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Mapping Chemical Selection 
Pathways for Designing 
Multicomponent Alloys: an 
informatics framework for 
materials design
Srikant Srinivasan1, Scott R. Broderick2, Ruifeng Zhang3, Amrita Mishra4, Susan B. Sinnott5, 
Surendra K. Saxena6, James M. LeBeau7 & Krishna Rajan2

A data driven methodology is developed for tracking the collective influence of the multiple attributes 
of alloying elements on both thermodynamic and mechanical properties of metal alloys. Cobalt-based 
superalloys are used as a template to demonstrate the approach. By mapping the high dimensional 
nature of the systematics of elemental data embedded in the periodic table into the form of a network 
graph, one can guide targeted first principles calculations that identify the influence of specific elements 
on phase stability, crystal structure and elastic properties. This provides a fundamentally new means to 
rapidly identify new stable alloy chemistries with enhanced high temperature properties. The resulting 
visualization scheme exhibits the grouping and proximity of elements based on their impact on the 
properties of intermetallic alloys. Unlike the periodic table however, the distance between neighboring 
elements uncovers relationships in a complex high dimensional information space that would not 
have been easily seen otherwise. The predictions of the methodology are found to be consistent with 
reported experimental and theoretical studies. The informatics based methodology presented in this 
study can be generalized to a framework for data analysis and knowledge discovery that can be applied 
to many material systems and recreated for different design objectives.

The search for elemental substitutions and/or additions needed to refine metal alloy compositions and enhance 
their properties is a classical problem in metallurgical alloy design. Finding appropriate alloy chemistries based 
on a systematic exploration using either computational and/or experimental approaches is often guided by prior 
heuristic knowledge that harnesses expected trends captured in the periodic table that can influence phase stability 
and properties. Despite decades of work we have, as of yet, no unified mathematical formalism for harnessing this 
heuristic knowledge and thus more rapidly target our next potential discovery of an alloy. Our work identifies 
possible compositions for intermetallic formation. We employ manifold learning methods as a screening proce-
dure for where detailed first principles calculations need to be focused, rather than run thousands of calculations 
of numerous permutations of compositions and then apply machine learning algorithms to search for potential 
minimum energy structures. In this paper we lay out this methodology for addressing the Grand Challenge of 
accelerating alloy design.

The recent discovery by Sato et al.1 of the existence of a Co3(Al,W) L12 intermetallic has spawned a renewed 
interest in cobalt based superalloys for high temperature applications after many decades of relative dormancy2. 
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It serves as a good example of how challenging multicomponent alloy design can be. Sato et al. found that with 
the addition of W, Co3(Al,W) is indeed a stable intermetallic possessing all the characteristics needed (e.g. high 
melting point, L12 ordered structure, appropriate lattice parameter to achieve coherency strains) to enhance high 
temperature mechanical properties of cobalt alloys typical to nickel based superalloys. The determination that W 
was the key element required a patient and detailed experimental search. It was not obvious from simple inspec-
tion of known data or from the examination of property trends of elements from the periodic table, despite the 
decades of theoretical and empirical research in the field of alloy optimization and design. The exciting findings 
of Sato et al. serves to highlight the broader challenge in alloy design, namely how to identify the correct combi-
nation of alloying elements on intermetallic chemistry that governs both phase stability and such critical factors 
as mechanical and physical properties. No existing theoretical framework is able to simultaneously capture all of 
these multidimensional metrics of thermodynamics, crystal structure and microstructure.

The approach described here is designed to meet this Grand Challenge. In particular, we build on our extensive 
prior work applying statistical learning methods to critically assess and rank the influence of numerous and diverse 
parameters ranging from crystal chemistry to electronic structure descriptors on their potential influence on the 
multi-objective property targets of thermodynamic stability and physical and mechanical properties of interme-
tallics. We identify here potential alloying additions and thus target the chemistries for which thermodynamic 
calculations need to be done while significantly shrinking the chemical search space. One of the major benefits of 
our work is that the directed graph representation employed here readily scales with both binary and multicompo-
nent pseudo-binary phase diagrams, and most importantly, identifies chemical phase spaces that have a likelihood 
of having intermetallics that meet the requirements for enhanced high temperature mechanical properties.

Data Description and Methods
The selection of data (or “descriptors”) was organized into three broad classes of information: discrete scalar 
parameters that relate to solid state properties of single elements, thermodynamic and physical properties of 
potential alloy chemistries using Miedema’s3,4 model coupled to alloy design rules from the classical theories on 
phase stability of Villars5, Mooser-Pearson6,7, Pettifor8, and Hume-Rothery9, and finally verification with a dimen-
sionless descriptor database that captures the electronic structure via eigenvalue decomposition of spectral features 
from density of states curves of a small training set of both individual elements and of a few binary intermetallic 
alloys. For example, Fig. 1 illustrates a heat map of pairwise correlations of the influence of alloying elements (X) 
in Co3(Al,X) and the properties represented by dendrograms which categorize the input data into the different 
genres playing a significant role in alloying characteristics.

The interpretation of this heat map can best be understood if one recognizes that each alloying element ‘i’ 
forming a row of the database is associated with a set of properties. Each of these properties or descriptors, forming 

Figure 1. A heat map derived from the correlation matrix associated with the high dimensional input data, 
combining descriptors such as from Villars, Mooser-Pearson, Pettifor, Hume-Rothery and Miedema3–9. The 
ordering of the descriptors and the elements is based on their similarities, as described by the dendrograms. The 
heat map shows 22 properties for 38 elements/compounds. The descriptor set covers the property categories 
of electronic, high temperature strength, structure, lattice coherency and thermal expansion. To ensure that 
no particular properties are overweighting our analysis, the values are mean centered and standardized. For 
this reason, the properties all fall within a comparable range, as shown in the color scale. This step ensures 
robustness and enables interrogation of the design pathways.
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a column of the heat map, can be represented by an axis of a high dimensional Euclidean space Rn, where ‘n’ is the 
total number of descriptors. Correspondingly each element ‘i’ can be represented by a data point xi mapped out in 
this high dimensional descriptor space Rn where the coordinates of xi are given by the magnitudes of the various 
descriptors in relation to element ‘i’. The challenge is that one heat map of one class of descriptors alone does not 
capture the curvature of the hyper plane on which the data sits and the similarity metrics need to be captured by 
geodesic distances. Hence there is the need to apply non-linear manifold projection methods.

Using these criteria as the basis for mapping similarity among the alloying elements, we screened for trajectories 
of interest, such as high cohesive energy, by interrogating a dissimilarity graph generated through manifold learning 
methods. In our prior work we have explored numerous methods to explore ways to ascertain how to statistically 
assess the interaction of such multivariate data, including dimensionality reduction mapping10–14, information 
entropy-based recursive partitioning15,16, and evolutionary methods17,18. In the present work we build on this 
foundation by applying non-linear manifold learning methods. Specifically, we use the Isomap algorithm19 that 
goes beyond the assumption that a low dimensional manifold exists and generates a low dimensional embedding 
of data points that preserves the best possible geodesic distance between all pairs of data points. The collection of 
various elemental and Co alloying descriptors form the axes of a high dimensional Euclidean space Rn  which are 
mapped out in this high dimensional space as a finite set of data points {xi} ϵ Rn. The relevant descriptors represent 
various physical properties, crystal structure and chemistry. Given only the data points {xi} and the corresponding 
descriptors as the input , Isomap20,21 attempts to recover a smooth nonlinear submanifold Md of lower dimension 
d < n, upon which the points xi ϵ Rn lie and then unfolds Md to visually capture relationships between the data-
points, while preserving the geodesic metric distances between them along the submanifold. The algorithm applies 
non-linear dimensionality reduction to map the set of points {xi} ϵ Rn to {yi} ϵ Md specified by xi → yi | yi ϵ Md, d<n, 
s.t. ∀ ( , ) | − | = | − |

β β
i j x x y y: i j i j

 where β  is a norm, representative of the pairwise geodesic distances 

( , ) = | − |
β

d i j x xM i j  between any two elements ′ ′i  and ′ ′j  in Rn along the submanifold Md. This is performed by 
first constructing a weighted graph in Rn that connects the data points {xi} utilizing some form of nearest neighbor 
connectivity. The crucial stage of the Isomap algorithm is to construct the appropriate graph so that the pairwise 
geodesic distance between the elements along the graph, ( , ) = | − |

β
d i j y yG i j

, is an accurate approximation of 

( , )d i jM . The output of Isomap algorithm is then the points {yi} plotted out on the dimensionally reduced weighted 
graph.

The geodesic distance is defined as the shortest distance between a pair of points along a manifold and in 
this case, the nonlinear manifold in the high dimensional space is obtained by connecting each element to its 
‘k’ nearest neighbors in terms of their collective impact within the high dimensional data space associated with 
thermodynamic, structural and mechanical alloying properties. The algorithm aims to produce low dimensional 
projections of data that geometrically map the true correlations between elements in the original manifold and the 
resultant projection of data is shown to uncover the relative impact of elements in their role as alloying additions 
to Co3(Al,X) both in terms of phase stability and mechanical properties in a fundamentally novel manner that is 
not apparent from an examination of the traditional periodic table alone.

Results and Discussion
The Isomap algorithm was used to discover the optimal low dimensional graph embedding of elements in their 
role as alloying additions to Co3(Al,X), such that the geodesic distance between the elements in the higher dimen-
sional manifold is preserved when it is mapped onto the lower dimensional graph (details of the algorithmic 
implementation are described in the supplementary section). Each alloying element (X), for the alloy Co3(Al,X) 
becomes a graph vertex and each vertex is connected to its neighboring vertices through edges whose weights are 

Figure 2. A graphing approach to capture similarity/dissimilarity metrics for alloy design. The design 
pathways are chosen based on expected strength and stability. This map is adaptable to finding different 
substitutional pathways for different design requirements as shown in Fig. 3.
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proportional to the distance between the vertices (Fig. 2). This permits one to readily identify pathways of similarity 
(or dissimilarity) between elements that may serve to stabilize the L12 structure for a Co3(Al,X) stoichiometry, 
which leads to identifying intermetallic chemistries that have a high cohesive energy, high melting point and a 
lattice parameter that will ensure coherency strains in a Co rich fcc matrix.

The uncertainty of the connections identified can be assessed by changing the number of nearest neighbor con-
nections, as well as the number of dimensions included in the analysis. The change of connections and neighboring 
lengths is correlated to the uncertainty in the results. The optimal number of dimensions in which to represent 
the graph output of Isomap can be determined by a Scree plot which is an ordered representation of the impact 
of each additional dimension, in the low dimensional representation, in accurately representing the geodesic 
distance along the original manifold (see supplementary material). Since the manifold in high dimensional space 
can vary depending on the number of nearest neighbors chosen, a measure of statistical uncertainty in the geo-
desic distances can be obtained by varying the number of nearest neighbors to check for short-circuit errors22 as 
well as by ensuring the optimum number of dimensions for low dimensional representation. We find that the first 
two dimensions are sufficient to represent 90% of the original geodesic distances in all cases of nearest neighbors 
while the embeddings themselves show that the overall structure of the manifold does not change by varying the 
number of neighbors other than to increase the number of pathways. For the case of k =  2, the manifold becomes 
disconnected. Therefore, in this case we choose k =  3 to ensure that the resulting graph embedding is neither 
over-connected, leading to loss of pairwise geodesic distances, nor are critical neighbors disconnected23. Further, 
the comparison of connections under the different input parameters do not change significantly, demonstrating 
that the results presented here have low levels of uncertainty for every node.

Figure 2 is a network graph that shows the relative similarity/dissimilarity between elements (nodes) as poten-
tial alloying elements (X) in terms of their collective impact on the properties of Co3(Al,X). It should be noted 
that this diagram is also applicable to higher order multicomponent systems by suggesting additional elements 
(Y) for Co3(Al,X,Y) by considering both first and second nearest neighbors at each node. The key feature which 
we utilize in this graph is the relative distances of the connecting edges. The length of the edge represents the 
dissimilarity between the vertices it connects and the elements closest to each other are most similar in terms 
of the descriptors that go into the construction of this graph. The edges of the graph connect elements that have 
the strongest similarity with respect to each other. Each node identifies a ternary alloy composition of the type 
Co3(Al,X). The edges connecting two nodes Co3(Al,X) and Co3(Al,Y) for instance would be associated with a 
range of compositions and phases that are mapped onto a quaternary phase diagram of Co, Al , X and Y, where X 
and Y are the chemical additions. Hence another unique feature is that it identifies new multicomponent systems 
that may in fact have stable intermetallics with the desired properties we seek. This provides the framework for 
targeted phase diagram computations.

As a first step, with the objective of defining a substitute X for Co3(Al,X), the graph network identifies the first 
nearest neighbors of Al (Ga, Mn and Ti) that are most similar to Al and the dissimilarity strengthens as we move 
to second, third, and further nearest neighbors. In this case, we know that Co3Al as a L12 structure is not stable, 
hence if we want to find other alloying elements to add, we need to probe the neighborhood of Al. The following 
rules are used to navigate the graph network. Since Al has multiple edges connecting to neighbors, in order to 
identify which direction we move in, we select the element that has a higher level of stability (from Miedema’s 
model), and therefore Ti serves as the first step. At the Ti node, we again identify the possible branches but also 
add on other levels of constraint such as modulus and cohesive energy in making the decisions for the next step 
(Fig. 3). Using this logic repeatedly at each node, we finally reach W, as was empirically discovered by Sato1. If 
we define our criteria as optimizing cohesive energy, we obtain an alternate pathway to W as illustrated in Fig. 4 
Each intermediate node along the pathway has been suggested as a potential alloying element for Co3(Al,X)24 to 
increase the solvus temperature. If we define our criteria as optimizing cohesive energy, we obtain a diverging 
pathway leading to Ta as illustrated in Fig. 4. It is important to note that the termination of the pathway does not 
necessarily lead to an element representing the global maximum (or minimum) of a desired property within the 
graph. An element that may present the global maximum may potentially be unsuitable for alloying. The issue 
is not solely moving far away from the element we desire to substitute, in this case Al, as the farther we move the 
more difficult it is to find a similar element in terms of overall alloying properties. The aim is to track all potential 
elements that might provide enhanced high temperature properties while remaining as similar to Al as possible 
in order to provide the L12 phase.

Thus the graph provides a unique map for which direction to move in chemical space for a specific design 
problem, something that a cursory inspection of the periodic table will not provide as the geometrical proximity 
of elements in the projection of data as visualized in the periodic table captures only the systematics of electronic 
structure data associated with single elements, not their collective influence on structure and properties of targeted 
alloy structures.

It should be added that another unique aspect of our methodology is that the network graph helps to target our 
thermodynamic and electronic structure computations on specific chemistries. In this approach, we are using infor-
matics to guide and learn from the data where physical computations are needed to make decisions without having 
to repeat a vast number of computations over large chemical spaces. While the network graph can be interrogated 
to obtain pathways that may be avoided (e.g. the pathway of decreasing cohesive energy shows Mn, which is known 
not to strengthen the L12 phase25), the purpose of this network is to identify chemical additions which are most 
likely to improve stability and high temperature properties for Co3Al. The objective is not to define which additives 
will not work. Therefore, we are reporting only those compounds which are most likely to have the best properties, 
while not excluding the possibility of other stable Co compounds from existing. For instance, examples have been 
reported where addition of Ga26 or Ge27 increase the stability of γ ‘ although they are not connected to the pathway. 
For screening elements of interest through electronic structure calculations, the values for enthalpy of formation 
and cohesive energy were calculated via density functional theory (DFT). To serve as a rapid screening process, 
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Figure 3. The determination of the pathway shown for relative cohesive energy going from Al to Ta in Fig. 2.  
The enthalpy and cohesive energies shown in this figure were calculated using Miedema’s model. Starting with 
Co3Al, we find that the cohesive energy increases most with substitution of Ti (highest cohesive energy of any of 
the Isomap neighbor compounds of Al). This finding agrees with our DFT calculations which show that out of 
eight different structures we calculated, Co3Al has tetragonal ground state structure, while Co3Ti has L12 ground 
state structure. Following our criteria for increasing cohesive energy, we identify the pathway as going from Ti 
to Nb and Nb to Ta, with cohesive energy for Ta having the highest value of any compound. This figure shows 
how similar substitutional pathways can be defined for designing to maximize any given property.

Figure 4. Comparison of (left) manifold representation of relative relationships of alloying elements with 
respect to equivalent positions as shown in the periodic table (right).  The pathway for exploring other 
elements is not easily discernible looking at traditional systematics of the periodic table (for example rows, 
groups, Mendeleev number). The color coding in the figure serves to highlight the comparison with W addition, 
which has been shown to result in stable Co3Al1. Therefore, W is shown in gold in both the graph and periodic 
table, while first nearest neighbors to W are shown in red, and second nearest neighbors to W are shown in blue.
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we performed calculations of binary Co3X, imposing an L12 structure as a first approximation to Co3(Al,X) where 
additive concentration is small, in order to identify probable options just as a means of quickly assessing possible 
likelihoods for pathways. Following the cohesive energy pathway, we arrive at Ta, after which any additional steps 
lower the cohesive energy. While the nodes of the pathway are the substitutes with highest likelihood of success, 
the elements connected by the branches also represent potentially promising additions.

Additional information beyond confirming the stability of Co3(Al,W) is uncovered by identifying the path-
ways for different criteria, such as cohesive energy, melting temperature or other design requirements. Our work 
identifies possible compositions for intermetallic formation. The nodes of our graph identify potential alloying 
additions and thus target the chemistries for which thermodynamic calculations need to be done to confirm 
whether these compounds do indeed exist. Hence the manifold learning methods serve as a screening procedure 
for where detailed first principles calculations need to be focused, rather than run thousands of calculations of 
numerous permutations of compositions and then apply machine learning algorithms to search for potential 
minimum energy structures. Further, while we find W to be a suitable addition, we find additional nodes that 
look to be as promising, such as Ta and Re. However, a single design requirement is not sufficient for identifying 
additives, thereby requiring multiple design pathways. For example, we have shown different pathways leading to 
W or to Ta, depending on the design requirement. Therefore, this identifies that a combination of these additives 
leads to a good combination of cohesive energy (or the highly correlated melting temperature) and modulus. This 
demonstrates the application of the graph network for multi-functional design.

This analysis (1) confirmed Sato’s1 empirical studies on W addition to Co3Al; (2) identified different pathways 
for property improvement; and (3) determined chemical substitutes for Co-based superalloys. Our results are 
consistent with reported experimental and theoretical studies, as indicated in Table 1. The agreement of these prior 
studies with the graphical network result provides the foundation for application of this approach.

Shown in Fig. 4 are additional possible substitutes for quaternary systems (i.e. Co3(Al,X,Y)). For instance, Ta 
addition to quaternary Co3(Al,W,Y) has indeed been experimentally reported28. We identify the new quaternary 
systems by including the additives which are nearest neighbors. These are further the most suitable additions to 
Co3Al. This therefore guides the next series of experiments. In addition to the experiments suggested from our 
ternary pathways (for example, comparing the stability and melting temperature of Co3(Al,W) with Co3(Al,Ta)), 
the melting temperature and stability should be experimentally measured.

The likelihood of these compositions of intermetallics having long range order is based on the nature of sim-
ilarity as characterized through manifold learning metrics. We have shown that independent studies via first 
principles methods that empirically explored numerous compositions do indeed match our results via informatics 
methods, lending support to our approach. The issue of exploring the potential role of site preference is one of the 
next steps in our work. However our study provides the target chemistries where such studies need to be focused.

Conclusions
This work has shown that the use of manifold learning methods can provide a powerful means of exploring the 
similarity and dissimilarity of the influence of alloying additions on the properties of alloys. We have demonstrated 
using the case study of Co3(Al,W) that one can reproduce many of the heuristically driven findings, as well as also 
providing a clear framework for identifying other elemental substitutions for targeted alloy properties for the next 
generation of cobalt based superalloys. Our work has a broader impact in that it lays the groundwork for using 
such informatics based methods, judiciously integrated with targeted computations, as a predictive approach for 
chemical design of multicomponent systems. This study has focused on exploring metrics that govern intermetallic 
stability and properties, but the computational framework is generic enough to integrate data from many different 
length scales and as such can accommodate the addition of data associated with microstructure, processing and 
environmental response of alloys. This will generate more complex networks and the judicious choice of appropriate 

Impact of alloying elements (X) in Co3(Al,X) as observed 
experimentally or suggested from first principles calculations

Comparison with informatics analysis of the impact of alloying 
elements (X) in Co3(Al,X)

Alloying Co-Al-W with Ti, V, Nb, Ta, Zr, Hf increased solvus 
temperature; Cr, Mn, Fe, and Ni lower solvus temperaturea 24

Ti, V, Nb, Ta, Zr and Hf are connected on the graph network pathway 
that enhances high temperature properties (melting point, cohesive 

energy) while Cr, Mn, Fe and Ni are not connected.

Alloying of Ta to Co-Al-W enhances strength at high temperaturea 28–

30
Ta is a node on the cohesive energy directed path, suggesting an 

improvement of high temperature stability with the addition of Ta

Ni*, Fe*, V and Ti stabilize the γ ‘ phase, while Mn and Cr do not 
stabilize.b 25 Cr additions are not found to promote the stability of the 
ϒ ’ phasea 31*These results were for (Co,X)3Al, while our results are 
for Co3(Al,X). 

Ti was identified as a key node on the network pathway for higher 
cohesive energy. V is a nearest neighbor with Ti. Mn and Cr are not a 
nearest neighbor with any node on the network pathway, suggesting 
that these are not expected to contribute to γ ‘ stability. Our result is 

consistent with both experimental31 and computational25 results.

Co3 (Al, Nb, Mo) L12 intermetallic experimentally identified and the 
collective addition of Nb and Mo is proposed as a substitute to W in 
Co3 (Al,X,Y) alloysa 32

Mo and Nb are first and second nearest neighbors respectively with 
W in directed graph in agreement with their expected similarity in 

influence on high temperature stability of Co3(Al, X, Y)

L12-Co3(Al0.5,W0.5) is metastable at 0K, although temperature 
contributions have a stabilizing effectb 33

The graph network has clearly identified W as a strong candidate for 
stabilizing the L12 structure. Our graph network is for design of high 
temperature materials and is in agreement with the initial discovery 

of Sato et.al.1

Table 1.  Interpretation of the graph network for Co3(Al,X,Y) alloys for defining new compounds with 
stability and at high temperatures. aexperiment. bfirst principles. The interpretations of our informatics result 
are in very good agreement with the experimental and computational studies reported in the literature.
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algorithmic strategies will identify pathways for optimizing elemental selection to meet multiscale objectives and 
will be reported in a subsequent study.
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