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Abstract: Long non-coding RNAs (lncRNAs) play a crucial role in the pathogenesis and development
of complex diseases. Predicting potential lncRNA–disease associations can improve our understanding
of the molecular mechanisms of human diseases and help identify biomarkers for disease diagnosis,
treatment, and prevention. Previous research methods have mostly integrated the similarity and
association information of lncRNAs and diseases, without considering the topological structure
information among these nodes, which is important for predicting lncRNA–disease associations.
We propose a method based on information flow propagation and convolutional neural networks,
called LDAPred, to predict disease-related lncRNAs. LDAPred not only integrates the similarities,
associations, and interactions among lncRNAs, diseases, and miRNAs, but also exploits the topological
structures formed by them. In this study, we construct a dual convolutional neural network-based
framework that comprises the left and right sides. The embedding layer on the left side is established
by utilizing lncRNA, miRNA, and disease-related biological premises. On the right side of the frame,
multiple types of similarity, association, and interaction relationships among lncRNAs, diseases, and
miRNAs are calculated based on information flow propagation on the bi-layer networks, such as
the lncRNA–disease network. They contain the network topological structure and they are learned
by the right side of the framework. The experimental results based on five-fold cross-validation
indicate that LDAPred performs better than several state-of-the-art methods. Case studies on breast
cancer, colon cancer, and osteosarcoma further demonstrate LDAPred’s ability to discover potential
lncRNA–disease associations.

Keywords: lncRNA–disease association; information flow propagation; network topological structure;
convolutional neural network; deep learning

1. Introduction

Many studies have indicated that protein-coding genes only account for ~2% of the human
genome, whereas non-coding protein sequences account for ~98% [1–5]. Non-coding RNA, especially
long non-coding RNA with a length exceeding 200 nucleotides (lncRNA), plays an important role
in various biological processes, such as transcription, translation, epigenetic regulation, splicing,
differentiation, the immune response, and cell cycle control. Mutations and disorders of lncRNA are
associated with a variety of human diseases [6–9]. For example, lncRNA PCA3 is a biomarker for
potential cancer diagnosis because it is associated with normal tissues and increases the expression level
of prostate tumors by 60× [10,11]. Therefore, it is necessary to discover more potential lncRNA–disease
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associations to understand the molecular mechanism of human disease at the lncRNA level and to
promote the diagnosis of diseases and identification of related biomarkers.

The calculation methods employed for predicting potential lncRNA–disease associations can be
broadly divided into three categories. The first method uses the biological information of lncRNA to
identify lncRNA–disease associations, such as the expression profile, tissue specificity, and genome
location. Li et al. [12] predicted lncRNA–disease associations based on known gene–disease associations
through the neighborhood relationship between lncRNA and genome-located genes. However, their
model only applies to a small number of lncRNAs. Liu et al. [13] identified a potential association
by combining the tissue specificity of lncRNA with the co-expression of gene–lncRNA associations.
Chen et al. [14] integrated the lncRNA expression profile, functional similarity of lncRNA, known
lncRNA–disease associations, the semantic similarity of disease, and the Gaussian cross-configuration
kernel information to determine the potential association between lncRNA and diseases. However,
this method suffers from low tissue-specific expression and limited lncRNA expression information.

The second method uses machine learning models to predict the potential associations.
Chen et al. [15] proposed a Laplace regularization least square method (LRLSLDA), which uses
semi-supervised learning to identify lncRNA–disease associations. However, this method uses
classifiers, and it often fails to achieve acceptable results because of the unbalanced distribution of these
classifiers. Lan et al. [16] used the bagging support vector machine (SVM) classifier and fused different
data sources to predict potential associations between lncRNAs and diseases. However, this method
cannot effectively fuse lncRNAs from different cores

The third method establishes heterogeneous networks, based on which lncRNA–disease
associations can be predicted. Zhang et al. [17] constructed a heterogeneous network containing lncRNA,
protein, and disease information and obtained a disease-related candidate lncRNA by disseminating the
information flow in the heterogeneous network. Yao et al. [18] constructed a multi-level heterogeneous
network by integrating lncRNA, genes, and phenotypes, and designed a heterogeneous random walk
on this network. There are also several methods for random walk on lncRNA networks, with similar
functions or heterogeneous networks composed of lncRNA, genes, and diseases to infer candidate
lncRNAs [18–21]. Xuan et al. [22] established lncRNA, miRNA, and isomerism networks to predict the
potential association between lncRNA and diseases, considering the attention mechanism. The deep
learning methods have also been applied to predict disease-related lncRNAs [23,24]. However, most
of these research methods learn the information between nodes without considering the network
topology between the nodes. Therefore, prediction methods integrating network topology information
are expected to exhibit a better performance.

In this study, we propose a method, called LDAPred, based on information flow propagation and
a convolutional neural network, to predict potential lncRNA–disease associations. LDAPred utilises
the similarities, associations, and interactions among lncRNAs, miRNAs, and diseases. On the left side
of the network, the original feature matrix of lncRNA–disease node pairs was constructed from the
biological perspective. On the right side, according to the information flow propagation of the bi-layer
network formed by lncRNA, miRNA, and disease, the possibility of interconnections between them
was calculated, and the characteristic matrix was formed. Dual convolution was used to learn deeper
features and make association predictions. Combined with five-fold cross-validation experiments,
the results indicate that LDAPred is better than several existing methods for the prediction of candidate
lncRNAs. Moreover, the results of the case study on breast cancer, colon cancer, and osteosarcoma also
indicate that LDAPred has a strong ability to identify potential disease lncRNAs.

2. Result and Discussion

2.1. Parameter Settings

To achieve the best prediction result, we repeatedly verified the results by conducting experiments.
Finally, the filter used in the convolutional layer and the pooling layer in the dual channel system was
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set to the dimension of 2× 2. The convolution process of the two channels was consistent. We set the
number of the first layer filters nconv1 and nconv3 of the left and right convolution modules as 8, and the
number of the second layer filters nconv2 and nconv4 of the left and right channels as 16. In the right
embedding, hyperparameter γ, which was used to balance the proportion of one-hop and two-hop
information, was set to 0.2. Finally, we balanced the score ratio of the two paths by using the parameter
λ =0.7.

2.2. Evaluation Metrics

To evaluate the performance of the prediction model, we used five-fold cross-validation. First,
the known 2687 lncRNA–disease associations were divided into five groups, four of which were used
as the training set and one as the test set. Second, we deleted the association in the test set when
calculating the similarity of lncRNAs. We regarded those with lncRNA-related diseases in the test set
as positive cases and those without any association as negative cases.

After using our prediction model to evaluate the associated scores of the test samples, the scores
of the samples were ranked in descending order. The higher the ranking of the positive examples,
the better the prediction performance of the model. We measured the global performance of our
prediction model by drawing the receiver operating characteristic (ROC) curve and calculating the
area under the curve (AUC). The true positive rate (TPR) and false positive rate (FPR) can be defined
as follows:

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

(1)

where TP is the number of positive samples that are considered positive, and TN is the number of
counterexamples that are considered counterexamples. FN is the number of positive examples that are
considered counterexamples, and FP is the number of counterexamples that are considered positive
examples. Finally, the average of all disease AUCs was taken to represent the performance of the
predictive model. The higher the value, the higher the global performance of the model.

Because the lncRNA–disease sample has a number of associated positive examples that are smaller
than the unrelated or unrecognized counterexamples, there is a serious imbalance ratio. Therefore,
we also used the precision–recall (PR) curve to measure the overall performance of the model. The larger
the area under the PR curve (AUPR), the better the prediction performance. The precision and recall
can be calculated as follows:

precision =
TP

TP + FP
, recall =

TP
TP + FN

. (2)

Biological experiments are costly and time-consuming and limited by equipment precision and
human error; thus, biologists choose to predict the top lncRNA to verify the disease associated
with it. Therefore, we also calculated the recall rate of the first k (30, 60, 90, ..., 240) samples, i.e.,
the ratio of the positive samples in the first k samples to all the predicted positive samples, as another
performance index.

2.3. Comparison with Other Methods

To reveal the advantages of considering network topology information in lncRNA–disease
association prediction modeling and demonstrate the strong performance of our model, we selected
four latest lncRNA–disease association prediction methods, namely SIMCLDA [25], Ping’s method [26],
MFLDA [27], and LDAP [16], for comparison. To make a fair comparison, we used the optimal values
recommended in these articles as superparameters of the four methods.

As shown in Figure 1a, our method, LDAPred, achieved the best performance in all 405 diseases;
i.e., the average area under the ROC curve was 0.963. This is 21.8% higher than that of SIMCLDA, 9.3%
higher than that of Ping’s method, 34% higher than that of MFLDA, and 10.1% higher than that of
LDAP. We also listed five methods for AUCs for 10 well-characterized diseases (Table 1). Each disease



Int. J. Mol. Sci. 2019, 20, 4458 4 of 15

was associated with at least 15 lncRNAs. Table 1 shows that LDAPred performs best for 8 out of 10
diseases. Both Ping’s method and LDAP achieved a good performance with similar ROC values as they
both used the similarity calculated from different angles of lncRNA and disease. The performance of
MFLDA is the worst of the five methods because it does not consider the similarity of the disease and
lncRNA during the prediction process. LDAPred has the best performance among the five methods
because it considers the network topology among lncRNA, disease, and miRNA, and learns the depth
representation of these topologies.
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Figure 1. (a) Receiver operating characteristic (ROC) curves of LDAPred and the other four methods.
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Table 1. Area under ROC curves (AUC) of LDAPred and other methods for all diseases and 10
well-characterized diseases.

Disease Name Percentage of Disease-Related
lncRNAs

AUC
LDAPred SIMCLDA Ping’s Method MFLDA LDAP

Respiratory system cancer 1.1% 0.913 0.789 0.911 0.719 0.891
Organ system cancer 1.6% 0.958 0.820 0.950 0.729 0.884
Intestinal cancer 2.3% 0.963 0.811 0.909 0.559 0.905
Prostate cancer 1.0% 0.951 0.873 0.826 0.553 0.711
Lung cancer 1.1% 0.833 0.790 0.911 0.676 0.883
Breast cancer 0.1% 0.970 0.742 0.871 0.517 0.830
Reproductive organ
cancer 1.1% 0.993 0.707 0.818 0.741 0.742

Gastrointestinal system
cancer 0.1% 0.985 0.784 0.896 0.582 0.867

Liver cancer 1.5% 0.911 0.799 0.910 0.634 0.898
Hepatocellular carcinoma 1.5% 0.867 0.765 0.903 0.688 0.902

The bold values indicate the higher AUCs.

As shown in Figure 1b and Table 2, the average PR curve of LDAPred for 405 diseases was higher
than that of the other four methods. The average AUPR (area under PR curves) of our method’s PR
curve is 0.219, which is higher than those of SIMCLDA, Ping’s method, MFLDA, and LDAP (19%, 6.7%,
18%, and 9.2%, respectively). Of the 10 diseases with clear characteristics associated with lncRNA,
LDAPred performed the best for 6 diseases.

In addition, to assess whether the AUC performance of LDAPred for all 405 diseases is better than
those of the other four methods, we performed a paired Wilcoxon test. The statistical results are shown
in Table 3. For AUC and AUPR, LDAPred performed significantly better than all the other methods at
a p-value of 0.05.



Int. J. Mol. Sci. 2019, 20, 4458 5 of 15

Table 2. Area under PR curves (AUPR) of LDAPred and other methods for all diseases and 10
well-characterized diseases.

Disease Name
AUPR

LDAPred SIMCLDA Ping’s Method MFLDA LDAP

Respiratory system cancer 0.178 0.149 0.414 0.072 0.303
Organ system cancer 0.029 0.411 0.765 0.338 0.628
Intestinal cancer 0.271 0.141 0.252 0.042 0.246
Prostate cancer 0.338 0.176 0.333 0.095 0.297
Lung cancer 0.655 0.138 0.334 0.008 0.094
Breast cancer 0.125 0.445 0.803 0.476 0.629
Reproductive organ cancer 0.490 0.047 0.403 0.031 0.396
Gastrointestinal system cancer 0.500 0.130 0.271 0.104 0.238
Liver cancer 0.672 0.201 0.526 0.086 0.498
Hepatocellular carcinoma 0.198 0.096 0.239 0.082 0.303

The bold values indicate the higher AUPRs.

Table 3. Results of a paired Wilcoxon-test for LDAPred and four other contrast methods in terms of
AUCs and AUPRs.

p-Value and Other
Methods SIMCLDA Ping’s Method MFLDA LDAP

p-values of AUCs 2.4816 × 10−17 0.0079 × 10−15 1.2144 × 10−15 0.0033 × 10−14

p-values of AUPRs 0.0118 × 10−14 0.3000 × 10−13 0.0030 × 10−14 0.9211 × 10−11

The higher the recall rate of the top k lncRNAs, the greater the number of correctly identified
lncRNAs that are related to the disease. Figure 2 shows the average recall rate for the first k samples of
all 405 diseases. LDAPred is superior to the other methods at different k values, accounting for 86.4%
in the top 30, 92.8% in the top 60, 95.1% in the top 90, and 96.3% in the top 120. The recall rate of Ping’s
method is very close to that of LDAP. The former accounts for 68.9%, 81.2%, 87.5%, and 92.7% among
the top 30, 60, 90, and 120, whereas the latter accounts for 68.5%, 81.7%, 88.0%, and 93.3%, respectively.
SIMCLDA accounts for 49.3% in the top 30, 63.0% in the top 60, 74.1% in the top 90, and 80.3% in the top
120, exhibiting lower values than Ping’s method and LDAP. Compared to the four methods, MFLDA
always shows the worst performance, accounting for 42.0%, 53.9%, 60.9%, and 65.5%, respectively.
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2.4. Case Studies on Breast Cancer, Colon Cancer, and Osteosarcoma

To further demonstrate the LDAPred’s ability to detect disease-related lncRNAs, we used two
separate databases (Lnc2Cancer and lncRNADisease) and related literature to validate candidate genes
for breast cancer, colon cancer, and osteosarcoma. The top 15 candidate lncRNAs associated with these
cancers were analysed separately (Table 4).

Table 4. Candidate long non-coding RNAs (lncRNAs) associated with breast cancer, colon cancer,
and osteosarcoma.

Disease
Name Rank LncRNA

Name Description Rank LncRNA Name Description

Breast
cancer

1 AFAP1-AS1 Lnc2Cancer,
lncRNADisease 9 CECR7 Unconfirmed

2 LINC00675 Literature 10 DBET lncRNADisease_P

3 H19 Lnc2Cancer,
lncRNADisease_P 11 CARMN lncRNADisease_P

4 HOTTIP Lnc2Cancer,
lncRNADisease_P 12 DISC1FP1 lncRNADisease_P

5 HCG9 lncRNADisease_P 13 VLDLR-AS1 lncRNADisease_P
6 MEG8 Literature 14 PWAR5 Literature
7 LINC00315 lncRNADisease_P 15 LINC00479 lncRNADisease_P
8 GABPB1-AS1 Unconfirmed

Colon
cancer

1 NPSR1-AS1 GEO 9 LINC00477 lncRNADisease_P

2 MEG3 Lnc2Cancer,
lncRNADisease 10 PARD6G-AS1 lncRNADisease_P

3 H19 Lnc2Cancer,
lncRNADisease 11 OIP5-AS1 lncRNADisease_P

4 CCAT2 Lnc2Cancer,
lncRNADisease 12 LINC01184 lncRNADisease_P

5 HOTAIR Lnc2Cancer,
lncRNADisease 13 CARMN lncRNADisease_P

6 CCAT1 Lnc2Cancer,
lncRNADisease 14 MEG8 lncRNADisease_P

7 MALAT1 Lnc2Cancer,
lncRNADisease 15 GABPB1-AS lncRNADisease_P

8 GATA3-AS1 lncRNADisease_P

Osteosarcoma

1 HOTAIR Lnc2Cancer,
lncRNADisease 9 MEG8 lncRNADisease_P

2 LINC00673 Lnc2Cancer,
lncRNADisease 10 GNAS-AS1 lncRNADisease_P

3 MIR17HG lncRNADisease_P 11 PTCSC2 lncRNADisease_P

4 HULC Lnc2Cancer,
lncRNADisease_P 12 LINC00319 Unconfirmed

5 TUSC7 Lnc2Cancer,
lncRNADisease 13 GABPB1-AS1 Unconfirmed

6 HOTTIP Lnc2Cancer,
lncRNADisease 14 LINC00473 Lnc2Cancer,

lncRNADisease_P

7 MEG3 Lnc2Cancer,
lncRNADisease 15 VLDLR-AS1 lncRNADisease

8 BANCR Lnc2Cancer,
lncRNADisease

Lnc2Cancer is an experimentally supported lncRNA manual management database for various
human cancers [28]. It contains more than 1500 published papers collected by hand and
1057 interactions extracted from 531 lncRNAs and 86 cancers, i.e., the expression level (up or down)
of lncRNA in cancer [29]. The LncRNADisease 2.0 database is not only a resource that curates the
experimentally-supported lncRNA–disease association data, but also a platform that integrates tools
for predicting novel lncRNA–disease associations. We used lncRNADisease and lncRNADisease_P to
demonstrate the association between experimental support and prediction, respectively. As shown
in Table 4, Lnc2Cancer contains 14 candidate lncRNAs, and lncRNADisease contains 13 candidate
lncRNAs, confirming the association. lncRNADisease_P contains 23 candidate lncRNAs, confirming
that these lncRNAs are more likely to be associated with the diseases.

The remaining three candidates reported in previous studies are marked as the “literature” in
Table 4. Among them, the expression of LATS2 is often down-regulated in breast cancer, and the
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oncogenic function of LINC00673 is determined in part by inhibiting the expression of KLF2 and
LATS2 [30]. MEG8 can directly interact with the epigenetic mechanism and may have a predictive
effect on the prognosis of breast cancer [31]. In the PWAR5 prediction experiment, the factors that
affect the mother cell tumor also affect the breast cancer. These three candidates may be involved
in the progression of breast cancer. Another candidate is represented by GEO in Table 4. The GEO
Dataset is a relatively comprehensive public gene expression database, and it indicates that NPSR1-AS1
is associated with colon cancer recurrence [32]. The remaining four are labeled as “Unconfirmed”
candidates, indicating that they are not in the database or in the related literature. Case studies of these
three diseases confirm that LDAPred has a strong ability to detect lncRNAs with potential diseases.

3. Materials and Methods

3.1. Dataset

To predict the relationships between lncRNAs and diseases, we needed to integrate the attributes
and characteristics of each node of the lncRNAs, miRNAs, and diseases. Therefore, we downloaded
2687 lncRNA–disease associations from the LncRNADisease [33] and Lnc2Cancer [28] databases and
from the lncRNAs functional description database, GeneRIF [34]. We calculated the similarity of
249 lncRNAs based on the diseases associated with lncRNAs. We obtained the interaction data of
1002 lncRNAs and miRNAs from starBase v2.0, an open source platform containing multiple RNA
interactions [35]. We downloaded 13,559 miRNA and disease associations from HMDD v1.0 [36],
a human miRNA and disease association database supported by experiments. We calculated the
similarity of 495 miRNAs based on the disease association of miRNA. Finally, we downloaded the
similarity data of 405 diseases from DincRNA v1.0 [37], calculated based on the directed myelogram of
the diseases.

3.2. Similarity Calculation and Data Representation

3.2.1. Semantic Similarity of Diseases

A disease can be expressed as a directed acyclic graph (DAG), which can be obtained from
Medical Subject Headings (MeSH), and it includes all relevant annotated items of the disease. Studies
have shown that the more common the DAG of two diseases, the more similar the two diseases.
Wang et al. [38] measured the semantic similarity between diseases according to the DAG of the disease.
In this study, we used the calculated semantic similarity of the disease. We utilised matrix D ∈ <nd×nd

to represent the similarity of the diseases, where nd is the number of diseases, Di j denotes the similarity
between diseases di and d j, and the similarity value changes between 0 and 1.

3.2.2. Similarity of lncRNAs

The more similar the functions of two lncRNAs, the more similar the related diseases. Therefore,
we calculated the similarity of two lncRNAs by calculating the similarity of the two lncRNA-associated
diseases. For example, lncRNA la is associated with diseases d1, d3, d4, and d6, and lncRNA lb is
associated with diseases d1, d3, and d4. Using the method of Xuan et al. [22], the similarity between
Sa = {d1, d3, d4, d6} and Sb = {d1, d2, d3} was calculated, and the calculation result was taken as the
similarity between la and lb. We used a similarity matrix L ∈ <nl×nl to represent the similarity of
lncRNAs, where nl is the number of lncRNAs, and Li j represents the similarity between lncRNA li and
lncRNA l j, with similarity values varying between 0 and 1.

3.2.3. Similarity of miRNAs

Similar to the lncRNA similarity calculation, the miRNA similarity was calculated based on the
associated diseases. We used the matrix M ∈ <nm×nm to represent the similarity of miRNAs, where nm
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is the number of miRNAs, Mi j represents the similarity between miRNA mi and miRNA m j, and the
similarity values are distributed between 0 and 1.

3.2.4. Interaction Matrix

In this study, heterogeneous data resources were synthesized and the interaction matrix was
established: the lncRNA–disease association matrix A ∈ <nl×nd , lncRNA–miRNA interaction matrix
B ∈ <nl×nm , and miRNA–disease association matrix C ∈ <nm×nd . In matrix A, nl is the number of
lncRNAs and nd denotes the number of diseases. If lncRNA Ai is associated with disease A j, then Ai j is
1; if there is no association, then Ai j is 0. In matrix B, nl is the number of lncRNAs and nm represents the
number of miRNAs. If lncRNA Bi is associated with disease B j, then Bi j is 1; if there is no association,
then Bi j is 0. In matrix C, nm is the number of miRNAs and nd is the number of diseases. If miRNA Ci
is associated with disease C j, then Ci j is 1; otherwise, Ci j is 0.

3.3. LncRNA–Disease Association Prediction Model Based on a Dual Convolutional Neural Network

We constructed a dual convolutional neural network (CNN) predictive model to predict the
lncRNA–disease associations. The left side uses the original information of the lncRNA li and disease d j
node pair to learn its original representation. The right side learns the path association representation
of li and d j from the network topology structure and information flow propagation. Then, the two
representations are combined by a CNN and the complete connection layer to obtain the final association
prediction score of li and d j for the association prediction of li and d j, respectively.

3.3.1. Embedded Layer

Establishment of the Left Feature Matrix

We utilized lncRNA l2 and disease d3 as examples to describe the establishment of the feature
matrix. First, if l2 and d3 have a connection with more identical lncRNAs, then l2 and d3 are more likely
to be associated. Therefore, we took the similarity vector s1 ∈ L between lncRNA l2 and all lncRNAs,
which comprise the second row of matrix L, and the association vector s2 ∈ A between disease d3 and
all lncRNAs, which comprise the third column of matrix A, and combined them together. Second,
if l2 and d3 have a relationship with more of the same disease, then l2 and d3 are more likely to be
associated. Therefore, we combined the second row of matrix A with the second row of matrix D,
which is the l2-associated vector s3 ∈ A for all diseases, and the similarity vector s4 ∈ D for disease
d3 with all diseases. Third, if l2 and d3 are associated with more of the same miRNA, then l2 and
d3 are more likely to be associated. Therefore, we took vector s5 ∈ B, for which l2 interacts with all
miRNAs; i.e., the second row of matrix B and the third column of matrix C, vector s6 ∈ C, and d3

associated with all miRNAs. Finally, we stitched these vector combinations into the feature matrix
S = {s1, s2, s3, s4, s5, s6} ∈ <

2×(nd+nl+nm) (Figure 3).
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Establishment of the Right Side Topological Information Matrix

Inspired by Chen et al. [14], we constructed a comprehensive matrix T = {t1, t2, t3, t4, t5, t6} ∈

<
2×(nd+nl+nm), which further considers the topological structure of lncRNA, miRNA, and disease-related

bi-layer networks via information flow propagation.
In a network comprising lncRNAs, L represents the original information between lncRNA nodes;

i.e., the one-hop similarity information. L× L represents the similarity of lncRNA nodes after two hops,
and γ is a hyperparameter, which balances the proportion of one hop and two hops and ranges from 0
to 1. L′ is used to integrate the one hop and two hop similarity information in the path. L′i j represents
the similarity value of lncRNAs li and l j after integrating the topological information. L′ is calculated
as follows:

L′ = γ·L + γ2(L·L). (3)

Similarly, D′ integrates the one hop and two hop similarity information of the disease, and D′i j is
the similarity between diseases di and d j after integrating the information flow. The calculation of D′ is
as follows:

D′ = γ·D + γ2(D·D). (4)

In a network comprising lncRNAs and diseases, A represents the one-hop information between
lncRNA and disease node pairs, and (L·A + A·D) represents the degree of association between lncRNA
and disease node pairs after two hops. γ is a hyperparameter that balances the proportion of one hop
and two hops and ranges from 0 to 1. A′ represents the similarity after integrating the path information,
and A′i j is the ratio of lncRNA li and disease d j after two hops. The degree of association A′ is calculated
as shown in Equation (5),

A′ = γ·A + γ2(L·A + A·D). (5)

Similarly, the association information between the disease and miRNA is expressed by
(
CT

)′
, and

the calculation process is expressed by Equation (6).(
CT

)′
= γ·CT + γ2

(
D·CT + CT

·M
)
. (6)
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(
AT

)′
is a transposition of A′, indicating the association between the disease and lncRNA by information

flow propagation bi-layer networks, and Equation (7),(
AT

)′
= γ·AT + γ2

(
D·AT + AT

·L
)
, (7)

indicates the calculation process.
In the network composed of lncRNA and miRNA, B represents the original interaction information

between lncRNA and miRNA node pairs, i.e., the one-hop information, and (L·B + B·M) represents
the degree of association information after two hops. γ is used to balance the proportion of one hop
and two hops. The one-hop and two-hop integration information is represented by B′, and B′i j is used
to represent the degree of association between lncRNA li and miRNA m j with the bi-layer network
information. B′ is calculated as follows:

B′ = γ·B + γ2(L·B + B·M). (8)

Finally, we took the second row of matrix L′ as vector t1, the third row of matrix
(
AT

)′
as vector

t2, the second line of matrix A′ as vector t3, the third line of matrix D′ as vector t4, the second line of
matrix B′ as vector t5, and the third row of matrix

(
CT

)′
as vector t6. We spliced the combination of

these vectors into the path eigenmatrix T = {t1, t2, t3, t4, t5, t6} ∈ <
2×(nd+nl+nm) as the right embedding

matrix (Figure 4).
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3.3.2. Convolution Module

Because the left and right convolution processes are similar, we will only describe the left
convolution process in detail herein. S = {s1, s2, s3, s4, s5, s6} ∈ <

2×(nd+nl+nm) was used as the left input
of the CNN module. In the first convolution, the length and width of the convolution filter were
respectively set to w f and wd, and the number of convolution filters was set to nconv1, which can be
expressed as Wconv1 ∈ <

w f×wd×nconv1 . We applied filter Wconv1 to S. In addition, to fully learn the edge
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information, we applied wide convolution by padding zeros before convolution. The definitions of
Sk,i, j and Mconv1,k are as follows:

Sk,i, j = S
(
i : i + wd, j : j + w f

)
, Sk,i, j ∈ <

w f×wd (9)

Mconv1,k(i, j) = f
(
Wconv1(k, :, :) × Sk,i, j + bconv1(k)

)
, i ∈ 1, Sl + 2−w f + 1,

j ∈ [1, Sw + 2−wd + 1], k ∈ [1, nconv1],
(10)

where S(i, j) is the ith row and jth column element of the embedded layer S, and Sk,i, j is the region
within the filter when the kth filter is slid to position S(i, j). f is the rectified linear unit (ReLU)
activation function, and bconv1 ∈ <

nconv1 is the offset term. The output feature, which is the result after
convolution, is M ∈ <nconv1×(Sw+3−nd)×(Sl+3−n f ).

In the pooling layer, Mconv1 performs a max pooling operation; i.e., the output in each sub-area is
the maximum value. The pooling layer can reduce the length of the feature graph output of convolution
and the number of parameters of the model. The pooling operation can be expressed as follows:

Mconv1(k) =max (M(k)), k ∈ [1, nconv1]. (11)

After two convolutions and pooling were completed, we obtained the final representation
Mconv2(k), k ∈ [1, nconv2], which represents the number of filters, where nconv2 is the number of filters for
the second convolution.

Finally, we flattened Mconv2 and obtained the association prediction scores of l2 and d3 through
the fully connected layer. The score score1 can be defined as

score1 = H ×Mconv2, (12)

where H is the weight matrix between the fully connected layer and the output layer, and score1 ∈ <
2×1

represents the matrix evaluated as the associated score and the unassociated score. We used the score1

as the predicted association score of l2 and d3.
Similarly, we employed T = {t1, t2, t3, t4, t5, t6} ∈ <

2×(nd+nl+nm) as the input to the right CNN
module and obtained the output of the second pooling layer. Nconv4 is the number of filters. The
associated prediction scores of l2 and d3 were obtained through the fully connected layer. The score
can be defined as follows:

score2 = K ×Nconv4, (13)

where K is the weight matrix between the fully connected layer and the output layer, and score2 is the
associated prediction score.

3.3.3. Dual Combination Strategy

To fully utilize the dual prediction score matrix, we designed a dual combination strategy to train
the model and obtain the final prediction score. We used λ ∈ [0, 1] to balance the weight of the two
paths, and the final predicted score was expressed by the score, which can be defined as follows:

score = λ× score1 + (1− λ) × score2. (14)

The loss functions of the left and right CNNs can be defined as

l1 = −
∑M

i=1
[ylabel × loga + (1− ylabel) × log(1− a)], a =

escore1∑2
j=1 escore1( j)

(15)

l2 = −
∑M

i=1
[ylabel × logb + (1− ylabel) × log(1− b)], b =

escore2∑2
j=1 escore2( j)

(16)
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where ylabel represents the actual association label between lncRNA and the disease. When lncRNA is
associated, it is 1; otherwise, ylabel is 0. score1 and score2 represent l2 and d3, which are the associated
scores. M represents the number of training samples, and a and b represent the probabilities obtained
by the Softmax function. The dual convolution and combining processes are displayed in Figure 5.
The top 50 potential lncRNA candidates for 405 diseases are listed in supplementary Table S1.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 12 of 14 
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4. Conclusions

LDAPred, which is a new method based on a dual convolutional neural network, was developed
to predict the potential associations between lncRNAs and diseases. According to the biological
premise that lncRNAs are likely to possess associations with diseases, the embedding layer was
established from a biological perspective. The left and right embedding layers capture the original
similarities, associations, and interactions among lncRNAs, miRNAs, and diseases, as well as the
topological structures of bi-layer networks. The original representation of lncRNA–disease pairs and
their network representations were learned by the new framework based on dual convolutional neural
networks and information flow propagation. Cross-validation results for 405 diseases and case studies
on three diseases indicated that LDAPred has a strong ability to predict potential associations between
lncRNAs and diseases.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/20/18/
4458/s1. Table S1: The top 50 potential lncRNA candidates for 405 diseases.

Author Contributions: P.X. and L.J. conceived the prediction method; L.J. wrote the paper; N.S. and X.L. developed
the computer programs; P.X., J.L., and T.Z. analyzed the results and revised the paper.
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