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Electrical Impedance Tomography (EIT) is a very attractive functional imaging method despite the low sensitivity and resolution.
The use of internal electrodes with the conventional reconstruction algorithms was not enough to enhance image resolution and
accuracy in the region of interest (ROI). We propose a local ROI imaging method with internal electrodes developed from careful
analysis of the sensitivity matrix that is designed to reduce the sensitivity of the voxels outside the local region and optimize the
sensitivity of the voxel inside the local region. We perform numerical simulations and physical measurements to demonstrate the
localized EIT imaging method. In preliminary results with multiple objects we show the benefits of using an internal electrode and
the improved resolution due to the local ROI image reconstruction method. The sensitivity is further increased by allowing the
surface electrodes to be unevenly spaced with a higher density of surface electrodes near the ROI. Also, we analyse how much the
image quality is improved using several performance parameters for comparison.While these have not yet been studied in depth, it
convincingly shows an improvement in local sensitivity in images obtained with an internal electrode in comparison to a standard
reconstruction method.

1. Introduction

Electrical Impedance Tomography (EIT) is an attractive elec-
trical properties imaging technique for medical applications
due to its speed, safety, relatively low cost, and ability to
display unique tissue conductivity information. Conven-
tionally, surface electrodes are used to apply currents and
record voltages from the boundary of the object of interest
such as the thorax, breast, or head. These measurements
are used to reconstruct the internal tissue impedances or
conductivities using various image reconstruction methods
where sensitivity matrix-based approaches are commonly
used. Unfortunately, these measurements are insensitive to
local impedance changes away from themeasuring positions,
whereas they are very sensitive to the boundary geometry
and impedance changes near the electrodes. To improve

the sensitivity and distinguishability in some local internal
regions, the use of internal electrodes has been suggested by
several researchers [1, 2]. These previous works were concen-
trated in cardiac applications of EIT as catheters are routinely
introduced into various locations during cardiac monitoring,
electrophysiology (EP mapping), or cardiac radiofrequency
ablation (RFA).

EIT with internal electrodes could also be applied to
monitoring RFA of liver tumors. RFA is widely used for the
treatment of liver tumors such as hepatocellular carcinoma
(HCC) and metastatic tumors since many patients are not
eligible for surgical resection due to advanced disease, unfa-
vorable location, or impaired clinical condition [3]. Numer-
ous studies have reported that RFA is the most minimally
invasive treatment for liver tumors and evaluated it as a
successful therapeutic modality, providing reliable outcomes
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even though its posttreatment recurrence rate is higher
than that of cryoablation and resection [4]. Ultrasound and
magnetic resonance imaging (MRI) commonly provide the
guidance of RFA because they allow real-time visualization
of probe placement and high contrast images for tumor and
normal tissues [5–8]. Contrast-enhanced computed tomog-
raphy (CT) and MRI are widely used methods to evaluate
ablated lesions by comparing the differences of lesions before
and after RF ablation. However, none of these are able to con-
tinuously monitor the temperature and changes in properties
of cancerous tissue and normal tissue during RFA process.

EIT does have this potential due to its high speed,
sensitivity to the conductivity change of tumor and normal
tissue at various frequencies [9, 10], and its ability to monitor
tissue temperature in real time [11, 12]. In both cardiac
EIT and EIT for monitoring liver tumour RFA, there are
opportunities to add an additional internal electrode close
to the region of interest (ROI) to improve EIT sensitivity to
internal tissues and particularly to the tissue within the ROI.
In both applications, a local imaging reconstruction method
with high sensitivity within the ROI is desired since there
are significant effects from conductivity changes outside the
ROI such as ventilation, perfusion, movement of the lungs,
diaphragm, gastric activity, and blood flow in large vessels
[13].

In this paper, we propose a local sensitivity matrix-based
imagingmethod to increase the sensitivity in a local region of
interest near the internal electrode and decrease the sensitiv-
ity outside the region of interest to progress the application of
EIT to cardiac monitoring and liver RFA. To further increase
sensitivity to the ROI, we propose a new arrangement of
surface electrodes where the electrode spacing is not equal
but more near the ROI. In order to evaluate the performance
of the local ROI imaging method, we perform numerical
simulations and phantom experiments.

2. Method

2.1. Conventional EIT Reconstruction Method. Let a bounded
domain Ω represent the subject to be imaged. Surface
electrodesE𝑗 for 𝑗 = 1, 2, . . . , 𝐸 are attached to the boundary
𝜕Ω, where 𝐸 is the total number of electrodes. Let 𝛾𝑡,𝜔(r) =

𝜎𝑡,𝜔(r) + 𝑖𝜔𝜖𝑡,𝜔(r) denote the complex conductivity at time
𝑡, angular frequency of 𝜔, and position r. When we inject
a sinusoidal current 𝐼 sin(𝜔𝑡̃) at an angular frequency of 𝜔

between a chosen pair of electrodes, a voltage distribution
V𝑡,𝜔(r)sin(𝜔𝑡̃ + 𝜃𝑡,𝜔(r)) is formed at the position r. Here, 𝑡

is used for expressing a slow-time change in the complex
conductivity distribution, and 𝑡̃ is used for the fast-time
change to represent time-harmonic fields. The induced time-
harmonic potential 𝑢𝑡,𝜔(r) = V𝑡,𝜔(r)𝑒𝑖𝜃𝑡,𝜔(r) satisfies the
following elliptic partial differential equation [14]:

∇ ⋅ (𝛾𝑡,𝜔 (r) ∇𝑢𝑡,𝜔 (r)) = 0, for r ∈ Ω,

− 𝛾𝑡,𝜔∇𝑢𝑡,𝜔 ⋅ n = 𝑔, on 𝜕Ω,

(1)

where n is the outward unit normal vector on 𝜕Ω and 𝑔 is
the corresponding Neumann data on 𝜕Ω due to the injection
current.

Static imaging in EIT is difficult due to its fundamental
limitations in handling boundary geometry and uncertainty
in electrode position. Time-difference EIT (tdEIT) and
frequency-difference EIT (fdEIT) use time and frequency
difference data, respectively, so that the data subtraction can
effectively cancel out common errors related to boundary
geometry [14–18]. The difference imaging in EIT is based on
linear approximations of the following identities:

(i) time-difference EIT ∇ ⋅ ((𝜕/𝜕𝑡)𝛾𝑡,𝜔(r)∇𝑢𝑡,𝜔(r)) = −∇ ⋅

(𝛾𝑡,𝜔(r)∇(𝜕/𝜕𝑡)𝑢𝑡,𝜔(r)),
(ii) frequency-difference EIT∇⋅((𝜕/𝜕𝜔)𝛾𝑡,𝜔(r)∇𝑢𝑡,𝜔(r)) =

−∇ ⋅ (𝛾𝑡,𝜔(r)∇(𝜕/𝜕𝜔)𝑢𝑡,𝜔(r)).

Let the angular frequency 𝜔 be fixed. Let 𝑢
𝑗
𝑡,𝜔 denote the

time-harmonic potential due to 𝑗th injection current between
the adjacent pair of electrodes E𝑗 and E𝑗+1. The boundary
voltage betweenE𝑘 andE𝑘+1 due to the 𝑗th injection current
can be approximated as

𝑉𝑗,𝑘 (𝑡) ≈
𝐼

|E|
(∫

E
𝑘

𝑢
𝑗
𝑡,𝜔𝑑𝑆 − ∫

E
𝑘+1

𝑢
𝑗
𝑡,𝜔𝑑𝑆)

≈ ∫
Ω

𝛾𝑡,𝜔∇𝑢
𝑗
𝑡,𝜔 ⋅ ∇𝑢

𝑘
𝑡,𝜔𝑑r for 𝑗, 𝑘 = 1, . . . , 𝐸,

(2)

where |E| is the surface area of the electrode.The last identity
in (2) comes from (1) and divergence theorem. We collect 𝐸

2

number of boundary voltage data for a sequence of time 𝑡 =

𝑡1, 𝑡2, 𝑡3, . . .:

V (𝑡) := (𝑉1,1 (𝑡) , 𝑉1,2 (𝑡) , . . . , 𝑉1,𝐸(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

1st current

,

𝑉2,1 (𝑡) , . . . , 𝑉2,𝐸 (𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2nd current

, . . . , 𝑉𝐸,1 (𝑡) , . . . , 𝑉𝐸,𝐸 (𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐸th current

)

𝑇

,

(3)

where ()
𝑇 is the transpose. Here, any index number must be

understood as a modulus of 𝐸.
The time-difference data due to the time change of 𝛿𝛾 :=

𝛾𝑡
2
,𝜔 − 𝛾𝑡

1
,𝜔 has the following relation:

𝑉𝑗,𝑘 (𝑡2) − 𝑉𝑗,𝑘 (𝑡1) = − ∫
Ω

(𝛾𝑡
2
,𝜔 − 𝛾𝑡

1
,𝜔)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛿𝛾

∇𝑢
𝑗
𝑡
2
,𝜔 ⋅ ∇𝑢

𝑗
𝑡
1
,𝜔𝑑r.

(4)

The linearized method is based on the following rough
approximation:

𝛿V := 𝑉𝑗,𝑘 (𝑡2) − 𝑉𝑗,𝑘 (𝑡1) ≈ ∫
Ω

𝛿𝛾∇𝑢
𝑗
∗ ⋅ ∇𝑢

𝑘
∗𝑑r, (5)

where 𝑢
𝑗
∗ is the potential of (1) corresponding to a reference

conductivity 𝛾 = 𝛾∗.
Discretizing the domain of interest into pixels and assum-

ing that 𝛿𝛾 is constant on each pixel 𝑞𝑛, the time-difference
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EIT problem of (5) can be changed to solve the following
linear system:

S𝛿𝛾 = 𝛿V. (6)

The 𝑛th column of the sensitivity matrix S is

s𝑛 = (∫
𝑞
𝑛

∇𝑢
1
∗ ⋅ ∇𝑢

1
∗𝑑r, . . . , ∫

𝑞
𝑛

∇𝑢
𝑗
∗ ⋅ ∇𝑢

𝑘
∗𝑑r,

. . . , ∫
𝑞
𝑛

∇𝑢
𝐸
∗ ⋅ ∇𝑢

𝐸
∗𝑑r)
𝑇

.

(7)

Hence, the EIT problem is to find a best linear combination
of column vectors s1, . . . , s𝑁 which produces 𝛿V:

𝛿V ≈ 𝛿𝛾1s1 + ⋅ ⋅ ⋅ + 𝛿𝛾𝑁s𝑁. (8)

The column vector s𝑘 of S represents sensitivity of current-
voltage data at the fixed pixel 𝑝𝑘, whereas row vectors
of S represent sensitivity distribution for a fixed current-
voltage data. We refer to this approach (combined with a
regularization) to reconstruct images as the conventional
method throughout this paper.

2.2. Local-ROI ImagingMethod for EIT. The local-ROI imag-
ingmethod for EIT is to provide the image of the conductivity
change in a local region of interest (ROI) instead of the image
in the entire domainΩ. Let a domain𝐷 be the local region of
interest to be imaged. Imagine that the measured data 𝛿V in
(5) is divided into two parts

𝛿V = 𝛿V𝐷 + 𝛿VΩ\𝐷, (9)

where 𝛿V𝐷 is the voltage change in response to the con-
ductivity perturbation 𝛿𝛾 in the local ROI 𝐷 and 𝛿VΩ\𝐷 is
the voltage change in response to 𝛿𝛾 in Ω\𝐷. With proper
arrangement, we may assume that the first 𝑅 column vectors
of S are sensitivity vectors to pixels in ROI 𝐷 and the other
column vectors are sensitivity vectors to pixels inΩ\𝐷. Then
the sensitivity matrix S can be decomposed into

S = [S𝐷 O] + [O SΩ\𝐷] , (10)

whereO represents a proper size of zero matrix,

S𝐷 = [

[

| |

s1 ⋅ ⋅ ⋅ s𝑅
| |

]

]

, SΩ\𝐷 = [

[

| |

s𝑅+1 ⋅ ⋅ ⋅ s𝑁
| |

]

]

. (11)

If we could extract the data 𝛿V𝐷 by filtering out 𝛿VΩ\𝐷, the
global problem (6) can be changed into the local problem:

S𝐷𝛿𝛾𝐷 = 𝛿V𝐷, (12)

where 𝛿𝛾𝐷 = [𝛿𝛾1, 𝛿𝛾2, . . . , 𝛿𝛾𝑅]
𝑇. Figure 1(c) shows the

reconstructed image of 𝛿𝛾𝐷 using the localized linear sys-
tem (12) via numerical simulation. Comparing this local
image with the standard EIT image reconstruction shown
in Figure 1(b), it would be desirable to filter out 𝛿VΩ\𝐷 to
enhance image resolution.

For the local imaging in the ROI 𝐷, we aim to develop
a method of extracting V𝐷 from the full data V. In order to
eliminate the unrelated dataVΩ\𝐷 in the linear system (6), we
need to find an optimal matrix Φ such that

Φ = arg min
Φ

󵄩󵄩󵄩󵄩󵄩
Φ
𝑇
𝛿V − Φ

𝑇
𝛿V𝐷

󵄩󵄩󵄩󵄩󵄩
. (13)

Here, arg minΦ𝜂(Φ) gives a matrix Φ at which 𝜂(Φ) is
minimized. If Φ satisfies ‖Φ

𝑇
𝛿V − Φ

𝑇
𝛿V𝐷‖ ≈ 0, then it

eliminates the unrelated data VΩ\𝐷 and we get the localized
linear system corresponding to (12):

Φ
𝑇
S𝛿𝛾 ≈ Φ

𝑇
𝛿V𝐷 (since Φ

𝑇
𝛿V ≈ Φ

𝑇
𝛿V𝐷) . (14)

Note that the quantity 𝜆𝐷 := minΦ‖Φ
𝑇
𝛿V − Φ

𝑇
𝛿V𝐷‖

depends on the electrode configuration and mesh structure
that determines the structure of column vectors of S as
shown in Figure 2. The 𝜆𝐷 may not be small when the
sensitivity matrix S is highly ill-conditioned. If the column
vectors s1, . . . , s𝑅 are orthogonal to s𝑅+1, . . . , s𝑁, then 𝜆𝐷 = 0

by choosing Φ whose rows consist of the column vectors
s1, . . . , s𝑅. But, this is not possible with the standard EIT
electrode configuration. We try to find an optimal Φ which
minimizes 𝜆𝐷. Indeed, cross-correlation 𝜇(𝑗) of column
vector in S is big if s𝑗 is correlated with column vectors in
ROI; cross-correlation is defined by

𝜇 (𝑗) = avg
𝑝𝑖∈Ω\𝐷

󵄨󵄨󵄨󵄨󵄨
s𝑇𝑖 s𝑗

󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩s𝑖

󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
s𝑗

󵄩󵄩󵄩󵄩󵄩2

, for 𝑝𝑗 ∈ 𝐷. (15)

Figure 3 shows that cross-correlation values decrease by
placing internal electrode.

For finding proper Φ, we propose the following mini-
mization

𝜙𝑘 = arg min
𝜙

( ∑

𝑝
𝑗
∉𝐷

󵄨󵄨󵄨󵄨󵄨
s𝑗 ⋅ 𝜙

󵄨󵄨󵄨󵄨󵄨

2
+ 𝛼

󵄩󵄩󵄩󵄩𝜙 − s𝑘
󵄩󵄩󵄩󵄩

2

2
) , 𝑝𝑘 ∈ 𝐷,

(16)

where 𝛼 is a suitable parameter. We should note that each
𝜙𝑘 is designed to be close and to be parallel to s𝑘 while
orthogonal to s𝑗 for each 𝑝𝑗 ∉ 𝐷. The first term in (16),
∑𝑝
𝑗
∉𝐷 |s𝑗 ⋅ 𝜙|

2, is small when 𝜙 is orthogonal to {s𝑗}𝑝
𝑗
∉𝐷. The

second term in (16), ‖𝜙 − s𝑘‖
2
2, is small if𝜙 is parallel to s𝑘.We

define a matrix Φ whose columns are consisted of {𝜙𝑘}𝑝𝑘∈𝐷
:

Φ = (𝜙1, 𝜙2, . . . ,𝜙𝑅) , where
𝑅

⋃

𝑛=1

𝑝𝑛 = 𝐷. (17)

We multiply Φ
𝑇 to the linearized system (6):

Φ
𝑇
S𝛿𝛾 = Φ

𝑇
𝛿V. (18)

Now, we have the linear system (18) with the modified
sensitivity matrix Φ

𝑇S with the modified data Φ
𝑇
𝛿V. Here,

Φ
𝑇
𝛿V is regarded as a rough approximation of Φ

𝑇
𝛿V𝐷.
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Figure 1: Reconstructed images using 𝛿V and 𝛿V𝐷 via numerical simulations: (a) True image 𝛿𝛾, (b) reconstructed image using 𝛿V, and (c)
reconstructed image using 𝛿V𝐷.

Internal electrode

Region of interest

S𝛿𝛾 = 𝛿𝑽

=

𝑺j = j-th column of S

=
Ω𝑗
𝛁u1 · 𝛁u1 ∫∫

Ω𝑗
𝛁u1 · 𝛁u2 · · · ∫

Ω𝑗
𝛁u1 · 𝛁uE · · · ∫

Ω𝑗
𝛁up · 𝛁uq · · · ∫

Ω𝑗
𝛁uE · 𝛁uE]T

Ω

Ω

j

]

Figure 2: Column vectors of the sensitivity matrix are related with pixels in Ω.

3. Numerical Simulations

In order to analyse the boundary electrode position and
the benefit of using an internal electrode with the proposed
local-ROI imagingmethod, we prepared three different kinds
of electrode configuration and applied the conventional
and local-ROI imaging methods explained in the previous
sections. Figure 4 shows the cylindrical phantoms with three
different electrode configurations. Data obtained from all
three electrode configurations were processed by the conven-
tional TSVD reconstruction method. The local-ROI imaging

method uses an internal electrode so it was only applied to
data obtained with the two internal electrode configurations
(Figures 4(b) and 4(c), (Models 1 and 2)).We carry out a total
of five numerical simulations, the standardmethod onModel
0, 1, 2 and the local-ROI method on models 1, 2.

To compare sensitivity and robustness to noise in the sug-
gested five cases, we simulated an object of 2 S/m conductivity
with 0.1428 diameter at (0.8, 0) in theROI of 1 S/m saline tank.
The radius of the ROI is defined by 5/6 of distance between
internal electrode and closest boundary electrode. We used
two performance indexes to assess the improvement when
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Figure 3: The cross-correlation distribution on 𝐷: (a) 𝜇 with internal electrode and (b) 𝜇 without internal electrode.
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(a) Model 0

D
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(b) Model 1

D

Ω

ROI

Internal electrode

(c) Model 2

Figure 4: (a) Standard EIT phantom without using internal electrode, (b) equidistant surface electrodes with an internal electrode, and (c)
unequally spaced surface electrodes with denser spacing near by the ROI with an internal electrode.

using an internal electrode and the proposed linear system
(18). First, we computed the singular value threshold to
produce the same conductivity contrast of image as shown in
Figure 5(a). We repeatedly reconstruct images, updating the
singular value threshold, until the same conductivity contrast
is produced between the anomaly and background in the
reconstructed image. Then we compared the singular value
thresholds as a lower number of threshold is an indication of
better noise robustness. When we used an internal electrode,
the truncated singular value threshold was lower than that
without using the internal electrode. Also, the performance
of local-ROI imagingmethodwas improvedwhen it was used
with unequally spaced surface electrodes with denser spacing
near by the ROI. Second, we are concerned about the effect
of high contrast anomalies outside the ROI. To investigate
this, we examined the sensitivity values of S and Φ

𝑇S for
each simulation case. The normalized sensitivity values of S
and Φ

𝑇S from within the ROI and out of ROI are shown
separately in Figure 5(b). There was an improved relative
sensitivity to the ROI region with the proposedmethodΦ

𝑇S.
To show sensitivity values, we calculated the ratio of the

matrix norm ‖Ain‖/‖A‖ and ‖Aout‖/‖A‖ for inside ROI and
outside ROI respectively, where

A ∈ {S of Model 0, 1, 2 , Φ
𝑇S of Model 1, 2},

Ain is a submatrix of A corresponding to ROI,

Aout is a submatrix of A corresponding

to outside ROI,

‖A‖ := sup‖x‖=1‖Ax‖.

Note that a matrix norm ‖A‖ shows how much A deforms x.
So, ‖Ain‖/‖A‖ and ‖Aout‖/‖A‖ show maximum influence of
submatrices Ain and Aout for multiplication of A.

In order to compare the performance of the imaging
methods in the reconstructed images, we placed multiple
objects which had the same conductivity of 0.029 S/m with
0.01 diameter at (0.02, 0.015), (0.02, −0.015), (0.05, −0.015),
and (0.05, −0.015) within the ROI of the 0.0418 S/m saline
tank as shown in Figure 6(a).The conventional reconstructed
image without an internal electrode was produced by the
TSVD algorithm in Model 0 with diagonal current injection
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Figure 5: Comparison of the conventional and local-ROI imaging method by (a) singular values required to the same conductivity contrast
in images and (b) ratio of norms for elements associated within the ROI and outside the ROI for each case.

(a) (b) (c) (d)

Figure 6: Reconstruction results using simulation data. (a) Simulation configuration for imaging test, (b) conventional TSVD reconstructed
image using diagonal injection, (c) TSVD reconstructed image using (6) with an internal electrode, and (d) TSVD reconstructed image using
local-ROI imaging method (12) with an internal electrode.

(Figure 6(b)). For comparison of the imaging methods using
an internal electrode, we positioned an internal electrode at
(0.035, 0) in Model 2. Figures 6(b) and 6(c) show images
using the conventional TSVD reconstruction algorithm and
the local-ROI imaging method. The proposed method with
an internal electrode has better sensitivity and detectability
in the ROI.

4. Experimental Results

To evaluate the performance of the imaging methods in a
physical model, we prepared a cylindrical saline tankwith the
same geometry, ROI, and electrode positions as Figures 4(a)
and 4(c) since the denser clustering of boundary electrodes
near the ROI (Figure 4(c)) produced better results than
the conventional equally spaced electrodes (Figure 4(b)) in
the simulation study. The diameter and height of saline
tank were 14 cm and 6 cm, respectively. The boundary and
internal electrodes were located 3 cm from the bottom in the
z direction. The x and y positions of the internal electrode

were (3.5, 0) cm relative to the origin (0, 0) at the center
of cylindrical tank. The diameter of internal electrode was
0.25 cm and it was covered with insulated rubber except for
the end piece of exposedmetal.The conductivity of salinewas
0.042 S/m. All data was measured by the KHU Mark2.5 EIT
system operated at 10 kHz [19].

We evaluated the imaging methods using two different
situations. First, we located a piece of radish inside of ROI
(case 0, 1, 2, 3 (5.6, 0)) and a piece of potato outside of
ROI (case 1 (−5.6, 0), case 2 (−3.5, −4), case 3 (0, −5.6))
to assess how the sensitivity of each method is influenced
by a high conductivity object in the surrounding area of
ROI. The diameter and height of both objects were the same
at 1.2 cm and 7 cm as shown in Figure 7. The conductivity
of radish (0.038 S/m at 10 kHz) was 9.5% lower than saline
and the potato (0.029 S/m at 10 kHz) was a higher contrast
than the radish with 31% lower conductivity than saline. All
data was obtained in the new configuration with an internal
electrode and unequal surface electrode spacing as Model 2
in Figure 4(c). All measured data was processed by the con-
ventional TSVD method and the local-ROI imaging method
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Figure 7: (a) Phantom experimental setup, (b) radish and potato position of case 1, (c) radish and potato position of case 2, and (d) radish
and potato position of case 3.
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Figure 8: Norm values of difference in experimental data caused by an anomaly outside the ROI in the three different positions given in
Figure 7.

for comparison.We present the norm values of the difference
of 𝛿V and Φ

𝑇
𝛿V compared to those values of reference case

0 because it is difficult to analyze images directly from the
artifacts due to the large anomaly outside the ROI. Here,
we processed reference value by conventional method in
case 0 which included only one anomaly (radish) in the
ROI. Figure 8(a) shows the effect of the high conductivity
contrasted object located outside of ROI. There is less effect
with the new local-ROI imaging method when the object
outside the ROI is in the opposite hemicircle to the ROI. As
the object approaches the ROI (case 1 to case 3) bothmethods
perform similarly.

Figure 8(b) shows the singular value threshold required
to produce the same conductivity contrast for each case.
The local-ROI imaging method had similar threshold values
for all cases with less than 1.73% variation. However the
conventional TSVD method showed larger singular values
and large dependence on the high contrast anomaly position.

Secondly, we evaluated the methods from the recon-
structed images in the same configuration as the numerical
simulation.We put four carrot objects with 0.04 S/m conduc-
tivity at 10 kHz in the 0.06 S/m saline tank. The position of
each object was (1.5, 2), (5.5, 2), (5.5, −2), and (1.5, −2) cm,
respectively. All objects had the same diameter of 2 cm.

We obtained an image in configuration Model 0 during
diagonal current injection and TSVD reconstruction. For
algorithm comparison, we measured data in Model 2 and
applied both methods separately. Figures 9(a)–9(c) show
the reconstructed images. The proposed local-ROI imaging
method with an internal electrode can distinguish inner
objects better than conventional methods.

5. Conclusions and Discussions

The new local-ROI imaging method has been shown to
improve the sensitivity in the ROI region and robustness to
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Figure 9: Reconstruction results using experimental data. (a) Experiment configuration for imaging test, (b) conventional TSVD
reconstructed image using diagonal injection, (c) TSVDreconstructed image using (6)with an internal electrode, and (d)TSVDreconstructed
image using local-ROI imaging method (12) with an internal electrode.

noise by comparison of sensitivity matrix values. It provided
the approximated linear system with optimized sensitivity
matrix to emphasize the detection in ROI. The ROI region
is close to an internal electrode and surface electrodes were
unequally spaced being more dense close to the ROI. The
new method and setup is also less affected by the high
conductivity contrasted object outside of ROI. These objects
are mimicking a large vessel and several regions of hepatic
and metastatic cancers treated by RFA, other gastric organs,
or the lungs in cardiac monitoring.

Some performance indexes proposed in this paper
described that the sensitivity and detectability were obviously
improved in simulation and experiment results. However,
the reconstructed images did not show improvements as
dramatic as we initially expected. One of the major reasons
was the ill-posedness of imaging problem.Whenwe designed
the optimal Φ

𝑇 matrix that satisfied condition (16), it could
not eliminate the effect of unrelated data VΩ\𝐷 completely.
Also, the quality of the experimental reconstructed imagewas
highly dependent on the position of an internal electrode and
boundary electrodes because we placed the electrodes with
denser spacing near by the ROI. Encouragingly with the pilot
results of the local-ROI imaging method using an internal
electrode, it shows the feasibility and suggests a new approach
to improve the resolution of internal local region.

An additional improvement which was introduced in this
paper was the nonequidistant spacing of electrodes, with the
electrodes more densely spaced near the ROI in Model 2
(Figure 4(c)).This showed improved results in simulation and
so was used in the experimental setup; however, this may be
more sensitive to electrode positions, the location of the ROI,
or noise. Interestingly in Figure 5(a) we found that this setup
of non-equidistant electrodes (Model 2) showed less sensitiv-
ity with the conventional EIT method. This may reflect the
preference for symmetry with EIT performed in a circular
object.The single ROIwe investigatedwas off centre and once
we use our local-ROI focusing algorithm there is an improve-
ment found in the non-equidistant electrode setup (model 2).

The application of EIT toRF ablationmonitoring has high
potential; however, we need to study more how to separate
the conductivity variations which arise simultaneously from
temperature changes and tissue property changes. While the
temperature coefficient of conductivity in electrolytes of 2%
per degree is well known for electrolytes, tissues also exhibit

a conductivity dependence on temperature-induced fluid
volume shifts which is of the same order of magnitude [20].

Lower frequency measurements could be used to dis-
criminate ablated and nonablated tumor and normal tissues.
Liver tumour tissue has a higher conductivity than normal
liver tissue over 10Hz to 1MHz shown by four terminal
impedance measurements in excised tissue. Following an
ablation, both tissue types showed significantly increased
conductivity over the same frequency range indicating that
electrical impedance may be used to differentiate tumor
tissue diagnostically, for ablation planning and postablation
assessment [10].

The suggested method may be applied in 3D domain
without any additional changes to the algorithm. Here we
used a 2D domain analysis because applying the suggested
method requires a lot of computations on the column vectors
of sensitivity matrix corresponding to pixels in ROI [21].
We need to optimize the local-ROI imaging algorithm by
focusing on the ROI and investigate ways to increase the
coverage area withoutmoving the electrode position.Wemay
combine the frequency-difference EIT [22, 23] with the local-
ROI imaging method to apply frequency-difference data.
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