Mefloquine (4) while FadD32-Sorafenib displayed the least hydrogen
bonding (1). Hence, we can state that the total binding energy is influenced by the amount
of energy contributed by each amino acid in the ligand binding not the number of amino
acids bound to the ligand.

As shown in Figure 4, our results suggest that the highest residual energy contributions
came from the following amino acids: Ile193 (−2.84 kcal/mol), Pro194 (−2.38 kcal/mol),
and Phe625 (−2.09 kcal/mol) in the case of FadD32-Accolate, Tyr343 (−2.63 kcal/mol)
and Arg192 (−1.73 kcal/mol) in case of FadD32-Sorafenib, Arg192 (−2.41 kcal/mol) in
case of FadD32-Mefloquine, and Arg192 (−1.63 kcal/mol) in case of FadD32-Loperamide.
Upon general observation, the van der Waals interactions showed significant contribu-
tions, towards the total binding energy, as compared to the electrostatic interactions
(Figure 4). The best amino acid energy contributors form hydrogen bonds with the ligands,
except in the case of FadD32-Sorafenib and the Phe625 in the case of FadD32-Accolate
(Figure 3). These are further supported by the hydrogen bonding data presented in Table S2,
Supplementary Materials.
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The results herein showed that the hit accolate drug formed more interactions with
FadD32 active site residues as compared to the mefloquine, sorafenib, and loperamide.
In addition, in the case of accolate, all active site residues displayed an increase in total
binding contribution. We believe that the presence of a sulphur atom, in the case of accolate
which is absent in other hits, leads to higher binding affinities. Hence, current drugs such
as thioacetazone, isoxyl, and ethionamide for the treatment of TB targeting the mycolic
acid biosynthetic pathway possess sulphur atoms [25]. In this work, we present novel
potential inhibitors of the Mtb-FadD32 bacteria as an alternative treatment for TB. Hence,
our MMPBSA results strongly select the accolate hit as the most promising drug candidate
for targeting Mtb-FadD32.

2.3. Structural Analysis

The root mean square deviation (RMSD) describes the structure’s conformational
changes, by estimating the deviation in the Cα atoms of the residues on the backbone
structure [26]. These conformational changes express the degree of protein stability. RMSD
was calculated and the results are presented in Figure 5.
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As shown in Figure 5, the RMSD of all systems were observed in the case of FadD32-
Accolate, FadD32-Apo, FadD32-Mefloquine, FadD32-Sorafenib, and FadD32-Loperamide
with an average of 1.05 Å, 1.20 Å,1.35 Å, 1.56 Å, and 1.63 Å, respectively. The average
RMSD values of all systems ranged from 1.05 to 1.63 Å. Hence, all systems were found to
be stable with the average RMSD lower than the ideal of 3.0 Å RMSD value [27].

2.4. Influence of the Drugs on FadD32 Amino Acids Mobility

The RMSF describes the dynamic behavior of individual amino acids within the
structure, by estimating the Cα atoms fluctuations throughout the simulation [28]. These
residue fluctuations express the degree of protein flexibility. To measure the degree of
protein flexibility, RMSF was calculated, and the results are presented in Figure 6 with the
average RMSF values ranging from 0.95 to 1.54 Å.

In Figure 6, the RMSF results show a similar trend as the RMSD where FadD32-
Accolate demonstrates low RMSF with an average of 0.95 Å as compared to FadD32-Apo
(1.04 Å), FadD32-Sorafenib (1.54 Å), FadD32-Mefloquine (1.27 Å), and FadD32-Loperamide
(1.32 Å). Hence, our results suggest that the presence of accolate in the binding site reduced
the mobility of amino acids as compared with sorafenib, mefloquine, and loperamide.
In addition, in the case of the apo system, the most notable changes can be seen in the
following regions: Arg269-Gly275 and Ile538-Asp543 showing higher fluctuation. However,
the presence of accolate reduced the fluctuation in these regions.
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Our results conclude that the FadD32 protein is highly flexible during the process
of biosynthesis of mycolic acids, essential for the growth and multiplication of the Mtb.
However, the presence of accolate in the binding site leads to conformational rigidity.
These findings are in correlation with the RMSD results that suggest lower system stability
(RMSD: 1.05 Å) in the case of FadD32-Accolate.

2.5. Radius of Gyration (Rg)

In recent years, the radius of gyration has been applied to give insight into the level of
compactness of the protein structure throughout the simulation [29]. To measure the level
of compactness of the protein structure, Rg was calculated, and the results are presented in
Figure 7 with the average Rg values ranging from 24.63–25.73 Å.

Figure 7 showed that, throughout the simulation, the FadD32-Accolate system dis-
played a lower Rg with an average of 24.63 Å, whereas FadD32-Apo (24.94 Å), FadD32-
Sorafenib (25.73 Å), FadD32-Mefloquine (24.87 Å), and FadD32-Loperamide (24.91 Å)
displayed a higher Rg. These results suggest that the presence of accolate into the FadD32
protein exerts conformational stability and compactness within the protein as compared to
the rest of the ligands. The calculated Rg results correlate with the estimated RMSD and
RMSF, which justified increased biomolecular flexibility of FadD32 protein in the absence
of accolate. Our results show that the FadD32 protein appeared to be highly affected by the
presence of accolate.



Molecules 2022, 27, 668 9 of 17
Molecules 2022, 27, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 7. Radius of gyration plot of the FadD32-Apo, FadD32-Accolate, FadD32-Sorafenib, FadD32-
Mefloquine, and FadD32-Loperamide. 

Figure 7 showed that, throughout the simulation, the FadD32-Accolate system dis-
played a lower Rg with an average of 24.63 Å, whereas FadD32-Apo (24.94 Å), FadD32-
Sorafenib (25.73 Å), FadD32-Mefloquine (24.87 Å), and FadD32-Loperamide (24.91 Å) dis-
played a higher Rg. These results suggest that the presence of accolate into the FadD32 
protein exerts conformational stability and compactness within the protein as compared 
to the rest of the ligands. The calculated Rg results correlate with the estimated RMSD and 
RMSF, which justified increased biomolecular flexibility of FadD32 protein in the absence 
of accolate. Our results show that the FadD32 protein appeared to be highly affected by 
the presence of accolate. 

2.6. Dynamic Cross-Correlation Matrices (DCCM) 
DCCM is a 3D matrix representation that gives insight on time-correlated residue mo-

tions of protein of interest [30]. DCCM analysis was conducted, and results are presented in 
Figure 8. The red-orange regions (0.5–1.0) represent strongly correlated/positive motions, 
whereas the yellow regions (0.25–0.50) represent slightly correlated motion, the green re-
gions (0.25 to −0.25) represent regions with no correlation motions (no movement) and the 
blue-light blue regions (−0.50 to −1.0) represent strongly anti-correlated/negative motions. 

Figure 8 displayed a positive correlation trend and a negative correlation trend at 1–
250 and 500–630 residues, respectively, for all systems. Upon observation, the binding of 
all drugs introduced different dynamic changes within the FadD32 protein. The region of 
1–250 relative to 1–250 residues in the case of FadD32-Accolate and FadD32-Sorafenib dis-
played the most strongly correlated motions, these are increased correlated motions when 
compared to FadD32-Apo. FadD32-Mefloquine demonstrated slightly correlated motions 

Figure 7. Radius of gyration plot of the FadD32-Apo, FadD32-Accolate, FadD32-Sorafenib, FadD32-
Mefloquine, and FadD32-Loperamide.

2.6. Dynamic Cross-Correlation Matrices (DCCM)

DCCM is a 3D matrix representation that gives insight on time-correlated residue
motions of protein of interest [30]. DCCM analysis was conducted, and results are presented
in Figure 8. The red-orange regions (0.5–1.0) represent strongly correlated/positive motions,
whereas the yellow regions (0.25–0.50) represent slightly correlated motion, the green
regions (0.25 to−0.25) represent regions with no correlation motions (no movement) and the
blue-light blue regions (−0.50 to−1.0) represent strongly anti-correlated/negative motions.

Figure 8 displayed a positive correlation trend and a negative correlation trend at
1–250 and 500–630 residues, respectively, for all systems. Upon observation, the binding
of all drugs introduced different dynamic changes within the FadD32 protein. The region
of 1–250 relative to 1–250 residues in the case of FadD32-Accolate and FadD32-Sorafenib
displayed the most strongly correlated motions, these are increased correlated motions
when compared to FadD32-Apo. FadD32-Mefloquine demonstrated slightly correlated
motions in this region. The region 480–630 relative to 1–250 residues, in the case of FadD32-
Accolate, has strongly anticorrelated motions as compared to the other systems. This
can be due to numerous ligand interactions that occur in this region. Hence, there is
reduced flexibility, and this aligns with the RMSF results (Figure 7). In the same region,
FadD32-Sorafenib and FadD32-Loperamide matrices demonstrated anticorrelated motions
and FadD32-Mefloquine displayed partially anticorrelated motions with patches of no
correlation motions. The internal region, opposite the latter region, displayed anticorrelated
motions with variant intensities for each system. These findings have shed light on the
investigated drugs and the FadD32 protein.
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2.7. Principal Component Anaylisis (PCA)

PCA is a technique used to understand complex motions and flexibility within a
protein, in the presence and absence of a ligand or inhibitor [31]. The conformational
changes are measured by the directional eigenvalues, PC1 vs. PC2. The MD trajectories
of all the systems were subjected to PCA calculations, taking to account the Cα atoms of
residues and the results are depicted in Figure 9.
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From the scatter plot in Figure 9, all the systems demonstrate different protein motions,
the phase space occupied differs in the case of each system. FadD32-Accolate shows a
pattern sort of similar to the FadD32-Apo, while occupying a smaller phase space and
more compact. This proves that FadD32-Accolate exhibits lower molecular fluctuations as
compared to the other systems, hence these results are consistent with the RMSD, RMSF,
and Rg findings which stated that the binding of accolate reduced mobility on FadD32
residues and confers stability with the protein.

2.8. In Silico ADME Predictions

ADME predictions predict the nature, behavior, and fate of pharmaceutical drugs in
an organism’s body. These molecular physicochemical parameters are essential in drug
design and drug approval. The drugs (accolate, sorafenib, loperamide, and mefloquine)
were evaluated on SwissADME [32] web server based on Lipinski’s rule of five and the
results are presented in Tables 2 and 3. Lipinski’s rule states that an orally active drug
has no more than one violation of the following rules; molecular weight ≤ 500 g/mol,
number of hydrogen atom donors ≤ 5, number of hydrogen atom acceptors ≤ 10, and
the lipophilicity, Log p ≤ 4.15 [33]. All the drugs satisfied Lipinski’s rules (Table 2); hence,
they have accepted drug absorption and permeation. This is further supported by the high
bioavailability scores.

Table 2. Physicochemical parameters for the drugs.

Parameters Accolate Sorafenib Mefloquine Loperamide

Bioavailability score 0.55 0.55 0.55 0.55
Molecular weight (g/mol) 575.68 464.82 378.31 477.04

Hydrogen bond donors 2 3 2 1
hydrogen bond acceptors 7 7 9 3
Lipophilicity (MLOGP) 3.92 2.91 3.43 4.17

Polarity: TPSA (Å2) 127.60 92.35 45.15 43.78
Lipinski violations 1; Mw > 500 0 0 1; MLOGP > 4.15

Table 3. Pharmacokinetics parameters for the drugs.

Parameters Accolate Sorafenib Mefloquine Loperamide

Gastrointestinal absorption Low Low High High
BBB permeant No No No Yes

P-glycoprotein substrate No No Yes Yes
CYP1A2 inhibitor No Yes No No
CYP2C19 inhibitor No Yes No No
CYP2C9 inhibitor Yes Yes No No
CYP2D2 inhibitor No Yes Yes Yes
CYP3A4 inhibitor No Yes Yes Yes

Log kp (skin permeant) (cm/s) −5.52 −6.25 −6.04 −5.65

The results, described in Table 3, revealed that accolate and sorafenib had low human
gastrointestinal absorption (HIA) and were not the substrate of P-glycoprotein (P-gp) while
Mefloquine and Loperamide were found to be P-gp substrates and had high HIA. All the
drugs have no blood–brain barrier (BBB) permeability except loperamide. Drug metabolism
via CYP enzymes demonstrated variant results. All the drugs demonstrated positive ADME
properties which suggest great promise for future treatment of TB. In addition, the usage
and adverse effects of all selected FDA-approved drugs are given in Table 4.
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Table 4. Usage and adverse effects of identified MtbFadD32 potential inhibitors.

Drugs Usage Adverse Effects

Accolate Treats and manage asthma in children
(≥5 years old ) and adults [34]

Agitation, repetitive behaviours and
progressive liver failure [35]

Sorafenib Treats unresectable liver carcinoma
and primary kidney cancer [36] Diarrhea, fatigue and hypertension [37]

Mefloquine Treats malaria infections [38] Psychosis, convulsions and acute
brain syndrome [39]

Loperamide Treats and control nonspecific and
chronic diarrhea [40]

constipation, drowsiness and
abdominal discomfort [41]

3. Methodology
3.1. Computational Procedure

The X-ray crystal structure of MtbFadD32 (PDB:ID 5HM3) presented in the litera-
ture bears major discrepancies [11]. Hence, Mycobacterium smegmatis FadD32 structure
was applied as a surrogate to evaluate drug leads against MtbFadD32. M. smegmatis
(Msm) is the frequently used model for Mtb as it is a good device for studying the prop-
erties of mycobacteria [42]. In addition, MsmFadD32 shares 74% sequence similarity
with MtbFadD32 (Figure 10) [43], and most importantly Msm and Mtb show similar TB
drug susceptibility [44].
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3.2. System Preparation

In preparation for the molecular docking, Protein Data Bank (PDB) was used to obtain
the X-ray structure of MsmFadD32 protein (PDB ID: 5D6J) [24]. The small molecules were
retrieved from the ZINC database [45]. The UCSF Chimera [46] and Avogadro software [47]
were used for the structural preparation of the MsmFadD32 receptor and the ligands.
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3.3. Molecular Docking

The molecular docking tool, AutoDock Vina [48] was used to carry out the docking
calculations. The docking process was executed using the default AutoDock Vina param-
eters. Blind docking was performed, the gridbox housed the entire protein receptor and
these grid parameters were generated x = 88, y = 88 and z = 104 dimensions, x = −34.57,
y = 4.91 and z = 11.35 centers with the exhaustiveness = 8. The docked conformations of
the receptor–ligand complex were generated in a Lamarckian genetic algorithm approach
in the order of their docking scores [48]. Docked complex conformations with the best
docking score were visualized with UCSF Chimera [46], then considered for molecular
dynamic simulations.

3.4. Molecular Dynamics (MD) Simulations

The MD simulations of the systems were carried out using the GPU version of the
PMEMD module implemented in the Amber 14 software, with the Amber force field
FF14SB [49] and general Amber force field (GAFF) [50]. Antechamber module was utilized
to generate atom’s partial charges for ligands, hydrogen addition to protein, and system
neutralization using the Leap module by adding the counter ions. The system was enclosed
in a TIP3P water box, with a 10 Å distance between the system surface and box boundary.
The system was subjected to initial minimization for 2500 steps and then heated gradually
from 0 to 300 K with 1 ps, 5 kcal mol−1 Å−2 (collision frequency and harmonic restraints,
respectively) settings using Langevin thermostat [51]. The system was equilibrated with
no restrictions at 300 K,1 bar constant pressure, and the SHAKE algorithm [52] restricted
the system’s bonds with hydrogen atoms. The system was subjected to a 150 ns MD
in an isothermal-isobaric ensemble using Berendsen barostat, with 1 bar pressure and
pressure-coupling constant of 2 ps. All other systems followed the same procedure.

3.5. Post-MD Simulation Analysis

After completing the 150 ns simulations, the MD trajectories were subjected to post-
analysis calculations using the Amber14 modules PTRAJ and CPPTRAJ. These assist in
the following analysis, MM-PBSA (molecular mechanics Poisson–Boltzmann surface area),
Per-residue free energy decomposition analysis, hydrogen bonding analysis, RMSD (root
mean square deviation), RMSF (root mean square fluctuation), Rg (radius of gyration) and
DCCM (dynamic cross-correlation matrices).

The Equations (1) and (2) below describes how RMSD and RMSF are assessed:

RMSD =

∑N

(
Ri − R0

i

)2

N


1
2

(1)

where N is the number of Cα atoms in a complex, Ri is the position of vector of the Cα

atom i, and R0
i is the position of vector for reference atom.

sRMSFi =
RMSFi − RMSF

σ(RMSF)
(2)

where sRMSFi is the standardized RMSF, RMSFi is RMSF of the ith residue, RMSF average
RMSF, and σ(RMSF) is the RMSF’s standard deviation.

3.6. Binding Free Energy Calculations and Per-Residue Free Energy Decomposition Analysis

Binding free energy calculation is a thermodynamics method that offers insight into the
protein–ligand interaction [53]. In this study, the calculations were computed using the MM-
PBSA approach, which is a popular method in drug design and estimates the interaction
energy of protein–ligand (small molecules/inhibitor) complex [54]. All the system’s output
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trajectories were subjected to the calculation and the following Equations (3)–(6) describe
the calculations:

∆Gbinding = Gcomplex − [Gprotein + Gligand] (3)

∆Gbinding = EMM + Gsol − T∆S (4)

∆EMM = Eele + Evdw (5)

Gsol = Gpolar + Gnon-polar (6)

where ∆Gbinding denotes the protein–ligand complex’s free energy, EMM is the sum of
gas-phase molecular mechanics energy, Gsol denotes solvation free energy, and T∆S is
total entropy. ∆EMM is the sum of electrostatic and van der Waals contributions which are
denoted by Eele and Evdw, respectively. Gsol is the sum of polar and non-polar contributions,
denoted by Gpolar and Gnon-polar, respectively. The MM-PBSA approach was also used
to determine the individual amino acid residue energy contributions towards the overall
binding free energy. Protein–ligand interactions were visualized using LigPlot [55].

3.7. Dynamic Cross-Correlation Matrices (DCCM)

DCC between atoms is defined by the following expression:

Cij = 〈∆ri.∆rj〉/(〈∆ri
2〉〈∆rj

2〉)1/2 (7)

In Equation (7), ith and jth denote the amino acids with their spatial backbone atom
positions ri and rj. ∆ri indicates the ith displacement from its mean position over time [56].
Each Cij element has a time scale associated with it, that correlates with a dataset of
adjoining snapshot structures taken from the temporal succession of snapshot structures
saved on the MD trajectory. The MD trajectories of different systems were subjected to the
calculations and the matrices were generated, the Origin software [57] was used to analyze
the atomic correlative motion results obtained.

3.8. Principal Component Analysis (PCA)

Principal components of the protein motion were calculated as described below:

Cij =
〈(

xi −
〈
xj
〉)〉

(i, j = 1, 2, 3, . . . , 3N), (8)

where N is the number of Cα atoms, xi and xj are Cartesian coordinates of the ith and jth
atoms respectively and 〈xi〉, 〈xj〉 denote the average time of all configurations of all the
configurations obtained in MD simulation [58]. The MD trajectories of all the systems were
subjected to the calculations and the Origin software [57] was used to draw the graphs
for analysis.

3.9. In Silico ADME Predictions

The SwissADME web tool [32] was utilized for the assessment of absorption, distribu-
tion, metabolism, and excretion (ADME) parameters of the investigated drugs. This drug
data is essential for drug approval, as it reveals the drug-likeness of the investigated drugs.
The tool reveals the bioavailability of the drug candidates by estimating the following
physicochemical properties: lipophilicity, size, polarity, solubility, saturation, and flexibility.
The default predictors were used for this study.

4. Conclusions

Frequent development of drug resistance by Mtb against most approved TB drugs
remains a major global threat, hence, motivates the urgent need for new effective drugs
and new drug targets. In this report, we embarked on various computational approaches
such as virtual screening (VS), molecular docking, and molecular dynamic (MD) simulation
in order to identify potential FDA-approved drugs against fatty acid degradation protein
D32 (FadD32), a novel drug target. The calculated ligand–protein binding energies ranged
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from −45.13 to −21.52 kcal/mol, with accolate (−45.13 kcal/mol) showing the highest
total binding energy. It was observed that accolate also had the highest van der Waals and
electrostatic contributions towards the total binding free energy (∆Evdw of−64.54 kcal/mol
and ∆Eele of −28.89 kcal/mol). Hence, the current study identified accolate as the best
potential drug inhibitor of FadD32. Per-residue energy decomposition calculations suggest
that the highest residual energy contributions came from Ile193 (−2.84 kcal/mol), Pro194
(−2.38 kcal/mol), and Phe625 (−2.09 kcal/mol) in the case of FadD32-Accolate. Therefore,
the molecular structure of these residues will require careful consideration when designing
inhibitors targeting FadD32. To provide insight into the structural, and mechanistic features
of accolate as an FadD32 inhibitor, structural analysis was carried out by computing RMSD,
RMSF, Rg, DCC and PCA. Accolate binding leads to FadD32 structural stability, hence
reduced residue mobility and increased compactness of protein structure. Our results
strongly suggest accolate as a potential inhibitor of MtbFadD32, however, an experimental
approach is required to validate the current hypothesis. We believe these findings will
advance the design of potent Mtb inhibitors towards the treatment of TB.

Supplementary Materials: The following are available online. Table S1: Binding sites and the amino
acids residues. Table S2: H bonding data of the investigated drugs. Table S3: Binding free energy
(kcal/mol) and the components of binding free energy of the respective molecules. Figure S1: RMSD
of FadD32-Apo, FadD32-Accolate, FadD32-Sorafenib, FadD32-Mefloquine and FadD32-Loperamide.
Table S4: RMSD (Å) values and average.
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