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Abstract

Background and Aims: Morphological changes during human and mouse esophageal development have been well
characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This
study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus. By using
microarray analysis this study also aims to determine how the Nrf2/Keap1 pathway regulates the morphogenesis of the
esophageal epithelium.

Methods: Gene expression microarrays were used to survey gene expression in the esophagus at three critical phases:
specification, metaplasia and maturation. The esophagi were isolated from wild-type, Nrf22/2, Keap12/2, or Nrf22/2Keap12/

2 embryos or young adult mice. Array data were statistically analyzed for differentially expressed genes and pathways.
Histochemical and immunohistochemical staining were used to verify potential involvement of the Wnt pathway, Pparb/d
and the PI3K/Akt pathway in the development of esophageal epithelium.

Results: Dynamic gene expression patterns accompanied the morphological changes of the developing esophagus at
critical phases. Particularly, the Nrf2/Keap1 pathway had a baseline activity in the metaplasia phase and was further
activated in the maturation phase. The Wnt pathway was active early and became inactive later in the metaplasia phase. In
addition, Keap12/2 mice showed increased expression of Nrf2 downstream targets and genes involved in keratinization.
Microarray and immunostaining data also suggested that esophageal hyperkeratosis in the Keap12/2 mice was due to
activation of Pparb/d and the PI3K/Akt pathway.

Conclusions: Morphological changes of the esophageal epithelium are associated with dynamic changes in gene
expression. Nrf2/Keap1 pathway activity is required for maturation of mouse esophageal epithelium.
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Introduction

Morphological changes in developing human organs require

coordinated activation of gene transcription and signaling

pathways [1]. The epithelial cells lining the human esophagus

transform from simple columnar into ciliated epithelium at an

early phase. The ciliated epithelium is then gradually replaced by a

squamous epithelium until a non-keratinized stratified squamous

epithelium. Morphological changes during human esophageal

development have been well-characterized for several decades

[2,3]. However, the molecular mechanisms underlying these

morphological changes remain largely unknown.

Studies using mouse genetic models provided initial insights into

the roles of transcription factors and signaling pathways for the

morphogenesis of the esophagus [4,5]. The esophagus is specified

from the foregut tube at embryonic day E9.5 in mice, and at four

weeks in humans. In mouse embryo, the esophagus is completely

separated from the trachea at E11.5. Mutation of genes encoding

transcription factors (e.g., Sox2 and Ttf1) and signaling molecules

(e.g., Noggin, Shh) disrupts the separation process, leading to the

formation of esophageal atresia [6]. From E11.5 to E15.5 the

esophageal epithelium is transformed from a simple columnar

epithelium to a multiple-layered epithelium. Towards the end of

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e36504



this phase the epithelium starts to lose columnar cell differentiation

markers and express squamous cell markers. From E15.5 to birth,

columnar features are almost lost and the epithelium is further

stratified. From postnatal day 7 (P7) onwards, the top layer of the

stratified squamous epithelium starts the enucleating process and

forms a keratin layer which is not present in the human esophagus

[5,7,8,9].

According to these morphological changes, the development of

the esophagus can be divided into three phases: specification phase

(E9.5–11.5), metaplasia phase (E11.5-P7), and maturation phase

(P7-adult). Our previous studies showed that Bmp signaling plays a

two-stage role in the developing esophagus [4]. During the early

metaplasia phase (E11.5–15.5), the Bmp pathway is inhibited by

Noggin to allow stratification to occur. Subsequently, the Bmp

pathway must be activated to promote squamous differentiation of

the top layers of the stratified epithelium [4]. Interestingly, other

signaling pathways including Wnt pathway and Shh pathway are

active in the separating esophagus at the early specification phase

(reviewed by Morrisey and Hogan [10]). Nevertheless, it is

unknown whether these signaling molecules assume a dynamic

change of expression pattern similar to Bmps.

In our previous study on human Barrett’s esophagus, a

metaplastic condition in which the stratified squamous epithelium

of the lower esophagus is replaced by intestinalized columnar

epithelium, we found that several transcription factors such as Nrf2

(nuclear factor erythroid derived 2 like 2, or Nfe2l2) and small Maf

proteins (MafF, MafG) were enriched in the normal human

esophagus as compared with Barrett’s esophagus [11]. As a major

cellular defense pathway, the Nrf2/Keap1 (kelch-like ECH-

associated protein 1) pathway is known to regulate expression of

enzymes involved in detoxification and anti-oxidative stress

response [12]. Nrf2 forms heterodimers with small Maf proteins

and binds to the antioxidant-responsive elements of target genes

when cells are exposed to oxidative stress or xenobiotics. Keap1

regulates the function of Nrf2 by retaining Nrf2 in the cytoplasm

under normal physiological conditions, and by allowing nuclear

translocation of Nrf2 under stress conditions. Certain Keap1

mutants have a dominant-negative effect on wild-type Keap1

[13]. In addition to its function in stress response, the Nrf2/Keap1

pathway is known to participate in wound healing, inflammation

resolution, apoptosis, and keratinocyte differentiation [14].

Nrf22/2 mice developed normally. Keap12/2 mice died within

three weeks after birth, probably due to malnutrition as a result of

hyperkeratosis in the esophagus and forestomach. In the

esophageal epithelium, Keap12/2 mice expressed higher levels of

Krt1, Krt6 and Lor and lower levels of Krt13 and Inv than the wild-

type mice. These phenotypes were due to superactivation of Nrf2

with the help of small Maf proteins because both Nrf22/2Keap12/

2 and MafF:MafG:Keap12/2 rescued the Keap12/2 phenotype

[15,16]. These studies clearly indicate that the Nrf2/Keap1

pathway plays a critical role in the development of esophageal

epithelium.

In this study, we examined gene expression in the esophagi of

wild-type and mutant mice (Nrf22/2, Keap12/2 and Nrf22/

2Keap12/2) using gene microarrays. Our goal was to survey gene

expression during the development of mouse esophageal epithe-

lium, and to better understand the role of the Nrf2/Keap1

pathway in the process.

Materials and Methods

Animals
Wild-type C57BL/6J mice were purchased from the Jackson

Laboratory (Bar Harbor, ME). Nrf22/2 and Keap1+/2 mice on

C57BL background were obtained from the Experimental Animal

Division, RIKEN Biosource Center (Tsukuba, Japan) [15]. BAT-

GAL and TOP-GAL mouse lines were purchased from the

Jackson Laboratory, and they were maintained on C57BL/6 and

CD1 background, respectively [17,18].

These mice were bred in-house to generate embryos and

offspring with proper genotypes. Mice were PCR-genotyped

according to protocols provided by the original developers.

Esophagi of E11.5, E15.5, P0, P7, and adult (8 weeks old) mice

were dissected and snap-frozen for future extraction of total RNA.

Part of each esophagus was fixed in 10% buffered formalin or

frozen for future use in histology. Three esophageal samples from

each group at each time point were harvested. The following tissue

samples were harvested for gene expression profiling: (1) wild-type

esophagi at E11.5, E15.5, P0, P7; (2) wild-type, Nrf22/2, Keap12/2

and Nrf22/2Keap12/2 esophagi at P7; (3) wild-type and Nrf22/2

adult esophageal epithelium (see Figure 1A for the sampling

scheme). All animal experiments were approved by the Institu-

tional Animal Care and Use Committees (IACUC) at the

University of Rochester and North Carolina Central University

(protocol number XC-12-03-2008).

RNA isolation and quality check
Total RNA was extracted from individual mouse esophagi

(E11.5, E15.5, P0, P7 and adult) with an RNeasy Fibrous Tissue

Mini Kit (Qiagen; Valencia, CA). These RNA samples were

checked for their quality using gel electrophoresis, and their

concentrations were measured using spectrophotometry. Their

quality (RIN.7) was further checked with Bioanalyzer (Agilent

Technologies; Santa Clara, CA) at the Genomics Core Facility,

Lineberger Comprehensive Cancer Center, University of North

Carolina at Chapel Hill.

Microarray data collection, data pre-processing and
probe annotation

Microarray experiments were performed at the Genomics Core

Facility with Agilent two-channel mouse 4644k microarrays. Red

channel (Cy5) was used for esophageal samples, and green channel

(Cy3) for mouse universal reference RNA (provided by the

Genomics Core Facility). Hybridization was performed according

to the standard protocol of ‘‘Two-Color Microarray-Based Gene

Expression Analysis’’ for Agilent Gene Expression Oligo micro-

arrays Version 5.0.1. Briefly, a 26 target mix was generated

containing 125 ng cyanine 3- labeled cRNA, 125 ng cyanine 5-

labeled cRNA, appropriate amounts of labeled synthetic target,

and 25 ml of Agilent’s 106 control solution in a final volume of

125 ml. The sample was then fragmented by the addition of 5 ml

256 fragmentation buffer followed by incubation at 60uC for

30 minutes. Samples were moved to ice, and fragmentation was

stopped by addition of 125 ml of Agilent’s 26 in situ hybridization

buffer. Microarrays were hybridized in Agilent Microarray

Hybridization Chambers for 17 hours at 60uC with mixing on

an Agilent Rotator in a Robbin’s Scientific Hybridization Oven.

After hybridization, the arrays were scanned by an Axon GenePix

4000B scanner (Axon Instruments; Foster City, CA). The images

were analyzed using Gene Pix Pro 5.0 software (Axon Instru-

ments). Gene expression values were quantified by log base 2 ratio

of red channel intensity (mean) and green channel intensity

(mean), followed by Lowess normalization to remove the intensity-

dependent dye bias. The raw data was submitted to NCBI’s GEO

database (Series GSE34278).

Data pre-processing was carried out via the UNC Microarray

Database for quality filtering and data normalization. UNC

Microarray Database (https://genome.unc.edu/) provides the

Nrf2 in Mouse Esophageal Development
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service for microarray data storage, retrieval, analysis, and

visualization to registered UNC-Chapel Hill researchers and their

collaborators. Agilent array data was extracted on the probe level.

For probes spotted multiple times, the mean expression value was

computed and retained. All probe sequences were BLAT against

the NCBI database [19] and were annotated with Entrez ID.

When multiple probes were targeted on the same gene (with the

same Entrez ID), these data were collapsed onto the Entrez ID,

and mean values were computed as the gene expression value.

Obtaining differentially expressed gene (DEG) and
multivariate analyses

Pre-processed data were used to construct a series of data matrix

files for further analysis. For a given data matrix, the rows were

excluded if more than 40% of missing values were observed. The

rest of missing data was imputed with a K-nearest neighbor (k = 9)

approach. DEGs were obtained from two-class and multi-class

statistical modeling using SAM (R package samr v.1.25) [20].

DEGs were obtained based on the corrected p-value#0.05. When

SAM was performed with Excel, DEGs were generated with the

median number of false positives less than 1. To perform

hierarchical clustering analysis [1,21,22], a data matrix with

DEGs only was extracted, row median-centered and column-

standardized. Clustering analysis was also performed with R

(2.10.0). A separate principal component analysis (PCA) was

further performed on each DEG dataset using the R bio3d

package. PCA plots on the first three components were reported,

and a scree plot was reported showing the accumulated variability

explained by the first three principal components.

Extraction of gene expression patterns
In order to show overall trends of the gene expression profile

across the metaplasia phase, a pattern extraction method, the

EPIG process, was applied [23]. Preprocessed and normalized

data matrix and experimental design files were loaded into ExP

software [24], the expression profile of each gene was compared

exhaustively against all other genes, and statistically significant

‘‘profile patterns’’ were self-extracted and stored. Then the genes

whose expression profiles supported the ‘‘profile patterns’’ were

retained in their corresponding profile pattern gene lists and

reported. Expression data matrices of the significant gene

expression patterns obtained from EPIG were loaded into

GeneSpring (Agilent Technologies) for pattern visualization.

Gene set analysis (GSA)
GSA was carried out using R (GSA package). Curated gene sets

in three major categories - canonical pathway (CP; 880 gene sets),

transcription factor targets (TF; 615 gene sets), and Gene

Ontology (GO; C5, 1,454 gene sets) - were downloaded from

the GSEA web portal and used in this study (http://www.

broadinstitute.org/gsea/index.jsp). Both two-class unpaired and

multi-class comparisons were implemented based on the experi-

mental design. 100 permutations were applied to generate a null

distribution for statistical testing, and significantly enriched gene

sets were obtained at a false discovery rate cutoff of 0.05–0.5. To

ensure the validity of the analysis, in addition to the recommended

GSA analysis, each analysis was repeated 100 times and the gene

sets that showed in ,10% of the repetitive studies were excluded

from the final report. When GSA was performed in Excel,

Figure 1. Changes in histology during mouse esophageal development and sampling scheme in this study. (A) Three esophageal
samples in each group at each time point were used for analysis. (B–I) H&E staining of paraffin sections of mouse esophagus showed histological
changes of esophageal epithelium and mesenchyme in metaplasia phase (E11.5, E15.5, P0 and P7). Panel F, G, H and I (size bar = 20 mm) are
magnifications of Panel B, C, D and E (size bar = 100 mm), respectively. Es, esophagus; Tr, trachea; Ep, epithelium; Me, mesenchyme.
doi:10.1371/journal.pone.0036504.g001
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significantly enriched gene sets were obtained with a false

discovery rate #0.5.

In addition, Fisher’s exact test was performed against ten

knowledge-based gene sets. These knowledge-based gene sets were

manually collected from the literature. These genes are related to

the structure of keratinized stratified squamous epithelium (i.e.,

basal lamina, basal layer, granular layer, spinous layer and

keratinized layer), the epidermal differentiation complex (EDC),

P63 target genes, Sox2 target genes, Pax9 target genes, and Nrf2/

Keap1 target genes (Excel S1). P-values were reported based on

the hypergeometric distribution, and gene sets with p-value#0.05

were reported as significantly enriched gene sets within the DEG

list.

Analysis of archival data from the public database
Differential gene expression between E8.25 definitive endoderm

and E11.5 esophagus has been studied previously using an

Illumina Ambion microarray [8]. Raw microarray data of this

study were downloaded from the Gene Expression Omnibus

(GSE13040) under the accession numbers GSM326633–35

(E8.25) and GSM326642–44 (E11.5). Only probes which were

significantly different from the background were used (p-

value,0.05). To generate ratio data, the intensity of each probe

on a single array was divided by the average intensity of the same

probe on the rest of the arrays. Entrez ID was also used in Illumina

Ambion microarray data. For probes without Entrez ID, GenBank

accession numbers were used and then converted to Entrez ID.

Real-time PCR
cDNA was prepared from DNase-treated total RNA using the

Advantage RT-for-PCR Kit (Clontech; Mountain View, CA).

TaqManH Gene Expression Assays (FAMTM dye-labeled) with

pre-designed primers for each target gene were obtained from

Applied Biosystems (Foster City, CA). The six target genes were:

Pax9 (paired box gene 9, Assay ID: Mm00440629_m1); Calm4

(calmodulin 4, Assay ID: Mm00490975_s1); Sbsn (suprabasin;

Assay ID: Mm00552057_m1); Ppard (peroxisome proliferator

activator receptor delta, Assay ID: Mm00803184_m1); Pten

(phosphatase and tensin homolog, Assay ID: Mm00477208_m1);

Akt2 (thymoma viral proto-oncogene 2: Mm02026778_g1). 18S

(18S ribosomal RNA;hypothetical LOC790964, Assay ID:

Mm03928990_g1) was used as the endogenous control. Relative

quantitative real-time PCR was performed using an ABI 7900HT

Fast Real-Time PCR System (Applied Biosystems) with SDS v2.3

software. The real-time data exported from RQ Manager 1.2 were

further analyzed by DataAssist 3.0 (Applied Biosystems) to

generate the RQ Plot.

Histochemical and immunohistochemical staining
Tissues were routinely processed for paraffin sectioning (5 mm).

H&E staining was carried out using a standard protocol. For X-

Gal staining, mouse esophagi were isolated and fixed in 4%

paraformaldehyde at 4uC for 20 min on ice. Staining and

subsequent sample processing were performed as previously

described [4,6].

For immunohistochemical staining, the deparaffinized sections

were submerged in methanol containing 0.3% hydrogen peroxide

for 15 min at RT to inhibit endogenous peroxidase activity.

Antigen retrieval was done prior to incubation with rabbit

polyclonal anti-Nrf2 (#PA1-38312, 1:40; Thermo Scientific,

Waltham, MA), or rabbit polyclonal anti-Pparb/d (#LS-B45,

1:1,000; LifeSpan Biosciences, Seattle, WA), or rabbit polyclonal

anti-pAkt(Ser473) (#3787, 1:25; Cell Signaling Technology,

Danvers, MA), overnight at 4uC. Tissue sections were then

washed again in PBS and incubated with peroxidase-conjugated

secondary antibodies for 30 minutes at 37uC. Detection of the

antibody complex was done using the streptavidin-peroxidase

reaction kit with DAB as a chromogen (ABC kit; Vector Labs,

Burlingame, CA). To ensure the specificity of the primary

antibody, control tissue sections were incubated in the absence

of primary antibodies.

Results

In this study, we divided the developmental process of mouse

esophageal epithelium into three phases based on morphological

changes (Figure 1A): (a) The specification phase is defined as the

phase during which the definitive endoderm differentiates into the

esophagus. Two time points, E8.25 and E11.5, were chosen to

represent this phase. (b) The metaplasia phase is defined as the

phase during which the simple columnar epithelium in the

esophagus undergoes metaplastic changes (stratification, squama-

tion and keratinization) into a keratinized stratified squamous

epithelium. Four time points, E11.5, E15.5, P0 and P7, were

selected to represent this phase. (c) The maturation phase is

defined as the phase during which the keratinized stratified

squamous epithelium continues to thicken and finally forms the

esophageal epithelium in adults. Two time points, P7 and adult,

were selected to represent this phase. In the metaplasia phase, the

esophagus is covered by a simple columnar epithelium surrounded

by a well-defined but undifferentiated mesenchyme at E11.5

(Figure 1B, F). At E15.5, it becomes stratified, consisting of ,3 cell

layers, with well-defined submucosa and muscle (Figure 1C, G). At

P0, epithelial cells lose columnar features and appear squamous.

The esophagus is covered by a stratified squamous epithelium with

3–5 cell layers surrounded by a mesenchyme consisting of thicker

muscle (Figure 1D, H). At P7, a keratinized layer has clearly

formed at the surface of the epithelium, and the base membrane

and submucosal papillae are well-formed (Figure 1E, I).

1. Gene expression profiles during the development of
wild-type mouse esophagus

a. Specification phase. Two-class SAM analysis identified

1,612 genes up-regulated and 1,303 genes down-regulated in

E11.5 esophagi as compared with E8.25 definitive endoderm

(Excel S2). Hierarchical clustering analysis and PCA analysis

showed that E8.25 definitive endoderm and E11.5 esophagus were

clustered separately (Figure S1). Among the up-regulated genes,

Irf6, Sox21, Nfib, Upk2, Hoxa5, Sox2, P63, Foxq1, Hoxa2, Hoxa4,

Ovol2, Emp1, Lhfp, Kremen2, Twist1, Rarb, Hoxb4, Nfe2l3, Erf and

Hoxc6 were reported exclusively or highly expressed in E11.5

esophagus as compared to other definitive endoderm-derived

organs [8]. Furthermore, several signaling pathway-related genes,

such as Klf5 (TGFb signaling), Shh and FoxA2 (Hedgehog

signaling), and b-catenin (Wnt signaling), were up-regulated in

E11.5 esophagus as compared with E8.25 definitive endoderm,

suggesting these pathways were likely involved in esophageal

specification.

GSA analysis identified multiple enriched gene sets in the

categories of canonical pathway, gene ontology and transcription

factor (Excel S2). For example, GO_629 (morphogenesis of an

epithelium), GO_727 (epidermis development), and GO_1049

(ectoderm development) were enriched in E11.5 esophagus.

However, using Fisher’s exact test, only P63 target genes were

significantly different between E8.25 definitive endoderm and

E11.5 esophagus (Excel S2).

b. Metaplasia phase. Multi-class SAM analysis identified

2,076 DEGs at this phase (Excel S3). Hierarchical clustering and

Nrf2 in Mouse Esophageal Development
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PCA analysis clearly showed that three samples at each time point

were clustered together (Figure S2). As expected, E11.5 and E15.5

were separated from P0 and P7. Among the 2,076 DEGs, many

genes are known to be involved in differentiation and function of

keratinocytes; these processes include keratinization (Cnfn, Ctnnd,

Evpl, Fgf10, Krt10, Krt17, Krt36, Krt79, Krt80, Krt84, Ppl, Ptch1,

Tgfb2), gap junction (Csda, Gjb2, Gjb3, Gjb4 Gjb6, Gjd4), muscle

development (Mybpc2, Mybph, Myh1, Myh10, Myh2, Myl1, Myl3,

Myo18b, Myo5b, Myo6, Myom1, Bmp4), blood vessel development

(Tgfbr3, Tgm2, Fgf10, Col3a1, Edn1, Edn2, Epas1, Agt), and neuron

development (Bdnf, Cacng4, Dlx2, Dmd, Epha7, Erbb3, Hoxb3, Nrtn).

Eighteen gene expression patterns were extracted from DEGs

(Excel S4). Pattern 1 showed 763 genes up-regulated from E11.5

to P0, and Pattern 2 showed 369 genes down-regulated from

E11.5 to P0. These genes were associated with metaplasia. Pattern

4 (188 genes), Pattern 11 (65 genes), Pattern 13 (33 genes), Pattern

15 (13 genes), and Pattern 16 (7 genes) were up-regulated from

E11.5 to E15.5 and stayed at the same level or were down-

regulated after E15.5. Genes in Pattern 7 (5 genes), Pattern 12 (18

genes), and Pattern 17 (5 genes) were down-regulated from E11.5

to E15.5 and stayed at the same level afterwards. These genes were

probably involved in stratification of columnar epithelial cells.

From E15.5 to P0, Pattern 3 (180 genes), Pattern 8 (40 genes),

Pattern 10 (37 genes) and Pattern 15 were up-regulated, and

Pattern 5 (79 genes), Pattern 11, Pattern 13 and Pattern 16 (7

genes) were down-regulated. These genes were probably involved

in squamation. From P0 to P7, Pattern 6 (51 genes), Pattern 12 (18

genes), Pattern 14 (16 genes), and Pattern 18 (5 genes) were up-

regulated, and Pattern 9 (18 genes), Pattern 10, Pattern 11, and

Pattern 15 were down-regulated. These genes were probably

involved in keratinization, as supported by the fact that genes in

Pattern 1, Pattern 3, Pattern 4, Pattern 6 were generally up-

regulated from E11.5 to P7. As expected, these genes (Muc4, Ppl,

Arg1, Ocln, Bmp6, Tchh, Trp73, Lces, Krts, Sprrs) were known to be

associated with keratinized stratified squamous epithelium.

We collated ten knowledge-based gene sets from the literature

(Excel S1). These gene sets are associated with differentiation of

the skin, the esophagus and the tongue, all of which are covered by

keratinized stratified squamous epithelia. Fisher’s exact test of our

data showed that nine gene sets were significantly associated with

esophageal development in the metaplasia phase: basal lamina

genes, basal layer genes, granular layer genes, keratinized layer

genes, EDC genes, P63 target genes, Pax9 target genes, Sox2 target

genes and Nrf2/Keap1 pathway genes (Table 1). The expression

patterns of these gene sets throughout the metaplasia phase were

generated by GeneSpring to demonstrate dynamic changes (Excel

S4). It is clear that genes of EDC and epithelial layers were

generally up-regulated throughout this phase. This is consistent

with the morphological change of esophageal epithelium: the

transition from simple columnar epithelium to keratinized

stratified squamous epithelium. Pax9 target genes were also

generally up-regulated during the metaplasia phase, suggesting a

critical role of Pax9 in esophageal epithelial differentiation. Real-

time PCR confirmed increasing expression of Pax9 and its

downstream keratinization-associated genes (Calm4 and Sbsn) from

E15.5 to P7 (Figure S3).

In order to explore potential involvement of biochemical

pathways, signaling pathways and transcription factors, multi-class

and two-class GSA analyses were performed (Excel S3). It is clear

that from E11.5 to E15.5, the epithelial structure gene sets

(GO_55, GO_60, GO_66, GO_727), glutathione transfer gene set

(Nrf2-relevant, GO_1418), and Ppar signaling pathway (CP_80)

were up-regulated, while TGFb signaling pathways (CP_110,

CP_381, CP_699) were down-regulated. From E15.5 to P0, a

keratinocyte gene set (CP_295) was up-regulated. The TLR and

NFkB pathways (CP_122, CP_312, CP_392, CP_727, CP_728,

CP_730, CP_838) were up-regulated from E15.5 to P0, and

several of these were down-regulated from P0 to P7. The Wnt

pathway (CP_851) and Hedgehog pathway (CP_170, CP_109)

were down-regulated in P7 as compared with E11.5. These data

suggest that Wnt, NFkB, TGFb, Hedgehog and Nrf2/Keap1

pathways are very likely involved in the metaplasia phase during

the development of esophageal epithelium.

Using the Wnt pathway as an example, we examined its

potential involvement in esophageal epithelial development using

two mouse lines (BAT-lacZ and TOPGAL) that have been

routinely used to report Wnt signaling [17,18]. Consistent with the

microarray data, both mouse lines indicated that Wnt signaling

was active in the developing esophagus between E11.5–E13.5.

Sections of X-gal stained sample showed that Wnt signaling was

limited to the epithelium at E11.5. At E13.5 minimal activity was

also noticed in the mesenchyme, whereas the epithelium remained

strongly positive for X-gal staining (Figure 2). After E13.5, Wnt

activity decreased in the epithelium, and activity disappeared at

E17.5.

c. Maturation phase. Comparing wild-type P7 with adult,

we found 1,248 genes up-regulated and 587 genes down-regulated

in adult esophageal epithelium. Among the up-regulated genes,

many were known Nrf2 target genes, such as Akr1b8, Aldhs, Mts,

Hmox1, Gsts, Abccs, Nqo1, Ltb4dh and Nrf2 itself. GSA analysis shows

that four Nrf2-relevant pathways (CP_29, CP_67, CP_68,

CP_530) were up-regulated in adult esophagi as compared to P7

esophagi. Ppar signaling pathways (CP_80, CP_101, CP_623)

were up-regulated, and Notch signaling (CP_108, CP_696) was

down-regulated (Excel S5). Fisher’s exact test showed that the

Nrf2/Keap1 pathway, basal lamina genes, basal layer genes,

granular layer genes, spinous layer genes and P63 target genes

were significantly enriched in the adult epithelium (Excel S5).

These data suggest that in the maturation phase the Nrf2/Keap1

pathway is further activated in mouse esophageal epithelium

above the baseline activity in the metaplasia phase. Consistent

with these data, we found overexpression of Nrf2 in adult esophagi

as compared to P7 esophagi (Figure 3E, G). Meanwhile, Pparb/d
and pAkt expression was correlated with Nrf2 expression

(Figure 3H, J; K, M). These data further supported the Pparb/d
and PI3K/Akt pathway as possible Nrf2 downstream effectors

promoting keratinization.

2. The role of Nrf2/Keap1 pathway during the
development of mouse esophagus

In specification phase, neither individual genes nor gene sets

associated with Nrf2/Keap1 pathway was selected by SAM or

GSA (Excel S2), suggesting that the Nrf2/Keap1 pathway was

unlikely involved in the specification phase during mouse

esophageal epithelial development.

a. Metaplasia phase. In the metaplasia phase, 37 Nrf2

target genes were selected as differentially expressed by multi-class

SAM (Excel S3). Fisher’s exact test with these genes showed that

the Nrf2/Keap1 pathway was significantly associated with

metaplasia phase (P = 0.019422) (Table 1).

In order to further examine the role of Nrf2/Keap1 pathway in

the metaplasia phase, we profiled gene expression in P7 esophagi

from wild-type, Nrf22/2, Keap12/2 and Nrf22/2Keap12/2 mice.

At this time point, both Nrf22/2 and Nrf22/2Keap12/2 esophagi

appeared normal, whereas Keap12/2 esophagus appeared hyper-

keratotic (Figure 3A–D). Multi-class SAM analysis identified 526

DEGs (Excel S6). Two-class SAM confirmed that the major

difference among these four groups was between the wild-type and

Nrf2 in Mouse Esophageal Development
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Keap12/2 esophagi (Excel S6). In agreement with these data,

hierarchical clustering analysis and PCA analysis clearly demon-

strated separation of the Keap12/2 esophagi from others (Figure

S4). Between wild-type and Nrf22/2 esophagi, only one gene

(Rbm45) was up-regulated, and three genes including Nrf2 were

down-regulated in Nrf22/2 esophagi. Between wild-type and

Nrf22/2Keap12/2esophagi, 19 genes were up-regulated and 10

genes including Nrf2, Upk3a and Krt17 were down-regulated in

Nrf22/2Keap12/2 esophagi. In constrast, 309 genes were up-

regulated and 346 genes down-regulated in Keap12/2 esophagi as

compared with wild-type esophagi. Among the up-regulated

genes, many classical Nrf2 target genes were enriched, such as

Nqo1, Gclm, Gclc, Gsts, Cat, Cyps, Mts, Mgsts, Aldhs, Cess and Abccs,

indicating Nrf2 superactivity. Keratinization-related genes such as

Sprr2h, Krt84, Ptgs2, Casp14 and Ppard were also up-regulated in

Keap12/2 esophagi. These data suggest that although the Nrf2/

Keap1 pathway was involved in the metaplasia phase as shown

above, Nrf22/2 did not have any significant impact on gene

expression in the esophagus. This observation may be explained

by compensation by other genes or a low baseline activity in this

phase. However, hyperactive Nrf2 due to Keap12/2 activated the

Nrf2/Keap1 pathway in the esophagus, and hence up-regulated

downstream target genes.

Among the 10 knowledge-based gene sets, Fisher’s exact test

identified six gene sets significantly different in Keap12/2 esophagi

as compared to wild-type esophagi: keratinized layer genes, EDC

genes, P63 target genes, Pax9 target genes, Sox2 target genes and

Nrf2/Keap1 pathway genes (Table 1). As expected, the Nrf2/

Keap1 pathway genes were highly significant (p = 1.8610214).

The keratinized layer genes, EDC genes and Pax9 target genes

were known to be associated with keratinization of stratified

squamous epithelium. These data were consistent with the

phenotype of esophageal hyperkeratosis in Keap12/2 mice.

An interesting question is why Keap12/2 mice developed

esophageal hyperkeratosis. Two-class GSA analysis was performed

to identify gene sets associated with the Keap12/2 esophagi as

compared with wild-type esophagi. Among the enriched gene sets

(Excel S6), the Nrf2/Keap1 transcription factors were significantly

up-regulated in Keap12/2 esophagi (Nfe2, Nrf2, Srebp1), as well as

Nrf2-relevant metabolism GO gene sets (GO_666, GO_1221,

GO_1333, GO_1374, GO_1408, GO_1418) and canonical

pathway gene sets (CP_29, CP_67, CP_68, CP_71, CP_429,

CP_530, CP_625, CP_626). In addition to these, Ppar pathway

(CP_80 and CP_101) and PI3K/Akt pathway (CP_629 and

Table 1. Differential expression of knowledge-based gene sets in the mouse esophagus in the metaplasia phase.

Samples Knowledge-based gene set
No. of genes in the
gene set

No. of genes in array
dataset No. of DEGs P value

Wild-type E11.5 vs E15.5 vs P0 vs P7 Basal lamina genes 40 29 2 0.222

Basal layer genes 14 10 1 0.267

Spinous layer genes 11 7 0 1.000

Granular layer genes 16 10 1 0.267

Keratinized layer genes 39 14 4 6.9E-4

EDC genes 58 21 3 0.029

Nrf2/Keap1 pathway genes 281 181 31 1.8E-14

P63 target genes 59 39 4 0.031

Pax9 target genes 23 13 3 0.007

Sox2 target genes 141 80 6 0.036

Wild-type vs Keap12/2 at P7 Basal lamina genes 40 29 16 3.0E-7

Basal layer genes 14 10 4 0.041

Granular layer genes 16 10 4 0.043

Spinous layer genes 11 7 1 0.661

Keratinized layer genes 39 14 9 2.6E-5

EDC genes 58 21 9 0.001

Nrf2/Keap1 pathway genes 281 181 37 0.019

P63 target genes 59 39 21 8.9E-9

Pax9 target genes 23 11 9 1.1E-6

Sox2 target genes 141 80 20 0.008

doi:10.1371/journal.pone.0036504.t001

Figure 2. Involvement of the Wnt pathway in the development
of mouse esophageal epithelium. (A) X-Gal staining of E11.5 and
E13.5 esophagi of BAT-GAL mice; (B) X-Gal staining of E13.5 esophagi of
TOP-GAL mice. Es, esophagus; Tr, trachea; Ep, epithelium; Me,
mesenchyme; Lu, lung.
doi:10.1371/journal.pone.0036504.g002
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CP_435) were also up-regulated in Keap12/2 esophagi, suggesting

potential roles of these pathways in superactive Nrf2-induced

esophageal hyperkeratosis in Keap12/2 mice. Real-time PCR

showed that Ppard was up-regulated and Pten down-regulated in

Keap12/2 esophagus, while keratinization-associated genes (Calm4

and Sbsn) were up-regulated (Figure S6).

Among three Ppar isoforms, Pparb/d activation is known to

cause terminal differentiation of keratinocytes [25], and Pparb/d
was up-regulated in Keap12/2 esophagi as compared with wild-

type esophagi (Excel S6). Keratinocyte-specific deficiency of Pten

caused Akt activation, and subsequently resulted in postnatal

death due to esophageal hyperkeratosis [26]. Here we examined

expression of Nrf2, Pparb/d and pAkt in the P7 esophageal

epithelium of wild-type and Keap12/2 mice. Consistent with the

expression pattern reported in the literature [27], Nrf2 was found

to translocate into the nuclei of esophageal epithelial cells in

Keap12/2 mice (Figure 3E, F). Corresponding to Nrf2 activation,

Pparb/d and pAkt were also overexpressed in the cytoplasm and

nuclei (Figure 3H, I; K, L). These data suggested that hyperactive

Nrf2 might promote esophageal hyperkeratosis in Keap12/2 mice

through activation of the Pparb/d and PI3K/Akt pathway.

b. Maturation phase. Further analysis of adult wild-type

and Nrf22/2 esophagi showed that 11 genes were up-regulated

and 25 down-regulated (including Nrf2 and its target genes), in

Nrf22/2 esophagi (Excel S7). Among these 25 genes, Akr1b8, Nqo1,

Gstm3, Nrf2, Gsta3, Gstm1 and Gclc are known as classical Nrf2

target genes. Hierarchical clustering and PCA analysis clustered

wild-type and Nrf22/2 esophagi separately (Figure S5). Based on

three lines of evidence, we concluded that Nrf2 was mainly

involved in maturation phase from P7 to adulthood: (1) there was

little difference in gene expression between wild-type and Nrf22/2

esophagus at P7; (2) Nrf2/Keap1 pathway genes were differen-

tially expressed between P7 and adult esophagus of wild-type mice;

(3) Nrf2/Keap1 pathway genes were differentially expressed

between adult wild-type and Nrf22/2 mice. These genes are

known to function in detoxification and anti-oxidative defense.

Discussion

This study clearly demonstrated a complex mechanism involv-

ing many genes and pathways at each phase during the

development of mouse esophageal epithelium. There was a

baseline activity of the Nrf2/Keap1 pathway in the metaplasia

phase, and a higher activity in the maturation phase. Hyperactive

Nrf2 in Keap12/2 mice resulted in esophageal hyperkeratosis,

probably through activation of the Pparb/d and PI3K/Akt

pathway.

Our data were consistent with previous studies on mouse

esophageal development. P63 and Sox2 were expressed in the

mouse esophagus prior to E11.5, suggesting their critical roles in

esophageal specification [6]. Pax9 was expressed in the mouse

esophagus at E13.5 [28] and was essential for expression of

Figure 3. Esophageal hyperkeratosis due to Nrf2 superactivation in Keap12/2 esophagus. P7 esophagi of a wild-type mouse (A), a Nrf22/2

mouse (B), a Keap12/2 mouse (C), and a Nrf22/2Keap12/2 mouse (D), were stained for H&E. Expression of Nrf2 (E–G), Pparc/d (H–J) and pAkt (K–L)
were shown in the esophagi of P7 wild-type mouse, P7 Keap12/2 mouse and adult wild-type mouse. Size bar = 50 mm.
doi:10.1371/journal.pone.0036504.g003
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multiple genes in the keratinized layer or EDC of mouse tongue

[29]. The Wnt pathway promoted respiratory progenitor identity

in the mouse foregut, and continuous activation of the Wnt

pathway resulted in the reprogramming of esophagus and stomach

to a lung endoderm progenitor fate [30,31]. This explains why the

Wnt pathway became inactive in the esophagus later in the

metaplasia phase (Figure 2). The NFkB pathway, especially IKKa,

played an important role in keratinocyte differentiation [32].

Hedgehog pathway participated in esophageal development by

signaling from the endoderm to the mesoderm [33,34]. Bmp

pathway was inhibited between E10.5 and E14.5 to allow

metaplasia to take place. After E14.5–E15.5, active Bmp signaling

is required for further differentiation of esophageal epithelium [4].

Our main goal in this study was to determine the role of the

Nrf2/Keap1 pathway in the development of esophageal epithe-

lium. Using gene microarray analysis with wild-type mouse

samples, we found that the Nrf2/Keap1 pathway was likely

uninvolved in the specification phase (Excel S2). Starting from the

metaplasia phase, there was a baseline activity of the Nrf2/Keap1

pathway. However, Nrf22/2 did not have a significant impact on

gene expression and morphology of esophageal epithelium at P7

(Excel S6). We believe that the Nrf2/Keap1 pathway is mainly

involved in the development of esophageal epithelium in the

maturation phase (Excel S5). As compared with wild-type adult

mice, Nrf22/2 reduced expression of multiple downstream genes

whose major functions are detoxification and anti-oxidative

defense (Excel S7).

It is unknown why hyperactive Nrf2 in Keap12/2 mice caused

hyperkeratosis of the esophageal epithelium at P7. Similar to the

esophagus, the skin was also hyperkeratic in Keap12/2 mice [15],

suggesting similar mechanisms of hyperkeratosis in the skin and

the esophagus. Mechanistically, Nrf2 is known to regulate Krt16/

Krt17 expression through MAP kinases [35]. In this study, GSA

analysis identified two potential candidate pathways responsible

for hyperkeratosis: Ppar signaling and PI3K/Akt pathway (Excel

S6). Although Pparc is a direct transcriptional target of Nrf2 [36],

Pparb/d is more likely to be the isoform involved among the three

Ppar isoforms because Pparb/d agonists were known to cause

terminal differentiation of keratinocytes in vitro [25,37] and dermal

hyperkeratosis in vivo [38]. While Pparb/d2/2 inhibited epidermal

keratinization, transgenic overexpression promoted epidermal

hyperkeratosis [39,40]. Several Nrf2 target genes (Aldh3a1, Gstm3,

Gsto1, Gsta1, Aldh9a1) were also known to be regulated by Pparb/d
[41]. In this study, we confirmed overexpression of Pparb/d in

Keap12/2 esophagus relative to wild-type esophagus at P7. Adult

esophagus also expressed a higher level of Pparb/d than P7

esophagus, which is less keratinized (Figure 3 H, I, J). These data

supported the hypothesis that Keap12/2 might produce esophageal

hyperkeratosis through activation of Pparb/d.

Other than Pparb/d, the PI3K/Akt pathway may also

contribute to hyperactive Nrf2-induced esophageal hyperkeratosis

(Figure 3 K, L, M). Keratinocyte-specific deficiency of Pten caused

Akt activation, and subsequently resulted in postnatal death due to

esophageal hyperkeratosis [26]. Notch pathway is the third

candidate. Recent studies demonstrated regulation of the Notch

pathway by Nrf2 [42] and participation of the Notch pathway in

terminal differentiation of esophageal epithelium [43]. Further

studies are warranted to identify downstream effectors that

contribute to esophageal hyperkeratosis.

Esophageal hyperkeratosis in humans may develop as a result of

vitamin A deficiency, vitamin E excess, HPV-induced papilloma-

tosis, Darier’s disease, tylosis or caustic injury [44]. It is also

commonly seen in rodent models of esophageal cancer or reflux

esophagitis. We suspect that the Nrf2/Keap1 pathway is involved

in some of these cases. For example, retinoic acid is known to

inhibit Nrf2 [45]. Vitamin A deficiency may cause Nrf2

hyperactivity and esophageal hyperkeratosis. In addition to a

mechanistic understanding of human esophageal disease, manip-

ulation of the Nrf2/Keap1 pathway may provide a novel way of

enhancing the protective barrier of the esophageal epithelium.

The keratinized layer is the major protective layer against physical

stress and chemical injuries [46]. Terminally differentiated

keratinocytes express proteins which can provide protection by

quenching reactive oxygen species [47]. In fact, sulforaphane, a

chemical activator of Nrf2, restores skin integrity in an epider-

molysis bullosa simplex model (created by Krt5 or Krt14 mutation)

by activating Krt17 expression [48]. Similarly, Pparb/d activation

can also enhance the epidermal permeability barrier [25,38].

This study has many potential implications for future studies.

Several developmental pathways involved in esophageal develop-

ment were found to be active at an early time point and then

became inactive later on (Table 2). However, these pathways are

known to be involved in esophageal diseases such as Barrett’s

esophagus and esophageal cancer, suggesting that tight spatiotem-

poral regulation of these pathways is critical for both development

and disease [49,50,51,52,53,54]. Further understanding of these

pathways during development will shed light on molecular

mechanisms of esophageal diseases.

Supporting Information

Figure S1 Hierarchical clustering analysis and PCA analysis of

gene expression array data of wild-type mouse definitive

endoderm (E8.25) and esophagi (E11.5): (A) clustering analysis;

(B) PCA analysis.

(TIF)

Figure S2 Hierarchical clustering analysis and PCA analysis of

gene expression array data of wild-type mouse esophagi (E11.5,

E15.5, P0, P7): (A) clustering analysis; (B) PCA analysis.

(TIF)

Figure S3 Real-time PCR analysis of mRNA expression in wild-

type mouse esophagi: relative mRNA levels of Pax9 and its target

genes (Sbsn, Calm4) in mouse esophageal epithelium of E15.5, P0,

P7 and adult mice.

(TIF)

Table 2. Pathway changes in the three phases of mouse
esophageal development.

Signaling pathway Developmental phase

Specification Metaplasia Maturation

Wnt q qQ

Hedgehog q Q

TGFb q Q

BMPa Qq

NFkB qQ

Notchb q

Nrf2/Keap1 q

Note: q and q indicate up- or down-regulation, respectively.
aReference [4].
bReference [43].
doi:10.1371/journal.pone.0036504.t002
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Figure S4 Hierarchical clustering analysis and PCA analysis of

gene expression array data of P7 mouse esophagi (wild-type,

Nrf22/2, Keap12/2, Nrf22/2Keap12/2): (A) clustering analysis; (B)

PCA analysis.

(TIF)

Figure S5 Hierarchical clustering analysis and PCA analysis of

gene expression array data of mouse esophagi (wild-type adult,

Nrf22/2 adult): (A) clustering analysis; (B) PCA analysis.

(TIF)

Figure S6 Real-time PCR analysis of mRNA expression in wild-

type and Keap12/2 mouse esophagi: relative mRNA levels of Pax9,

Sbsn, Calm4, Ppard, Pten and Akt2 in the whole esophagi of wild type

and Keap12/2 mice at P7.

(TIF)

Excel S1 Knowledge-based gene sets and references.

(XLS)

Excel S2 Differential gene expression in the specification phase

during wild-type mouse esophageal development: (1) Raw gene

expression array data after data pre-processing (E8.25 endoderm

and E11.5 esophagus); (2) SAM analysis of differentially expressed

genes (E8.25 endoderm vs E11.5 esophagus); (3) GSA analysis of

differentially expressed gene sets (E8.25 endoderm vs E11.5

esophagus); (4) Fisher’s exact test of knowledge-based gene sets

(E8.25 endoderm vs E11.5 esophagus).

(XLSX)

Excel S3 Differential gene expression in the metaplasia phase

during wild-type mouse esophageal development: (1) Raw gene

expression array data after data pre-processing (E11.5, E15.5, P0

and P7); (2) SAM analysis of differentially expressed genes (E11.5

vs E15.5 vs P0 vs P7); (3) GSA analysis of differentially expressed

gene sets (E11.5 vs E15.5 vs P0 vs P7).

(XLSX)

Excel S4 Dynamic expression of eighteen gene expression

patterns and nine knowledge-based gene sets in the metaplasia

phase.

(XLSX)

Excel S5 Differential gene expression in the maturation phase

during the development of wild-type mouse esophageal epitheli-

um: (1) Raw gene expression array data after data pre-processing

(P7 and adult esophagus); (2) SAM analysis of differentially

expressed genes (P7 vs adult esophagus); (3) GSA analysis of

differentially expressed gene sets (P7 vs adult esophagus); (4)

Fisher’s exact test of knowledge-based gene sets (P7 vs adult

esophagus).

(XLSX)

Excel S6 Differential gene expression at P7 between wild-type

mice, Nrf22/2 mice, Keap12/2 mice, and Nrf22/2Keap12/2 mice:

(1) Raw gene expression array data after data pre-processing (wild-

type P7, Nrf22/2 P7, Keap12/2 P7, Nrf22/2Keap12/2 P7); (2)

SAM analysis of differentially expressed genes (wild-type P7 vs

Nrf22/2 P7 vs Keap12/2 P7 vs Nrf22/2Keap12/2 P7); (3) GSA

analysis of differentially expressed gene sets (wild-type P7 vs

Keap12/2 P7).

(XLSX)

Excel S7 Differential gene expression between esophageal

epithelium of adult wild-type and Nrf22/2 mice: (1) Raw gene

expression array data after data pre-processing (wild-type adult,

Nrf22/2 adult); (2) SAM analysis of differentially expressed genes

(wild-type adult vs Nrf22/2 adult).

(XLSX)
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