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Replication incompetent human adenovirus serotype 5 (HAdV-C5) has been extensively used 
as a delivery vehicle for gene therapy proteins and infectious disease antigens. These vectors 
infect replicating and nonreplicating cells, have a broad tissue tropism, elicit high immune 
responses and are easily purified to high titers. However, the utility of HAdV-C5 vectors as 
potential vaccines is limited due to pre-existing immunity within the human population that 
significantly reduces the immunogenicity of HAdV-C5 vaccines. In recent years, adenovirus 
vaccine development has focused on simian-derived adenoviral vectors, which have the 
desirable vector characteristics of HAdV-C5 but with negligible seroprevalence in the 
human population. Here, we discuss recent advances in simian adenovirus vaccine vector 
development and evaluate current research specifically focusing on clinical trial data.
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Replication incompetent human adenovirus serotype 5 (HAdV-C5) has been extensively used as 
a delivery vehicle for gene therapy proteins and infectious disease antigens. However, these vac-
cine vectors are limited within the clinical setting due to the high seroprevalence, 40–45% in the 
USA and up to 90% in residents of sub-Saharan Africa, to HAdV-C5 within the human popula-
tion [1–3]. A recent Phase IIb trial (STEP trial) of an HAdV-C5 vaccine expressing antigens of 
HIV-1 was abruptly halted due to lack of efficacy [4] and the subsequent finding that participants 
in one subgroup with circulating neutralizing antibodies to HAdV-C5 prior to vaccination showed 
a nonsignificant increase in acquiring HIV infection [5,6]. In light of these studies there has been 
a growing interest in generating vaccines from rare human adenovirus serotypes and nonhuman 
adenovirus serotypes, which have negligible seroprevalence in the human population [7,8]. Leading 
nonhuman adenovirus candidates include vectors derived from simian adenoviruses (SAds) [9–11] 
and in particular those derived from chimpanzee adenoviruses (termed ChAds or AdCs) [12–14]. 
Although SAds are closely related to human adenoviruses [15] the hypervariable regions of the 
main immunogen, hexon, are significantly different from HAdV-C5 that they circumvent pre-
existing immunity to HAdV-C5. Replication incompetent SAd vaccine vectors lack the essential 
growth viral transactivator genes encoded by the E1 region and thus vector production requires the 
expression of E1 proteins in trans. SAds and HAdV-C5 share a close homology in the E1 region 
allowing simian E1 deleted adenovirus vector complementation in cell lines originally derived for 
complementation of HAdV-C5 E1 deleted vectors [16]. An added benefit is that there is no risk of 
generating replication competent adenoviruses through recombination events between the SAd 
genome and the complementing region within the host cell as the E1 flanking regions are different 
between HAdV-C5 and SAds [12,14].
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Vaccine vectors derived from ChAd3, 7, 6, 
9, 32, 33, 63 and 68 have been generated [12] 
and tested in preclinical settings for immu-
nogenicity toward a wide range of pathogens 
including malaria [17–19], HIV [20,21], influenza 

virus [22], Ebola [23], SARS [7], hepatitis C [24,25], 
rabies virus [26] and Rift Valley fever [27]. These 
vectors have been demonstrated to induce 
immune responses at very low doses in mice 
(1–3 × 106 viral particles). Protective immunity 
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Figure 1. Generation of a molecular clone of ChAd68 (see facing page). (A) Insertion of ChAd68 
genomic DNA into the pBAC ‘rescue vector’ by gap repair. The E1 LF1 and 2 and terminal right hand 
side region (RF) are amplified from ChAd68 genomic DNA and cloned into pBACe3.6 to produce a 
BAC adenovirus rescue clone. Recombination occurs between LF1 and LF2 of the isolated ChAd68 
genome and the BAC rescue clone and the RF of ChAd68 genome and the BAC rescue clone. The 
resulting product is a BAC containing an E1 deleted ChAd68 genome. (B) Excision of the E3 region 
of ChAd68 by recombineering. First, the galactokinase gene (GalK) is amplified from pGalK using 
primers containing sequences homologous to the flanking region of E3 (E3LF and E3RF). The E3 
region is replaced by the GalK gene using λ red recombination. The GalK gene is subsequently 
replaced by a PCR product consisting of E3LF and E3RF, again using λ red recombination. The 
resulting product is a BAC containing an E1E3-deleted ChAd68 genome. (C) Insertion of an antigen 
cassette at the E1 locus. First, the GalK gene is amplified from pGalK using primers containing 
sequences homologous to the flanking region of E1 (LF1 and LF2). The E1 region is replaced by the 
GalK gene using λ red recombination. The GalK gene is subsequently replaced by a PCR product 
consisting of LF1-antigen-expression cassette-LF2 using λ red recombination. The resulting product 
is a BAC containing an E1E3-deleted ChAd68 genome with an antigen-expression cassette at the E1 
locus. 
BAC: Bacterial artificial chromosome; ChAd68: Chimpanzee adenovirus 68; LF: Left flanking region; 
RF: Right flanking region. 
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in preclinical models was equal to, or greater 
than, that induced by equivalent HAdV-C5 
vectors for ChAd63-derived vaccine vectors [12]. 
Promising preclinical data have led to the use 
of SAd vaccine vectors in clinical trials where 
they have been shown to have a good safety and 
immunological profile [12].

●● SAd vaccine vector design & development
Key considerations in the design of SAd vec-
tors for use as vaccines are similar to those for 
HAdV-C5. The vaccine vector must be non-
replicating and unlike adenovirus gene therapy 
vectors have negligible immune modulatory 
activity. Hence, SAd vectors lack the E1 region 
encoding viral transactivator proteins which 
are essential for virus growth and the E3 region 
encoding immunomodulatory proteins.

The advent of bacterial artificial chromo-
somes (BACs) coupled to bacteriophage λ red 
recombination (recombineering) technology 
has facilitated the manipulation of large virus 
genomes [28]. Using this approach, linear DNA 
adenovirus genomes isolated from nonhuman 
primates have been cloned for use as viral vec-
tors. The first stage, following virus isolation 
and genome sequencing, is either the amplifi-
cation or artificial synthesis of: two products 
homologous to the left arm of the genome 
which flank the E1 region, and; one product, 
approximately 1000 bp, homologous to the right 
arm of the genome each incorporating a unique 
restriction enzyme site for cloning and genome 
excision for vector production. These fragments 

are assembled and inserted into a BAC by con-
ventional restriction enzyme cloning. The virus 
genome is then inserted into the BAC clone by 
single-step gap repair homologous recombi-
nation to generate an E1 deleted viral vector 
molecular clone (Figure 1A). The recombineering 
system is then used to allow seamless deletion 
of the adenovirus E3 immunomodulatory genes. 
Firstly, the bacterial galactokinase gene (GalK ) 
is amplified from the plasmid, pGalK, such 
that it contains approximately 50 bp homol-
ogy arms flanking the E3 region, this gene is 
inserted at the E3 locus of the BAC-rescued 
adenovirus genome by λ red recombination. 
Clones are screened for growth on galactose as 
this phenotype is attributed to the GalK gene 
product. The GalK gene is then removed by 
λ red recombination with a PCR product com-
prised of the E3 left and right flanking region 
only (Figure 1B). Positive clones are selected on 
2-deoxygalactose media, which prevents growth 
of bacteria expressing the GalK gene. Further 
manipulation using λ red recombination firstly 
to insert the GalK gene and then to exchange 
it for an antigen-expression cassette at the E1 
locus completes the engineering of the vaccine 
vector (Figure 1C) [29]. The linear virus genome is 
excised from the BAC using unique restriction 
enzymes, usually PacI or PmeI, and transfected 
into complementing cells to generate the viral 
vector. The antigen cassette typically consists of 
a strong promoter such as the minimal cytomeg-
alovirus (CMV) immediate early promoter, to 
drive antigen expression, the antigen of interest 
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Figure 2. Insertion of an antigen-expression cassette into adenovirus vector using att recombination sites. A universal cassette 
expressing a bacteria antibiotic resistance gene and ccdB suicide gene flanked by the specific recombination sequences, attR1 and 
attR2 is located at the E1 locus and/or the E3 locus of the BAC-adenovirus genome clone. Shuttle plasmids containing an antigen-
expression cassette flanked by specific recombination sites paired with those present in the adenovirus genome (attL1/L2) allow 
site-specific recombination in the presence of an enzyme mixture containing bacteriophage λ integrase, integration host factor and 
excisionase. 
BAC: Bacterial artificial chromosome; ChAdOx2: E1/E3 deleted adenovirus vector derived from ChAd68 with a modified E4 region; 
CMV: Cytomegalovirus.
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and a polyadenylation signal. We have generated 
a molecular toolbox that allows the insertion 
of any gene easily into a set region within the 
ChAd genome by inserting universal cassettes 
expressing a bacteria antibiotic resistance gene 
flanked by specific recombination sequences, 
such as attR1 and attR2, derived from bacterio-
phage λ (note this system is based on the gate-
way cloning system from Invitrogen), into our 
ChAd derived vaccine vectors at the E1 locus 
and/or the E3 locus. Shuttle plasmids contain-
ing an antigen-expression cassette flanked by 
specific recombination sites paired with those 
present in the genome (e.g., attR1/R2 recombi-
nation sequence requires attL1/L2 recombina-
tion sequence) allow site-specific recombination 
in the presence of an enzyme mixture contain-
ing bacteriophage λ integrase, integration host 
factor and excisionase (Figure 2).

Although the deleted E1 region from SAds is 
complemented by HAdV-C5 E1 proteins con-
stitutively expressed by human embryonic kid-
ney (HEK293) cells or PerC.6 cells, viral yields 
vary depending on SAd serotype. High yields 
of Pan5, ChAd68 (also referred to as Pan 6 or 
sAd25) and Pan7, all derived from chimpanzees 

can be obtained from HEK293 cells [16], whereas 
ChAd1 yields are poor [30]. For virus vectors with 
poor replication, further genome manipulation 
has been shown to increase yields. In the case of 
HAdV-C5, the E4 gene products in particular 
those from orf3, orf4, orf6 and orf6/7 coordi-
nate their function with the E1 proteins (E1A 
and E1B 55K) and host cell cofactors to bind, 
regulate and derepress several cellular functions 
during viral multiplication [31–36]. Manipulation 
of the E4 region can therefore be a promis-
ing means of increasing virus yields. We have 
recently described the generation of a chimeric 
vaccine vector, ChAdOx1, derived from ChAd 
serotype Y25 engineered by λ red recombina-
tion to exchange the native E4 orf4 orf6 and 
orf6/7 genes for those from HAdV-C5. This 
vector showed an increase in hexon protein 
production from HEK293 cells compared with 
the ChAd parent virus [37]. Using this approach 
we have also recently generated ChAdOx2, 
an E1/E3-deleted vaccine vector derived 
from ChAd68 with a modified E4 region to 
increase virus yields in HEK293 cells (Figure 3). 
Tatsis et al. report that exchanging the left and 
right inverted terminal repeats and packaging 
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signal allowed the complementation of ChAd1 
viral vectors [30]. Therefore further modification 
of SAds, which have previously been neglected 
as candidates for viral vaccines due to poor pro-
ductivity in HEK293 cells, could allow comple-
mentation and thus expand the ever growing list 
of SAd viral vaccines.

●● SAd vector engineering to improve 
immunogenicity
Adenovirus vaccine vectors, regardless of paren-
tal origin, can induce humoral, mucosal and cel-
lular immune responses, depending on the route 
of administration. However, although the T- 
and B-cell responses elicited are good for most 
vectors, the level of immunological potency can 
differ depending on adenovirus vector parental 
strain/serotype [12,38]. For example, when the 
two simian vectors ChAdOx1 (derived from 
Y25) and ChAdOx2 (derived from ChAd68), 
which both carried a green fluorescent protein 
(GFP) expression cassette in the E1 locus, were 
compared, the T-cell response elicited to GFP by 
IFN-γ ELISpot assay, antigen-specific produc-
tion of IFN-γ in response to stimulation with 
the immunodominant GFP peptide was sig-
nificantly higher in ChAdOx2 mice compared 
with ChAdOx1 vaccinees (Figure 4). Similar to 
human adenovirus C serotypes, most SAds use 
the coxsackie adenovirus receptor, which is pre-
sent in heart tissue, brain tissue and epithelial 
and endothelial cells, as the host cell receptor. 
However, ChAd1 is closely related to human 
adenoviruses of subgroup B2 and uses CD46, 
a regulatory protein in the complement system, 
which is expressed on all human cells except 
erythrocytes, as the host cell receptor [30]. 
ChAd1, therefore, has a broad infectivity tro-
pism, allowing it to utilize cells and infection 
pathways that are not accessible to other Ad 
serotypes. ChAd7 (sAdV24)-based vectors 
induce superior protective mucosal immunity 
in the respiratory tract, particularly following 
mucosal immunization. This enhanced mucosal 
immunogenicity could be related to prolonged 
persistence of the ChAd7 vectors in antigen-
presenting cells [39]. Furthermore, differences 
between vaccine vector immune responses 
between hosts have also been reported. In mice, 
after intramuscular immunization, HAdV-C5 
based vectors elicited cellular and humoral adap-
tive responses of higher magnitudes compared 
with ChAdOx1 and ChAd68 whereas in cattle, 
cellular and humoral immune responses were 

at least equivalent, if not higher, in magnitude 
after ChAdOx1 vaccination compared with 
HAdV-C5 [40].

Many current studies are driven by a desire 
to improve SAd vaccine immunogenicity and 
have focused on producing novel antigen pres-
entation on the viral vaccine surface through 
engineering of the virus capsid proteins. The 
SAd hexon protein is the major capsid protein 
with each viral particle containing 240 copies 
of the hexon trimer. Antigen epitopes intro-
duced in the hypervariable regions of the hexon 
protein will be displayed on the virus surface. 
Zhou et al. showed that a linear epitope to 
the influenza virus M2 protein located within 
hypervariable region 1, but not hypervariable 
region 4, of ChAd68 hexon induced a higher 
antibody response than when M2 was expressed 
as a transgene at the E1 locus [3]. Introduction 
of an epitope from coxsackievirus A16 into 
hypervariable region 1 and an epitope from 

Figure 3. Growth of ChAdOx2 compared 
with ChAd68. E1-complementing human 
embryonic kidney HEK293 cells were infected 
with one multiple of infection of viral vectors 
ChAdOx2 (black line) or ChAd68 (gray line) each 
expressing GFP from the E1 locus. Samples 
were taken at 48 and 96 h postinfection. Virus 
yield was determined by titration in triplicate 
on HEK293 cells and GFP-positive cells counted 
48-h postinfection. Results are expressed as log10 
fluorescent units per milliliter from two separate 
experiments with triplicate titrations for each 
sample. Student’s unpaired t-test was used to 
statistically analyze the results and the mean 
with standard deviation is depicted.  
FU: Fluorescent unit; GFP: Green fluorescent 
protein.
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Figure 4. Immunogenicity of ChAdOx1-eGFP 
compared with ChAdOx2-eGFP. Female 
BALB/c mice (four per group) were injected 
intramuscularly with 108 infectious units of 
vector and spleens harvested 2 weeks later to 
measure the response to GFP by IFN-γ ELISPOT. 
Results are expressed as SFUs per million 
splenocytes. Mann–Whitney test was used to 
statistically analyze the results and the mean 
with SEM is depicted. 
GFP: Green fluorescent protein; SFU: Spot-
forming unit.
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enterovirus 71 into hypervariable region 2 of 
ChAd68 generated a bivalent vaccine which elic-
ited a high immune response for hand, foot and 
mouth disease [41]. The SAd fiber protein has 
also been a target for improving vaccine immu-
nogenicity. The trimeric fiber protein protrudes 
from the penton base at each of the 12 vertices of 
the capsid. The fiber proteins are responsible for 
host cell receptor binding and thus viral trans-
duction of cells. Engineering of HAdV-C5 fiber 
has shown that viral vaccine cell tropism can be 
altered and that insertion of antigen epitopes 
can elicit an immune response. Fiber modifica-
tions of SAds have also been tested. Insertion 
of the tripeptide arg-gly-asp (RGD) motif into 
the fiber of ChAd7 expressing an antigen for 

Pseudomonas aeruginosa enhanced mucosal 
protective immunogenicity by increasing the 
level of infection of cells expressing high levels 
of αvβ3 and αvβ5 integrins, such as dendritic 
cells [42]. Taken together these data show the 
importance of choosing the correct vector sero-
type for the desired host and location of immune 
response, in conjunction with modifications to 
tropism and method of antigen presentation to 
ensure the generation of an optimal adenovirus 
vector vaccine.

●● Clinical trials
Of the many SAds isolated, vectorized and tested 
in preclinical studies, four have been advanced 
into clinical vaccine trials to date (Table 1). The 
first to do so, ChAd63-METRAP, a ChAd63 
vector encoding the malaria antigen throm-
bospondin-related adhesion protein (TRAP) 
fused to a multiepitope (ME) string containing 
epitopes from several malaria antigens, was ini-
tially used in a Phase I dose and route finding 
study to assess safety and immunogenicity [43]. 
In addition to being tested on its own, it was also 
evaluated as a priming agent in a prime-boost 
regimen with the modified vaccinia Ankara 
(MVA) poxviral vector expressing METRAP. In 
this trial, doses between 1 × 108 and 2 × 1011 vp 
of ChAd63 were found to be safe and elicited 
high levels of antigen-specific T cells, especially 
when part of a prime-boost schedule. Based on 
these encouraging results, the ChAd63 vector 
(encoding a variety of malaria antigens) has 
since been used in 21 further Phase I and II 
malaria vaccine trials, mostly in combination 
with an MVA boost (reviewed in [44]) but also 
on its own [45–48], with a protein-in-adjuvant 
boost [49] or in combination with an MVA vec-
tor and the virus like particle vaccine RTS,S 
(licensed under the name Mosquirix™), which 
expresses the Asn-Ala-Asn-Pro (NANP) repeat 
and T-cell epitope sequences from Plasmodium 
falciparum circumsporozoite protein [50,51]. In all 

Table 1. Simian adenoviral vectors used in clinical trials.

Vector (species isolated 
from)

Classification (group) Trial (phase) Pathogen/disease Ref.

PanAd3 (Pan paniscus)  C I RSV [53,54]

ChAd3 (Pan troglodytes)  C I, II Ebola, HCV [25,55–58]

ChAd63 (Pan troglodytes) E I, II Malaria, HIV [43,52]

ChAdOx1 (modified from 
Pan troglodytes Y25)

E I Influenza A, prostate 
cancer, tuberculosis

[53,59–60]

Vectors are based on viruses isolated from Pan paniscus (bonobo) and Pan troglodytes (common chimpanzee). 
RSV: Respiratory syncytial virus.  
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of these trials, the ChAd63 vector has consist-
ently proved to be an excellent priming agent 
for a strong CD8+ T-cell response. In addition 
to malaria vaccine trials, ChAd63 has also been 
used in clinical studies of HIV vaccines [52]. Here, 
ChAd63 encoding the HIVconsv immunogen 
derived from the functionally most conserved 
regions of the HIV-1 proteosome was tested in 
combination with MVA or plasmid DNA vac-
cination, and the prime-boost vaccination regi-
mens were able to induce high frequencies of 
CD8+ T cells specific for the conserved regions 
of HIV-1. Taking together all clinical trials, the 
ChAd63 vector has been assessed in more than 
1000 individuals to date, including infants and 
children, and the observed high immunogenicity 
for both T-cell and antibody responses warrants 
further development of this vector.

Of equal interest, another chimpanzee adeno-
viral vector has also made significant progress in 
a total of ten clinical trials to date: ChAd3 was 
first used in HCV vaccine trials in heterologous 
prime-boost schedules together with HAdV-6 [25] 
or MVA [55]. Both trials recorded durable and 
broad T-cell responses to the HCV antigen. 
ChAd3 has also been evaluated in the context 
of the recent Ebolavirus outbreak. Starting in 
late 2014, ChAd3 encoding the Ebolavirus gly-
coprotein (ChAd3-EBO-Z developed by GSK) 
was fast-tracked into four Phase I trials in the 
UK, USA, Mali and Uganda [56–57,61], as well 
as a Phase I/II trial in Switzerland [62]. At doses 
between 1010 and 1011 vp, the vaccine showed an 
acceptable safety profile and significant humoral 
immunogenicity up to 6 months postvaccina-
tion. In fact, antibody-responses 4 weeks after a 
single dose of ChAd3-EBO-Z were equivalent 
to those seen in the much publicized Phase III 
clinical trial of vesicular stomatitis virus-based 
Ebola vaccine, which showed 100% efficacy [63]. 
These trials therefore suggest that a single dose 
of the adenoviral vector may be enough to confer 
protective efficacy in a ring-vaccination scenario. 
A large Phase II safety/efficacy study in Liberia 
was also planned for 2015/16 [58,64], but due to 
a decline in the incidence of Ebola by the start 
of the study, efficacy outcomes will likely not 
be assessable.

The third chimpanzee vector to be tested in 
the clinic, ChAdOx1, was developed at Oxford 
University, and is based on the chimpanzee Y25 
adenovirus [37]. A Phase I trial of ChAdOx1 
encoding the conserved inf luenza antigens 
nucleoprotein and matrix protein 1 (ChAdOx1 

NP+M1) found high levels of antigen-specific 
T cells, which were comparable to those elicited 
previously in trials using the ChAd63 vector 
encoding malaria antigens [59]. Two further tri-
als involving ChAdOx1 are currently underway, 
as vaccine candidates against tuberculosis and 
prostate cancer [53,60].

The most recent simian adenoviral vector to 
undergo clinical evaluation is PanAd3, which is 
based on an adenovirus originally isolated from a 
bonobo [12]. The PanAd3 vector encoding three 
antigens of the respiratory syncytial virus (RSV) 
was tested at a dose of 5 × 1010 vp in healthy 
adults, with either intramuscular or intranasal 
administration, followed by a booster vaccina-
tion of MVA encoding the same antigens [54,65]. 
This prime boost regimen was shown to induce 
robust RSV-specific T-cell responses post-boost, 
independent of the route of priming, although 
as expected, intranasal vaccination with PanAd3 
resulted in lower levels of systemic RSV-specific 
T cells than intramuscular administration. The 
acceptable safety profile and immunogenicity 
observed in this trial warrant further clinical 
investigation of the PanAd3 vector.

Conclusion & future perspective
SAd viral vaccines, especially those derived from 
ChAds, are a viable alternative to HAdV-C5-
derived viral vaccines. Promising preclinical data 
have led to the use of ChAd vaccine vectors in 
clinical trials for a variety of infectious diseases 
and have shown good safety and immunological 
profiles in Phase I trials. In the next few years 
many of these vectors should enter Phase II 
and III clinical trials providing us with a better 
understanding of SAd vector immunogenicity in 
humans. ChAd vectors are also currently being 
developed as delivery vehicles for antigens against 
cancers, such as prostate [66] and breast cancer 
as well as chronic diseases, for example, Crohn’s 
disease. Thus, the use of SAds as a general vac-
cine vector should become well established in the 
coming years.

The employment of certain SAdV-based vec-
tors as vaccines may not be suitable for some popu-
lations. Although found less frequently than anti-
bodies to HAdV-C5, neutralizing antibodies to 
some chimpanzee adenovirus serotypes have been 
detected in humans from sub-Saharan Africa, 
Brazil and China [2–3,7–8]. Neutralizing antibod-
ies to the vector significantly reduce the specific 
immune response against the transgene product 
and thus can be detrimental to the efficacy of a 
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vaccine vector. These data show that an under-
standing of the immune state of the population 
to be vaccinated is essential when designing a vac-
cine vector. Vectors derived from other SAds, rare 
human adenovirus serotypes and adenoviruses 
from other species are being developed and may 
provide additional or alternative vaccine vectors.

A wealth of preclinical data relating to the 
use of SAd viral vectors as vaccines are avail-
able; however, different antigens, virus serotypes 
and immunization strategies have made it dif-
ficult to compare vectors head to head. Future 
studies need to focus on comparisons of vector 
backbones, antigen presentation and tropism 
modification so that information can be collated 
to allow the establishment of guidelines for the 
generation of optimal SAd vector vaccines for 
different hosts and immunological outcomes. 
These data together with advances in molecu-
lar engineering strategies and manufacturing 
technology will open up the possibility of rap-
idly generating SAd vector vaccines to combat 
emerging diseases, such as Ebola and Zika.
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EXECUTivE SUMMARY
Vaccine vectors derived from simian adenoviruses provide a viable alternative to human adenovirus serotype 5 
vaccine vectors

 ●  Simian adenovirus (SAd) vaccine vectors circumvent pre-existing human adenovirus serotype 5 (HAdV-C5) immunity.

 ●  Most SAd vaccine vectors can be grown in HAdV-C5 complementing cell lines.

 ●  Protective immunity in preclinical models for a range of antigens was equal to, or greater than, that induced by 
equivalent HAdV-C5 vectors for ChAd63-derived vaccine vectors.

Recombineering technology allows genetic manipulation of the adenovirus genome to generate a range of 
vaccines with different phenotypic & immunogenic properties

 ●  SAd viral vaccines are E1E3-deleted viruses.

 ●  Manipulation of the E4 region or inverted terminal repeats increases yields of viral vectors in HEK293 cells.

 ●  Modification of the fiber and hexon proteins provides novel antigen presentation on the surface of SAd viral vectors.

 ●  SAd viral vector immunological potency can differ depending on adenovirus vector parental strain/serotype.

 ●  Parental SAd strain, antigen presentation, the host to be vaccinated and immune response required, for example, 
mucosal immunogenicity should all be considered in the design of a SAd viral vector.

ChAd vaccine vectors have been shown to have a good safety & immunological profile in clinical trials

 ●  ChAd viral vaccines against malaria, Ebola, HIV, influenza, respiratory syncytial virus, HCV, tubercolosis and prostate 
cancer have all progressed to Phase I clinical trials.

 ●  ChAd viral vectors elicit high levels of antigen-specific T cells and/or neutralizing antibodies when administered as part 
of a prime boost regimen.
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