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ABSTRACT Runs of homozygosity (ROH) are chromosomal stretches that in a diploid genome appear in a
homozygous state and display identical alleles at multiple contiguous loci. This study aimed to systematically
compare the genomic distribution of the ROH islands among five populations of wild vs. commercial chickens
of both layer and broiler type. To this end, we analyzed whole genome sequences of 115 birds including
white layer (WL, n = 25), brown layer (BL, n = 25), broiler line A (BRA, n = 20), broiler line B (BRB, n = 20) and
Red Junglefowl (RJF, n = 25). The ROH segments varied in size markedly among populations, ranging from
0.3 to 21.83 Mb reflecting their past genealogy. White layers contained the largest portion of the genome in
homozygous state with an average ROH length of 432.1 Mb (618.7) per bird, despite carrying it in short
segments (0.3-1 Mb). Population-wise inbreeding measures based on Wright’s (Fis) and genomic (FROH)
metrics revealed highly inbred genome of layer lines relative to the broilers and Red Junglefowl. We further
revealed the ROH islands, among commercial lines overlapped with QTL related to limb development
(GREM1, MEOX2), body weight (Meis2a.1, uc_338), eggshell color (GLCCI1, ICA1, UMAD1), antibody
response to Newcastle virus (ROBO2), and feather pecking. Comparison of ROH landscape in sequencing
resolution demonstrated that a sizable portion of genome of commercial lines segregates in homozygote
state, reflecting many generations of assortative mating and intensive selection in their recent history. In
contrary, wild birds carry shorter ROH segments, likely suggestive of older evolutionary events.

KEYWORDS

Inbreeding
ROH islands
White layer
Brown layer
Red Junglefowl

Individuals with a recent common ancestor share sizable part of their
genomes identical-by-descent (IBD) state. These individuals transmit
IBD segments to their progeny, and create runs of homozygosity
(ROH) across the genome (McQuillan et al. 2008). ROH were first
identified by Broman and Weber in the human genome, whereas
Gibson et al. acknowledged their importance for inbreeding calcu-
lations (Broman and Weber 1999; Gibson et al. 2006). McQuillan
et al. (2008) defined the genomic inbreeding coefficient based on
ROH (FROH), which does not depend on allelic frequencies or
sampling procedures (Curik et al. 2014; Signer-Hasler et al. 2017).
FROH was later shown to be a suitable measure for describing levels of
inbreeding in breeds with missing pedigree information (Burren et al.
2016). Therefore, ROH may provide a more accurate measure of
inbreeding levels, compared to the pedigree based measurement
(Signer-Hasler et al. 2017). While longer haplotypes originate from
recent common ancestors, shorter haplotypes inherit from distant
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ones (background relatedness), and the sum of all these segments are
suggested to be an accurate estimation of the inbreeding level of an
individual (Ceballos et al. 2018a,b; Yoshida et al. 2020).

The identification and characterization of ROH islands can
further provide insights into population history, structure and de-
mographics over time (Peripolli et al. 2017; Signer-Hasler et al. 2017).
ROH islands are widely observed in populations and can be used as a
useful tool to identify the phenomenon called “selective sweeps”,
genome regions undergone selection pressure (Szmatoła et al. 2019).
ROH islands have been used to localize selection signatures in the
genome of farm animals including sheep (Purfield et al. 2017;
Mastrangelo et al. 2017; Mastrangelo et al. 2018; Luigi-Sierra et al.
2019; Signer-Hasler et al. 2019), goat (Bertolini et al. 2018; Onzima
et al. 2018), horse (Metzger et al. 2015; Grilz-Seger et al. 2018;
Ablondi et al. 2019; Grilz-Seger et al. 2019), cattle (Goszczynski
et al. 2018; Peripolli et al. 2018; Nandolo et al. 2018; Szmatoła et al.
2019; Peripolli et al. 2020), pig (Wang et al. 2019; Xu et al. 2019; Xie
et al. 2019; Gorssen et al. 2020) and in chicken (Marchesi et al. 2018;
Almeida et al. 2019; Strillacci et al. 2018; Zhang et al. 2018; Zhang
et al. 2020).

Chicken is a vital livestock for the world food security by pro-
ducing massive quantities of meat and egg. Chicken also provide an
excellent model to investigate the genetics of adaptation, as (1) it
involves transformation of the ancestral Red Junglefowl (RJF, Gallus
gallus), that still runs wild in most of Southeast Asia into a domestic
bird. (2) Domestic chicken have experienced intensive selection over
the last decades and several breeding companies have independently
bred primary multipurpose populations into highly productive birds,
so-called broilers (meat-type) and layers (egg-type), by selecting for
very similar breeding goals (Elferink et al. 2012).

In this study we aimed to systematically compare the genome of
domestic birds with each other and against their wild ancestor. The
main hypotheses here were to characterize genomic distribution of
ROH islands and to localize homozygous segment common among
all birds and between broilers vs. layers, respectively suggestive
of ancient adaptation or footprints of domestication. Our results
provide the landscape of homozygosity in sequence resolution,
highlighting several candidate genes co-localized with quantitative
trait loci (QTL). However, we were unable to pinpoint the stand-
alone ROH islands overlapping among groups of birds as a signif-
icant fraction of the genome in modern chicken was carried in
homozygous state.

MATERIAL AND METHODS

Chicken populations and data preparation
For the purpose of this study we used SNP panel from birds
sequenced individually in Qanbari et al. (2019). Briefly, it comprises
medium coverage (�10 folds) sequence of the entire genome of
115 chicken samples including white layer (WL, n = 25), brown layer

(BL, n = 25), broiler line A (BRA, n = 20), broiler line B (BRB, n = 20)
and Red Junglefowl (RJF, n = 25). For further detail of the SNP calling
process we refer to the original study.Markers withminimum1minor
allele were retained for further analysis. To ensure data quality we
excluded the SNPs with genotyping rate , 0.1 and significant
deviations from the Hardy–Weinberg equilibrium (PHWE ,10e-6).

Measuring diversity metrics
The diversity indicators including observed heterozygosity (Ho), and
expected heterozygosity (He), were calculated using PLINK v1.9
package (Purcell et al. 2007). Polymorphic marker ratio (PN) that
refers to the proportion of polymorphic loci in the target population
was also estimated by averaging the proportion of non-missing SNPs
per individual for each population.

Measuring runs of homozygosity
Analysis of ROH was performed using PLINK v1.9 package (Purcell
et al. 2007). The –homozyg module makes ROH calls using a pre-
defined sliding window that scans along an individual’s SNP panel to
detect homozygous stretches (Howrigan et al. 2011). The parameters
and thresholds to define an ROH were set according to Almeida et al.

n■ Table 1 Summary statistics of genetic diversity in studied populations

Population N NOPS HO (6 SD) HE (6 SD) %PN (6 SD) Mean Fis Max Min

WL 25 691009640 0.278 (60.020) 0.308 (60.004) 99.17 (60.58) 0.102 0.304 20.028
BL 25 691999952 0.282 (60.033) 0.324 (60.005) 98.94 (60.78) 0.135 0.424 2 0.108
BRA 20 1093359609 0.296 (60.020) 0.301 (60.000) 99.83 (60.03) 0.018 0.212 2 0.041
BRB 20 994569158 0.309 (60.009) 0.309 (60.000) 99.83 (60.04) 2 0.0005 0.050 0.047
RJF 25 1497349764 0.240 (60.032) 0.249 (60.000) 99.85 (60.05) 0.037 0.314 2 0.174

Number of animals (N), number of polymorphic sites (NOPS), average observed heterozygosity (HO), average expected heterozygosity (HE), polymorphic marker ratio
(PN) and mean Wright’s inbreeding coefficient (Fis) values (minimum and maximum) for the individual samples of WL (white Layer), BL (brown Layer), BRA (broiler line A),
BRB (broiler line B), and RJF (Red Junglefowl).

Figure 1 A schematic representation of ROH profile in chicken ge-
nome. The profile is given by the total number of homozygous seg-
ments and total segment size (Mb). Populations are coded as RJF = red
jungle fowl, BL = Brown layer, WL = White layer, BRA = Broiler line A
and BRB = Broiler line B.
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(2019) and Ceballos et al. (2018b). Accordingly, we applied (i) sliding
windows of size 50 SNPs across the genome; (ii) the proportion of
homozygous overlapping windows set to 0.05; (iii) the minimum num-
ber of consecutive SNPs included in a ROH set to 50; (iv) the minimum
length of a ROH set to 300 kb; (v) the maximum gap size between
consecutive homozygous SNPs set to 1000 kb; (vi) required minimum
density to consider a ROH was 1 SNP in 50 Kb; and (vii) a maximum of
five SNPs with missing genotypes and up to three heterozygous.

Measuring inbreeding
Two measures of inbreeding coefficient were calculated with PLINK
v1.9 (Purcell et al. 2007) for each population.

1.1. Wright’s inbreeding coefficient (Fis) was calculated by comparing
the difference between observed and expected autosomal homo-
zygous genotypes for each sample as follows:

Fis 5
Number   of   observed   homozygous  loci2Number   of   expected   homozygous  loci

Number   of   nonmissing   loci2Number   of   expected   homozygous  loci

2. Genomic inbreeding coefficients based on ROH (FROH) was
estimated for each bird according to McQuillan et al. (2008).
Accordingly, FROH was defined as:

FROH 5 LROH
Ltotal

where LROH is the total size of ROH in the genome of each bird.
Ltotal is the total size of autosomal chromosomes of chicken covered
by SNPs of an individual. The size of autosomal genome was

considered as �931 Mb according to the chicken reference assembly
Gallus_gallus-5.0.86 available at UCSC Genome Browser. The cor-
relation between the FROH and Fis was calculated for all homozygous
stretches and for the five chicken populations. All plots were gen-
erated with the R, package ggplot2 for R v3.6.2.

Distribution of runs of homozygosity
The total number of ROHper chromosome, average length of ROHper
chromosome (Mb), and the percentage of chromosomes covered by
ROH were estimated in PLINK (–homozyg option). Using an in-house
R script the identified ROHs were classified into seven length classes of
0.3–1, 1–2, 2–4, 4–8, 8–10, 10–16 and .16 Mb, respectively.

Detection of autozygosity islands
To investigate genomic regions that were associated with occurrences
of ROH within each breed, the fraction of SNPs in ROH was
estimated based on the frequency of a SNP in them across individuals.
‘ROH islands’ was identified as a region of adjacent SNPs with an
ROH frequency per SNP above the threshold of 1%. These regions
were then overlapped with Chicken quantitative trait loci (QTL)
database (release 40, 2019, https://www.animalgenome.org/cgi-bin/
QTLdb/GG/index).

Annotation of genetic variants
SnpEff (v.3.4) (Cingolani et al. 2012) was used to predict the functional
effects of the identified mutations based on reference genome

n■ Table 2 Summary statistics of the runs of homozygosity (ROH) based on length classes

Chicken population

Class of ROH

Layers Broilers Wild birds
WL (n= 25) BL (n= 25) BRA (n= 20) BRB (n= 20) RJF (n= 25)

0.3-1Mb 9458 (73.9%) 4631 (58.8%) 2352 (70%) 2820 (71.1%) 1083 (51.6%)
1-2Mb 2619 (20.4%) 1866 (23.7%) 593 (17.6%) 718 (18.1%) 504 (24.0%)
2-4Mb 688 (5.4%) 1001 (12.7%) 327 (9.7%) 350 (8.8%) 330 (15.7%)
4-8Mb 42 (0.3%) 335 (4.3%) 79 (2.3%) 77 (1.9%) 153 (7.3%)
8-10Mb 0 23 (0.3%) 6 (0.2%) 4 (0.1%) 17 (0.8%)
10-16Mb 0 15 (0.2%) 5 (0.1%) 0 12 (0.6%)
.16Mb 0 1 (0.01%) 0 0 1 (0.05%)
Total N. a 12807 7872 3362 3969 2100
Mean N.b 512.28 314.88 168.1 198.45 84
Total L. (Mb) c 10802 10189 3526 3923 3365
Max. (Mb) d 7.04 21.83 13.85 9.85 17.92
Min. (Mb) d 0.30 0.30 0.30 0.30 0.30
a
Total N.: Total number of ROH detected in the population.

b
Mean N.: average number of ROH per individual calculated as the Total N. divided by the number of individuals.

c
Total L.: Total length of ROH detected in the population.

d
Max, Min.: respectively revealed maximum and minimum length of ROH segments among the total number of ROH.

Figure 2 Average percentage of chromosome coverage by runs of homozygosity of minimum length of 0.3 Mb. Populations are coded as
WL = White layer, BL = Brown layer, BRA = Broiler line A, BRB = Broiler line B, RJF = Red Junglefowl.
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Gallus_gallus-5.0.86. The annotated functional categories included:
5 kb up- and down-stream of a gene, intergenic, missense, synon-
ymous, intronic, 39 untranslated regions, 59 untranslated regions,
stop gain and stop loss. Variants in the up- and down-stream
regions and in the 39 UTR, 59 UTR regions were merged into the
single categories. The bedtools’ (v.2.29.2) (Quinlan and Hall 2010)
intersect function was used to determine overlap regions between
layers (WL and BL), broilers (BRA and BRB), and commercials
(WL, BL, BRA and BRB) within ROH islands.

Gene-ontology (GO) enrichment analysis
Gene-ontology (GO) enrichment experiment was conducted using
the ClueGO plugin v2.1.7 (http://www.ici.upmc.fr/cluego/) (Bindea
et al. 2009). We further used DAVID v6.8 tool (Huang et al. 2009a;
Huang et al. 2009b) to focus more on significantly enriched Gene GO
terms. Only GO/pathway terms with significant enrichment (corrected
P-value, 0.05 of Benjamini-Hochberg) were included in the analysis.

Data availability
Data used in this study has been originally published by Qanbari et al.
(2019) and is deposited in the European Nucleotide Archive (ENA)
with the accession number: PRJEB30270. Supplemental material
available at figshare: https://doi.org/10.25387/g3.13107176.

RESULTS AND DISCUSSION

Genotyping, quality control and genetic diversity
The total genotyping rate ranged from 0.97 to 0.99 and the number of
polymorphic sites within breeds ranged from 6’100’640 to 14’734’764
(Table 1). RJF was the most diverse population with over 14 million
polymorphic sites retained for the final analyses (Table 1). For each
breed, genetic diversity was measured using heterozygosity and
Wright’s inbreeding coefficient (Fis). RJF breed, revealed the highest
polymorphic marker ratio (99.85%) and despite the lowest observed
(HO = 0.240 6 0.032) and expected heterozygosity (HE = 0.249 6
0.000) we measured a low level of inbreeding (Fis = 0.037) (Table 1).
On the contrary, layers represent lowest polymorphic marker ratio
and less observed heterozygosity than expected which is attributed to
the small number of founders and many generations of mating within
closed lines of limited population size, but also partly due to the effect
of linked selection (Qanbari et al. 2019). Accordingly, Fis was markedly
high in layers in line with a previous report of genetic diversity and
inbreeding in commercial white egg layer line (Bortoluzzi et al. 2018). A
recent study based on genotypes of a high-density SNP array revealed

lower inbreeding (Fis = 0.037 to 0.237) in Chinese indigenous chicken
breeds than both Europeans local (Fis = 0.254 to 0.404) and commercial
brown egg layers (Fis = 0.144), suggestive of the richer genetic diversity
available in indigenous populations (Chen et al. 2019).

Runs of homozygosity
As schematically shown in Figure 1, distinctive clustering patterns
reflected the genetic diversity of five chicken populations. The ROH

n■ Table 3 Average genomic inbreeding coefficient (FROH) for different length categories of ROH across five chicken populations

Chicken population

Length category (Mb)

Layers Broilers Wild birds
WL (n= 25) BL (n= 25) BRA (n= 20) BRB (n= 20) RJF (n= 25)

FROH(0.3-1) 0.228 0.113 0.068 0.082 0.026
FROH(1-2) 0.153 0.113 0.044 0.054 0.031
FROH(2-4) 0.075 0.119 0.048 0.051 0.039
FROH(4-8) 0.009 0.075 0.022 0.022 0.034
FROH(8-10) 0.000 0.009 0.003 0.002 0.007
FROH(10-16) 0.000 0.008 0.003 0.000 0.007
FROH(.16) 0.000 0.001 0.000 0.000 0.001
Total FROH($0.3) 0.46 0.44 0.19 0.21 0.14
SD 0.02 0.04 0.05 0.02 0.10

FROH $0.3Mb = overall genomic inbreeding (average of individuals) at ROH threshold of 0.3 Mb, SD = standard deviation of the total FROH calculated based upon
individual FROH, which has been shown in File S1.

Figure 3 Inbreeding within chicken populations. The Pearson corre-
lation is presented between two measures of molecular inbreeding
metrics. Populations are coded as WL = White layer, BL = Brown layer,
BRA = Broiler line A, BRB = Broiler line B, RJF = Red Junglefowl.
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profile (clusters, Figure 1) in wild birds displayed a more variable pattern
than domestic birds (Figure 1). Commercial lines exhibited similar
average cumulative size as well as average ROH number, indicating
extremely homogenous genomes with low genetic diversity (Table 1).

Descriptive summary of ROH number and length classes is pre-
sented in Table 2. As expected, White layers carry more ROH with an
average number of 512.286 18.76 per bird (ranging from 547 to 471).
By contrast, RJFs encompass least ROH average in 84.00 6 61.02
(ranging from 251 to 6) per bird (see Table 2 and File S1). The average
size of ROH tracts observed in Red Junglefowls is comparable to the
African indigenous chicken populations from Rwanda and Uganda
both genotyped with the chicken Affymetrix 600K Axiom Array
(Elbeltagy et al. 2019). Our measure of ROH in broiler populations
confirms the dimension reported in previous studies (Marchesi et al.
2018; Almeida et al. 2019). Layers, especially WL carry the lengthy
ROH tracts with 432.1Mb (6 18.7Mb;max. 477.1Mb;min. 390.8Mb)
per bird, whereas the corresponding value was 134.6 Mb (6102.2 Mb;
max. 345.4 Mb; min. 3.3 Mb) in wild birds (see File S1). However, the
collective length of ROH in WL involved plenty of shorter segments
(ROH 0.3-1Mb, 73.9%) compared to other breeds (Table 2). The largest
proportion of the long tracts (ROH .10Mb) was found in BL, reflecting
recent inbreeding (Table 2). RJF also revealed several long segments of
ROH (Table 2) consistent with the observations in indigenous breeds
from Netherlands (Bortoluzzi et al. 2018), Mexico (Strillacci et al.
2018), and China (Zhang et al. 2018). These long ROH tracts likely
represent the severe bottlenecks, as traditional populations have ex-
perienced a drastic reduction in the effective population size in the
recent history and genetic experiments show a slow recovery, despite
the potential increase in recent population size (Charlesworth 2009).

The effect of chicken genome heterogeneity in forming ROH
segments was also investigated through comparison of ROHonmacro-
(GGA1 to 5), intermediate- (GGA6 to 10) and microchromosomes

(GGA11 to 28) (Figure 2 and Supplementary Table S1). The GGA16
chromosome did not present any ROH segment due to the assembly
fallacy. We found the longest ROH segments on macrochromosomes
in line with the lower rate of nucleotide diversity and recombination
rate (Axelsson et al. 2005; Groenen et al. 2009). Overall, macro-
chromosomes showed the highest number of common ROH and
the longest ROH tracts per individual (Supplementary Table S1).
The highest percentage of genome covered by ROH in layers was
observed in micorchromosomes e.g., in GGA11 (58.21 in WL) and
GGA22 (50.12 in BL), (see Figure 2 and Supplementary Table S1),
whereas the corresponding chromosomes in broilers and Red Jungle-
fowl were e.g., GGA2 (26.25 in BRB) and GGA5 (18.89 in RJF) (see
Figure 2 and Supplementary Table S1).

Genomic inbreeding coefficient estimated From
ROH (FROH)
In the absence of pedigree information, numerous studies have
documented the usefulness of ROH segments to infer the inbreeding
level of an individual (e.g., Purfield et al. 2017; Marchesi et al. 2018;
Strillacci et al. 2018; Zhang et al. 2018, among others). We calculated
the genomic inbreeding coefficient (FROH) corresponding to the
different length classes of ROH segments (Table 3). Consistent with
Wright’s inbreeding coefficient, WL was the most inbred population
with an FROH = 0.46 6 0.02 (see Table 3). The genomic inbreeding
coefficient ranked in the following order WL. BL. BRB. BRA.
RJF for the populations (see Table 3 and File S1), which is consistent
with the Wright’s definition of inbreeding as well as the diversity
measures in these populations (e.g., Qanbari et al. 2019). Layer lines
exhibited markedly greater level of inbreeding in comparison to the
broilers and wild birds (Table 3). However, extent of ROH tracts
observed in WL and BL is to some extent contradictory. While, a
higher proportion of short ROH (FROH 0.324Mb) identified in WL

Figure 4 Genomewide distribution of runs of homozygosity (ROH) hotspots. The x-axis represents the SNP genomic coordinate chromosome-wise,
and the y-axis shows the proportion of overlapping ROH shared among individuals based upon number in population. Populations are coded asWL
= White layer, BL = Brown layer, BRA = Broiler line A, BRB = Broiler line B, RJF = Red Junglefowl.
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(Table 2 and 3), BL carry a higher proportion of long tracts
(FROH .16Mb), that might misinterpreted as an ancient origin of
inbreeding in layers than broilers. In fact, given the recent genealogy
of close mating, layers are expected to carry long homozygosity tracts,
as is reported in the previous studies based on array genotypes
(Bortoluzzi et al. 2018). However, long ROHs tend to break into
shorter tracts due to the presence of frequent heterozygous gaps in
sequencing resolution (e.g., Qanbari 2020; Szmatola et al. 2020),
whereas microarrays would likely miss them.

Figure 3 presents a schematic visualization of Pearson correlation
between two measures of molecular inbreeding (Fis and FROH). A
moderate to strong correlation was found between Fis and FROH
within all populations, demonstrating that the extent of a genome
under ROH can be used fairly accurately to predict the IBD fraction.
The correlation between Fis and FROH was lowest in WL (r = 0.64,
P-value = 0.0029) and BL (r = 0.79, P-value , 0.0001), while the
highest correlation was observed in RJFs (r = 0.99, P-value, 0.0001).
This trend indicates a positive association of the short ROHs with Fis
and likely suggestive of ancestral inbreeding in wild birds. Studies
have reported high correlation between Fis and FROH based on short
ROH segments in cattle, suggesting ancestral inbreeding back up to
50 generations ago (Feren�caković et al. 2013; Mastrangelo et al. 2016;
Limper 2018). The high correlation observed between two metrics of
molecular inbreeding is consistent with the previous reports on chicken
(Bortoluzzi et al. 2018; Marchesi et al. 2018; Almeida et al. 2019),
cattle (Feren�caković et al. 2013; Zhang et al. 2015; Mastrangelo et al.
2016; Peripolli et al. 2018) and sheep (Mastrangelo et al. 2017;
Purfield et al. 2017; Mastrangelo et al. 2018) as well as human model
(Clark et al. 2019). These results confirm the usefulness of the ROH
analysis in monitoring differentiation and inbreeding values for
further exploitation in chicken breeding programs in the absence of
pedigree records.

ROH islands indicative of selection sweeps
ROH islands might be indicative of genomic regions underwent
natural and/ or artificial selection. We sought to identify most
homozygote variants within ROH islands as candidates of recent
adaptation and focused on outlaying SNPs in top 1% of ROHs in each
population. Given the variable polymorphism content, homozygosity
threshold to call an ROH island were population-specific. For ex-
ample, 96% of the white layers were homozygote in top 1% of the
ROH islands, whereas the corresponding figure in wild birds was only
40%. Accordingly, we set the SNP homozygosity thresholds as. 96%,
96%, 60%, 65%, and 40% inWL, BL, BRA, BRB, and RJF, respectively
(Figure 4).

We identified 26 to 58 regions of the genome with a high
frequency of ROH occurrence, also known as ROH islands, within
individuals of particular breeds. ROH islands were detected more

frequent inWL (n = 58) and the less in RJF (n = 26). The ROH islands
had the average length in range of 223.5 kb6 177.2 (WL) to 503.8 kb6
416.6 (BRA), and average number of consecutive SNPs in range
478.36 742.0 (WL) to 4947.36 7220.3 (RJF). The average length of
the ROH islands calculated for all breeds was 405.9 kb 6 103.2,
while the average number of consecutive SNPs per region was
2108.6 6 1576.4. Therefore, ROH islands tended to break into
shorter segments (see WL in File S2), due to the presence of short
heterozygous gaps within the ROH sequences (Nandolo et al. 2018).
A summary statistics is presented in details in File S2 and shown
schematically in Figure 4.

We found 18 ROH islands uniquely detected in wild birds (see
Table 4 and File S2). Among the ROH islands, one and seven
overlapping regions were detected respectively in layers and broilers
out of which three regions in broilers reported to be in association
with traits of economic interest available at the Chicken QTL database
(release 40). These regions include genes related to antibody response
to Newcastle virus (ROBO2), eggshell color (GLCCI1, ICA1,
UMAD1), antibody titer to SRBC antigen, body weight at 56 days
(Meis2a.1, uc_338) and feather pecking (Table 4). In the same way,
the ROH islands detected in RJFs overlapped 53 QTL, among them
are genes associated with eggshell strength and eggshell thickness
(Table 4). The localized panels of ROHs were further compared with
the putative selection signatures reported in Qanbari et al. (2019).
Our comparison revealed overlap in only two ROH islands located on
GGA2 and 5 (see Table 4). The genes located within ROH islands and
detected in multiple populations have been presented in File S3.

We further conducted an enrichment test on the gene list located
in ROH islands to identify over-represented Gene Ontology (GO)
terms (Table 5). In commercial lines, genes located in ROH islands
were associated with biological functions related to chicken domes-
tication and evolution such as limb development (GREM1, MEOX2)
and negative regulation of apoptotic process (AVEN, ASNS, GREM1)
(Table 5). In contrast, the most significant GO term in Red Junglefowl
was related to the reproductive traits such as oogenesis (PTN,
WASH1,WEE2). These findings show candidate pathways associated
with economically important traits and chicken genetic diversity
during domestication and recent improvement.

CONCLUSION
This study provided the first systematic comparison of runs homo-
zygosity islands between wild and domestic birds in sequence res-
olution. We found larger fraction of layers genome segregating in
homozygote state, reflecting the recent inbreeding in commercial
lines, although some of the long ROH tend to break into smaller
tracts. Compared to the homogenous values reported for the com-
mercial lines, wild birds showed important variation in the total
length of ROH. Regions with a high frequency of ROH occurrence

n■ Table 5 Functional enrichment of gene ontology terms among the identified genes within ROH islands

Breed Biological Processes GO term Gene

Commercials limb development GO:0060173 GREM1, MEOX2
negative regulation of apoptotic process GO:0043066 AVEN, ASNS, GREM1
cell-cell signaling GO:0007267 GREM1, TAC1

Layers cell differentiation GO:0030154 AGR2, AGR3, BZW2
negative regulation of cell death GO:0060548 AGR2, AGR3

Broilers ureteric bud development GO:0001657 FMN1, GREM1, ROBO2
cell migration involved in sprouting angiogenesis GO:0002042 GREM1, SPRED1

Red Junglefowl oogenesis GO:0048477 PTN, WASH1, WEE2
amino acid transmembrane transport GO:0003333 CGTL, SLC6A12, SLC6A13
organic acid:sodium symporter activity GO:0005343 SLC13A4, SLC6A12, SLC6A13
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within domestic birds were co-localized with genes implicated in
biological functions related to chicken domestication such as a limb
development (GREM1, MEOX2), whereas in Red Junglefowl these
regions overlapped with genes related to oogenesis. We also found a
modest to high correlation between two molecular measurements,
substantiating a highly inbred nature of domestic birds relative to
their wild ancestors.
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