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Abstract

Mass cytometry (CyTOF) has greatly expanded the capability of cytometry. It is now easy to

generate multiple CyTOF samples in a single study, with each sample containing single-cell

measurement on 50 markers for more than hundreds of thousands of cells. Current meth-

ods do not adequately address the issues concerning combining multiple samples for sub-

population discovery, and these issues can be quickly and dramatically amplified with

increasing number of samples. To overcome this limitation, we developed Partition-Assisted

Clustering and Multiple Alignments of Networks (PAC-MAN) for the fast automatic identifica-

tion of cell populations in CyTOF data closely matching that of expert manual-discovery,

and for alignments between subpopulations across samples to define dataset-level cellular

states. PAC-MAN is computationally efficient, allowing the management of very large

CyTOF datasets, which are increasingly common in clinical studies and cancer studies that

monitor various tissue samples for each subject.

Author summary

Recently, the cytometry field has experienced rapid advancement in the development of

mass cytometry (CyTOF). CyTOF enables a significant increase in the ability to monitor

50 or more cellular markers for millions of cells at the single-cell level. Initial studies with

CyTOF focused on few samples, in which expert manual discovery of cell types were

acceptable. As the technology matures, it is now feasible to collect more samples, which

enables systematic studies of cell types across multiple samples. However, the statistical

and computational issues surrounding multi-sample analysis have not been previously

examined in detail. Furthermore, it was not clear how the data analysis could be scaled for

hundreds of samples, such as those in clinical studies. In this work, we present a scalable

analysis pipeline that is grounded in strong statistical foundation. Partition-Assisted
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Clustering (PAC) offers fast and accurate clustering and Multiple Alignments of Networks

(MAN) utilizes network structures learned from each homogeneous cluster to organize

the data into data-set level clusters. PAC-MAN thus enables the analysis of a large CyTOF

dataset that was previously too large to be analyzed systematically; this pipeline can be

extended to the analysis of similarly large or larger datasets.

Introduction

Analyses of CyTOF data rely on many of the tools and ideas from flow cytometry (FC) data

analysis, as CyTOF datasets are essentially higher dimensional versions of flow cytometry data-

sets. Currently, the most widely used method in FC is still human hand-gating, as other meth-

ods often fail to extract meaningful subpopulations of cells automatically. In hand-gating, we

draw polygons or other enclosures around pockets of cell events on a two-dimensional scatter-

plot to define subpopulations and cellular states that are observed in the data. This process is

painfully time-consuming and requires advance knowledge of the marker panel design, the

quality of the staining reagents, and, most importantly, a priori what cell subpopulations to

expect to occur in the data. When presented with a new set of marker panels and biological

system, the researcher would find it difficult to delineate the cell events, especially in high-

dimensional and multi-sample datasets.

The inefficient nature of hand-gating in flow cytometry motivated algorithmic develop-

ment in automatic gating. Perhaps the most popular is flowMeans[1], which is optimized for

FC and can learn subpopulations in FC data[2] in an automated manner; however, it has not

been successfully applied to CyTOF data analysis. Currently, most data analysis tools created

for flow cytometry data analyses are not easily applicable for high-dimensional datasets[3].

An exception is SPADE, which was developed and optimized specifically for the analysis of

CyTOF datasets[3]. flowMeans and SPADE constitute the leading computational methods in

cytometry, but as shown later in this work, their performance may become sub-optimal when

challenged with large and high-dimensional datasets. There are also other recent clustering-

based tools that utilize dimensionality reduction and projections of high-dimensional data,

however, these tools do not directly learn the subpopulations for all the cell events, and may be

too slow to complete data analysis for an increasing amount of samples.

In this study, we address the data analysis challenges in two major steps. First, we propose

the partition-assisted clustering (PAC) approach, which produces a partition of the k-dimen-

sional space (k = number of markers) that captures the essential characteristic of the data dis-

tribution. This partitioning methodology is grounded in a strong mathematical framework of

partition-based high-dimensional density estimation[4–7]. The mathematical framework

offers the guarantee that these partitions approximate the underlying empirical data distribu-

tion; this step is faster than the recent k-nearest neighbor-based method [8] and is essential to

the scalability of our clustering approach to analyze datasets with many samples. The clustering

of cells based on recursive partitioning is then refined by a small number of k-means style iter-

ations before a merging step to produce the final clustering.

Secondly, the subpopulations learned separately in multiple different but related datasets

can be aligned by marker network structures (multiple alignments of networks, or MAN),

making it possible to characterize the relationships of subpopulations across different samples

automatically. The ability to do so is critical for monitoring changes in a subpopulation across

different conditions. Importantly, in every study, batch effect is present; batch effects shift

subpopulation signals so that the means can be different from experiment to experiment.

Scalable multi-sample analysis of single-cell data
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PAC-MAN naturally addresses batch effects in finding the alignments of the same or closely

related subpopulations from different samples.

PAC-MAN finds homogeneous clusters efficiently with all data points in a scalable fashion

and enables the matching of these clusters across different samples to discover cluster relation-

ships in the form of clades.

Results/Discussion

PAC

PAC has two parts: partitioning and post-processing. In the partitioning part of PAC, the data

space is recursively divided into smaller hyper-rectangles based on the number of data points

in the locality (Fig 1A). The partitioning is accomplished by either Bayesian Sequential Parti-

tion (BSP) with limited look-ahead (Fig 1A and 1B) or Discrepancy Sequential Partition (DSP)

(Fig 1A); these are two fast variants of partition-based density estimation methods previously

developed by our group [4–7], with DSP being the fastest. BSP and DSP divide the sample

space into hyper-rectangles with uniform density value in each of them. The subsetting of cells

according to the partitioning provides a principled way of clustering the cells that reflects the

characteristics of the underlying distribution. In particular, each significant mode is captured

by a number of closely located rectangles with high-density values (Fig 1C). Although this

method allows a fast and unbiased localization of the high-density regions of the data space,

we should not use the hyper-rectangles directly to define the final cluster boundaries for two

reasons. First, real clusters are likely to be shaped elliptically, therefore, the data points in the

corners of a hyper-rectangle are likely to be incorrectly clustered. Second, a real cluster is often

split into more than one closely located high-density rectangles. We designed post-processing

steps to overcome these limitations: 1) a small number of k-means iterations is used to round

out the corners of the hyper-rectangles, 2) a merging process is implemented to ameliorate the

splitting problem, which is inspired by the flowMeans algorithm. The details of post-process-

ing are given in the Materials and Methods. The resulting method is named b-PAC or d-PAC

depending on whether the partition is produced by BSP or DSP.

MAN

An approach to analyze multiple related samples of CyTOF data is to pool all samples into a

combined sample before detection of subpopulations. This is a natural approach under the

assumptions that there are no significant batch effects or systematic shifts in cell subpopula-

tions across the different samples. However, such assumptions may not hold due to one or

more of the following reasons:

1. Dataset size and instruments used. Large number of samples usually means the samples

were collected on different days with different experimental preparations. Many steps can

introduce significant shifts in measurement levels.

2. Staining reagents. Reagents such as antibodies, purchased from different vendors and

batch preparations can affect the overall signal. While saturation of reagents in the protocol

could help eliminate the batch effects in the staining procedure, this approach is costly and

might not work for all antibodies, especially those with poor specificity.

3. Normalization beads stock. While normalization beads[9] help to control for the signal

level, especially within one experiment, the age of the beads stock and their preparation

could lead to significant batch effects. In addition, there are different types of normalization

beads and normalization calculations.

Scalable multi-sample analysis of single-cell data
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Fig 1. PAC recursively partitions the data space to obtain rational initialization structure. Partition-based methods estimate data density by

cutting the data space into smaller rectangles recursively. Shown in parts a-b are three clusters of points, the data marginal densities, and several

partition scenarios. The data space (box) is partitioned in sequential steps denoted by numbers on the cut lines. Only the first three partition cuts are

shown in parts a and b. (a) Bayesian Sequential Partition (BSP) is a Bayesian procedure that maximizes the posterior of the density estimation by

dividing the data space via binary partitions; these partitions occur in the middle of the bounded region. On the other hand, Discrepancy Sequential

Partition (DSP) performs division other than the mid-point; here, the division is guided by the discrepancy score through a series of tests of uniformity in

point distribution, and the procedure stops when discrepancies are smaller than a set threshold. (b) In the (one-step) look-ahead version of BSP

partition, the algorithm cuts the data space for all potential cuts plus one step more (steps 2 and 3), and it finds the optimal future scenario (after step 3).

In comparison to the (sub-optimal) BSP scenario (one of many scenarios) illustrated in part (a), the scenario in (b) segregates the gold cluster much

better, and it is a preferred cut to make in the continuation of partitioning procedure. In theory, BSP can produce sequential partitions for a pre-set

number of steps ahead; however, to maintain computational feasibility, we implemented the one-step look-ahead BSP for this work. (c) The partitioning

of simulated data space containing five subpopulations; the hyper-rectangles surround high-density areas, approximating the underlying distribution.

https://doi.org/10.1371/journal.pcbi.1005875.g001
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4. Human work variation. While many researchers are studying the same system (e.g.,

immune system), different protocols and implementation by different researchers, who

sometimes perform experimental steps slightly differently, can lead to batch effects.

5. Subpopulation dynamics. The subpopulation centers can move from sample to sample

due to treatments on the cells in treatment-control studies or perturbation studies. General

practice is to cluster by phenotypic markers.

6. Sample background. If the data came from different cell lines or individuals in a clinical

study, the measurement levels and proportions of cell subpopulations would be expected to

change from sample to sample. Without expert scrutiny, it would be difficult to make sense

of the data with current data analysis tools.

Could we extract shared information that allows us to interpret cross-sample similarities

and differences? We note that efforts were made to analyze cross-sample relationships in a pre-

vious publication [10], in which the data was carefully collected with barcode reagents in uni-

form staining, which enable pooling of the data for downstream analysis. Experimentally, it

would be difficult to up-scale the barcoding and uniform staining control to a larger number

of samples. Furthermore, previous efforts were dependent on down-sampling of the data

points, which would significantly affect the clustering results. While it is possible, through

careful experimental design and cross-sample controls, to establish uniform staining for a

small pooled sample data analysis, there is a need to resolve the above batch effect difficulties

for studies that require scalability, such as in the clinical setting in which hundreds of patient

blood samples are collected at different times.

To ameliorate the difficulties of potential high-dimensional cluster shifts and scalability,

we have designed an alternative approach that is effective in the presence of substantial sys-

tematic between-sample variation. In this approach, each sample is analyzed separately (by

PAC) to discover within-sample subpopulations. As an exploration step, we over-partition to

capture both large and small subpopulations in high-dimension. The subpopulations from all

samples are then compared to each other based on a pairwise dissimilarity measure designed

to capture the differences in within-sample distributions (among the markers) across two sub-

populations. Using this dissimilarity, we perform bottom-up hierarchical clustering of the sub-

populations to represent the relationship among the subpopulations. The resulting tree of

subpopulations is then used to guide the merging of subpopulations from the same sample,

and to establish linkage of related subpopulations from different samples. We note that the

design of a dissimilarity measure (Materials and Methods) that is not sensitive to systematic

sample-to-sample variation is a novel aspect of our approach. The merging of subpopulations

from the same sample is also important, as it offers a way to consolidate any over-partitioning

that may have occurred during the initial PAC analysis of each sample. We emphasize that, as

with the usage of all statistical methods, the user must utilize samples or datasets that are con-

sidered as good as possible and that the sample comparisons make biological sense; interpreta-

tion of the analysis results rely on the researchers to collect data with validated reagents for all

samples. In general, sensible data would come from 1) samples that are carefully prepared to

not include contamination of cells from other tissues, 2) cytometry panel with validated mark-

ers that enable the observation of known, coherent cell subpopulations in the tissue samples

(important for determining the number of PAC clusters to explore in the partition step to con-

trol for aggressive over-partitioning), 3) successful execution of standard cytometry experi-

ment protocol, and 4) collection of data to achieve enough cell events (important for building

stable network structures). These steps would ensure the reproducibility of PAC-MAN data

analysis. In addition, any novel subpopulation discovery or difference between samples

Scalable multi-sample analysis of single-cell data
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observed should be validated with downstream experiments (perhaps using low-dimensional

flow cytometry and sorting methods).

Rational initialization for PAC increases clustering effectiveness

Appropriate initialization of clustering is very important for eventually finding the optimal

clustering labels; PAC works well because the implicit density estimation procedure yields

rational centers to learn the modes of sample subpopulations. When tested on the hand-gated

CyTOF data on the bone marrow sample in [11], compared to kmeans alone, PAC gives lower

total sums of squares and higher F-measures in the subpopulations (Fig 2A and 2B). In the

comparison to kmeans, we utilized random kmeans initialization by Lloyd (and Forgy), which

uses random initialization, and also kmeans++ initialization, which uses a more advanced ini-

tialization [12,13]. The process of rational initialization also helps PAC to converge in 50 itera-

tions (Fig 3) in post-processing, whereas k-means performs very poorly even after 5000

iterations (Fig 4). Through the lens of t-SNE plots (Fig 4), the PAC results are more similar to

the hand-gating results, while the k-means, flowMeans, and SPADE clustering results perform

poorly. In flowMeans, several large subpopulations are merged. SPADE’s separation of points

is inconsistent and highly heterogeneous, probably due to its down-sampling nature. On the

other hand, by inspection, PAC obtains similar separation for both the major and minor sub-

populations as the hand-gating results.

PAC is consistently better than flowMeans and SPADE for simulated

datasets and hand-gated cytometry datasets

In the systematic simulation study, we challenged the methods with different datasets with

varying number of dimensions, number of subpopulations, and separation between the

Fig 2. Rational initialization is better than random initialization. The hand-gated CyTOF data (see S1 Fig) is used for illustration. Commonly,

kmeans algorithms utilize initialization via the Lloyd’s algorithm or kmeans++ algorithm. In comparison, (a) the overall sum of squares error is lower and

(b) the F-measure is higher for DSP with kmeans versus the classic kmeans initialization algorithms. The rational initialization helps anchor the cluster

starting points, and become very important for the fast convergence of PAC (Fig 3).

https://doi.org/10.1371/journal.pcbi.1005875.g002
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subpopulations. The F-measure and p-measures for the PAC methods are consistently equal

or higher than that of flowMeans and SPADE (Table 1 and S2A Fig). For some higher dimen-

sion cases in which the subpopulation separation is relatively small, SPADE failed to cluster. In

addition, we observe that flowMeans gives inconsistent F-measures for similar datasets

(Table 1), which may be due to the convergence of k-means to a local minimum without a

rational initialization.

Next, we tested the methods based on published hand-gated cytometry datasets to see how

similar the estimated subpopulations are to those obtained by human experts. We applied the

methods on the hematopoietic stem cell transplant and Normal Donors datasets from the

FlowCAP challenges[2] and on the subset of gated mouse bone marrow CyTOF dataset (Data-

set 9) recently published[11]. The gating strategy of the CyTOF dataset is provided in S1 Fig.

The dataset and expert gating strategy are the same as described earlier[14]. Note that in the

flow cytometry data, the computed F-measures are slightly lower than that reported in Flow-

CAP; this is due to the difference in the definition of F-measures. Overall, the PAC outper-

forms flowMeans and SPADE by consistently obtaining higher F-measures (Table 1). In

particular, in the CyTOF data example, PAC generated significantly higher F-measures

(greater than 0.82) than flowMeans and SPADE (0.59 and 0.53, respectively). In addition, PAC

Fig 3. Rational initialization, minimal kmeans post-processing iterations, and merging give fast convergence. We use

the hand-gated CyTOF data for illustration. The data space is first partitioned into 50 hyperrectangles, which is about twice

(recommended setting) the expected number of subpopulations (24). Next, the number of kmeans iterations was varied

followed by flowMeans style merging. The convergence of PAC toward the hand-gated results, or ground truth, is fast due to the

informative anchoring of cluster centers around high-density regions by the rational initialization. It takes less than 50 post-

processing kmeans iterations for the PAC to achieve convergence. This efficiency allows the PAC method to scale to handle the

clustering of large samples.

https://doi.org/10.1371/journal.pcbi.1005875.g003
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Fig 4. t-SNE visualization of clustering methods. We compare the clustering results between hand-gate, (Lloyd’s)

kmeans, SPADE, flowMeans, bPAC, and dPAC labels. Each t-SNE plot contains all gated cell events from the hand-

gated CyTOF data with different set of colored labels. The colored labels denote different subpopulations within each

Scalable multi-sample analysis of single-cell data
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gives higher overall subpopulation-specific purities (S2B Fig and S1 Table). These results indi-

cate that PAC gives consistently good results for both low and high-dimensional datasets. Fur-

thermore, PAC results match human hand-gating results very well. The t-SNE ‘islands’ in the

plots are well-colored by the PAC methods, demonstrating that both major and minor/rare

subpopulations are captured. The consistency between PAC-MAN results and hand-gating

results in this large data set confirms the practical utility of the methodology.

We use t-SNE plots heavily for visualization because t-SNE is a great visualization tool. It is

reasonable to ask whether one can obtain good subpopulations by performing cluster analysis

on the low-dimensional data points output by t-SNE. Currently, this alternative approach is

computationally expensive and not scalable as existing t-SNE implementations cannot be

scaled to millions of high-dimensional points, restricting this analysis approach to only hun-

dred of thousands of points in practice. In the downstream, hierarchical clustering or kmeans

clustering could be applied; however, hierarchical clustering is very expensive due to the main-

tenance of a distance matrix during calculations (cannot be easily performed for data with

more than thousands of points), while kmeans clustering does not give satisfactory results (S7

Fig) due to the ‘flattened’ geometry of the high-dimensional points in the t-SNE embedding.

Thus, embedding is good for visualization but it is not supposed to capture all information of

clusters efficiently. In CyTOF data analysis, we recommend performing PAC methods on the

dataset, and utilize t-SNE plots to visualize the clustering results with a subset of points for

confirmation.

Separate-then-combine outperforms pool approach when batch effect is

present

It is natural to analyze samples separately then combine the subpopulation features for down-

stream analysis in the multiple samples setting. However, we need to resolve the batch effects.

Two distinct subpopulations could overlap in the combined/pooled sample, such as in the case

when the data came from two generations of CyTOF instruments (newer instrument elevates

the signals). On the other hand, in cases with changing means, two subpopulations can evolve

together such that their means change slightly, but enough to shadow each other when samples

are merged prior to clustering.

We introduce Multiple Alignments of Networks to resolve the management issue sur-

rounding the organization of homogeneous clusters found in the PAC step (Fig 5). First, we

consider the overlapping scenario (Fig 6A). When viewed together in the merged sample, the

right subpopulation from sample 1 overlaps with the left subpopulation in sample 2 (Fig 6B

left panel). There is no way to use expression level alone to delineate the two overlapping sub-

populations (Fig 6B right panel). By learning more subpopulations using PAC, there are some

hints that multiple subpopulations are present (Fig 6C). Despite these hints, it would not be

possible to say whether the shadowed subpopulations relate in any way to other distinct

subpopulations.

PAC-MAN resolves the overlapping issue by analyzing the samples separately (Fig 7). In

the case in which we do not know a priori the number of true subpopulations, we learn three

subpopulations per sample (Fig 7A). The network structures of the subpopulations discovered

are presented in Fig 7B and 7C and we see that the third subpopulations from the two samples

share the same network structures, while the first two subpopulations of the two samples differ

plot; however, the colors do not have cross-plot meaning. The subpopulation numbers for all methods were set to be

the same as that of hand-gated results (24 subpopulations). PAC methods achieve a significantly better convergence

to the hand-gate labels than alternative methods.

https://doi.org/10.1371/journal.pcbi.1005875.g004
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Table 1. F-measure comparisons of methods on simulated and hand-gated cytometry datasets**.

Data Analysis Methods

flowMeans SPADE d-PAC b-PAC

5_10_40_100k 0.79 0.64 0.94 0.94

5_20_40_100k 0.9 0.73 0.94 0.94

10_5_30_100k 0.74 0.93 0.93 0.97

10_10_30_100k 0.97 0.88 0.98 0.98

10_10_40_100k 0.92 0.95 0.98 0.98

10_20_30_100k 0.88 0.76 0.9 0.91

10_20_40_100k 0.94 0.93 0.95 0.95

10_40_30_100k 0.42 0.55 0.7 0.7

20_5_20_100k 0.75 0.71 0.91 0.9

20_5_30_100k 0.76 0.98 0.99 0.99

20_5_40_100k 0.72 0.85 1.00 1.00

20_10_40_100k 0.25 0.96 0.97 0.97

20_20_40_100k 0.93 0.91 0.92 0.93

35_10_10_100k 0.77 N/A 0.82 0.83

35_10_10_200k 0.56 N/A 0.88 0.88

35_20_10_100k 0.60 N/A 0.70 0.70

35_20_10_200k 0.60 N/A 0.67 0.72

35_10_30_100k 1.00 0.93 1.00 1.00

35_20_30_100k 0.94 N/A 1.00 1.00

35_5_40_200k 0.96 0.89 0.99 0.99

35_10_20_200k 0.96 0.93 1.00 1.00

35_10_40_200k 0.93 0.79 0.96 0.96

40_10_10_100k 0.81 N/A 0.85 0.87

40_10_10_200k 0.73 N/A 0.90 0.90

40_20_10_100k 0.61 N/A 0.71 0.69

40_20_10_200k 0.60 N/A 0.69 0.67

40_10_20_100k 1.00 0.90 1.00 1.00

40_10_20_200k 1.00 0.93 1.00 1.00

40_10_25_100k 0.94 0.94 1.00 1.00

40_20_30_100k 0.95 0.92 1.00 1.00

40_10_25_200k 0.96 0.94 0.99 0.99

50_10_10_100k 0.78 N/A 0.88 0.88

50_10_10_200k 0.80 N/A 0.89 0.88

50_20_10_100k 0.63 N/A 0.73 0.71

50_20_10_200k 0.63 N/A 0.71 0.72

50_10_30_100k 0.96 0.94 1.00 1.00

50_20_20_200k 0.97 N/A 0.98 0.98

50_20_30_200k 0.95 N/A 1.00 1.00

Stem Cell 0.98 0.41 0.98 0.91

(6 dimensions, 5 subpopulations)

NDD 0.8 0.77 0.79 0.8

(12 dimensions, 8 subpopulations)

CyTOF 0.59 0.53 0.84 0.82

(39 dimensions, 24 subpopulations)

F-measure is calculated using the original hand-gate labels and the estimated labels generated by each analysis method. The true-positives are found if the

methods assign the same labels to points belonging to the same subpopulation in the hand-gated data. The more true-positives found, the higher the F-

measure, which ranges from 0 to 1, with 1 being the highest. Partition-based methods perform consistently well on data ranging from 5 to 50 dimensions. In

the simulations, d-PAC and b-PAC perform just as well or better than flowMeans and SPADE. flowMeans gives drastically different F-measures for the

cases 20_10_40_100k and 20_20_40_100k: 0.25386 vs. 0.92518; this large difference is likely due to the random initiation of cluster centers. In the hand-

gated datasets, SPADE has the worst performance. Ultimately, the performance of flowMeans and SPADE deteriorate for the 39-dimensional real CyTOF

data, while d-PAC and b-PAC perform consistently well.

In this table, simulated data have the following convention: a_b_c_d, where a denotes the number of dimensions/markers, b denotes the number of

subpopulations, c denotes the edge size of the hypercube for data generation, and d denotes the number of cells. The clustering problem becomes harder

as the number of subpopulations increases and the data space volume decreases. We report the results for simulated cases that worked for all methods,

except for higher-dimension cases in which the clusters are nearby and SPADE failed to cluster; these SPADE results are denoted with N/A.

** In this table, 1.00 means a number which rounds up to 1.00.

https://doi.org/10.1371/journal.pcbi.1005875.t001
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by only one edge; these respective networks are clustered together in the dendrogram (Fig 8A

right panel; subpopulation indexes are suffixes on the dendrogram). By utilizing the networks,

the clades that represent the same and/or similar subpopulations of cells can be established.

Clustering by network structures alone resolves the points in the data (Fig 8A, left panel). In

contrast, alignment by marker (gene expression) levels cannot resolve the batch effect (Fig 8B).

Next we consider the case with dynamic evolution of subpopulations that models the treat-

ment-control and perturbation studies. The interesting information is in tracking how sub-

populations change over the course of the experiment. In the simulation, we have generated

two subpopulations that nearly converge in mean expression profile over the time course (Fig

9). The researcher could lose the dynamic information if they were to combine the samples for

clustering analysis. As in the previous case, we could use PAC to learn several subpopulations

per sample (Fig 10). Then, with the assumption that there are two evolving clusters from data

exploration, we align the subpopulations to construct clades of same and/or similar subpopula-

tions (Fig 11 left panel) based on the network structural information (S3 Fig). With network

and expression level information in the alignment process, the two subpopulations or clades

can be resolved naturally (Fig 11 right panel).

Network and expression alignment is better than network or expression

alignment alone

With networks in hand, we could further characterize the relationships between subpopula-

tions across samples. However, the alignment process needs to work well for true linkage to be

established. We could align by network alone, by expression (or marker) means, or both. Fig

11 presents these alternatives in comparison. By using all the subpopulation networks, the

results still contain subsets of misplaced cells (11 left panel). This is because small clusters of

cells have noisy underlying covariance structure; therefore, the networks cannot be accurately

inferred. These structural inaccuracies negatively impact the network clustering. The (mean)

Fig 5. Schematic analogy of MAN. Consider a deck of networks (in analogy to cards), with each “suit” representing a sample and each “rank”

representing a unique network structure. The networks are aligned by similarity and organized on a dendrogram. The tree is cut (red line) at the optimal

level (by elbow point analysis, see S8 Fig) to output k clades. Within each clade, the network structures are similar or the same. If the same sample has

multiple networks in the same clade, then these networks are merged (black box around same cards).

https://doi.org/10.1371/journal.pcbi.1005875.g005
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Fig 6. Simple batch effect scenario. A simple batch effect dataset was simulated and visualized. This data has 5

dimensions, with 2 informative dimensions for visualization. (a) Two simulated data samples with the same

subpopulations. The means shifted (up in sample 2) due to measurement batch effect. (b) When the samples are

combined, as in the case of analyzing/pooling all samples together, two different subpopulations overlap (left panel).
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marker level approach also does not work well (Fig 11 center panel) due to the subpopulation

mean shifts across samples. On the other hand, the sequential approach works well (Fig 11

right panel). In the sequential approach, larger (>1000) subpopulations’ networks are utilized

for the initial alignment process. Next, the smaller subpopulations, which have noisy covari-

ance, are merged with the closest larger, aligned subpopulations. Thus, more subpopulations

could be discovered upstream (in PAC), and the network alignment would work similarly as

the smaller subpopulations, which could be fragments of a distribution, do not impact the

alignment process (S4A and S4B Fig). Moreover, in the network inference step, unimportant

edges can negatively impact the alignment process (S4C Fig) in the network-alone case. Bio-

logically, this means that edges that do not constrain or define the cellular state should not be

utilized in the alignment of cellular states. Effectively, the threshold placed on the number of

edges in the network inference controls for the importance of the edges. Thus, the combined

alignment approach works well and allows moderate over-saturation of cellular states to be

discovered in the PAC step so that no advance knowledge of the exact number of subpopula-

tions is necessary. It is important to note that we have not utilized high-dimensional mutual

information for network structure inference, which is computationally intensive. It may be

possible that there exist complex relationships between more than two markers that could

yield different network structures for two subpopulations that otherwise would have the same

network structure. However, in our analysis of cytometry data, pairwise mutual information

with downstream processing yields robust characterization of the cellular state relationships

between subpopulations.

PAC-MAN efficiently outputs meaningful data-level subpopulations for

mouse tissue dataset

We use the recently published mouse tissue dataset [11] to illustrate the multi-sample data

analysis pipeline. The processed dataset contains a total of more than 13 million cell events in

10 different tissue samples, and 39 markers per event (S2 Table). The original research results

centered on subpopulations discovered from hand-gating the bone marrow tissue data to find

‘landmark’ subpopulations; the rest of the data points were clustered to the most similar land-

mark subpopulations. While this enables the exploration of the overall landscape from the per-

spective of bone marrow cell types within an acceptable time frame, a significant amount of

useful information from the data remains hidden; a larger dataset would make it infeasible to

analyze by manual gating and existing computational tools to learn the relationships of the cel-

lular states among all samples. In addition, a natural question is how well do the bone marrow

cell types represent the whole immune system?

In contrast to the one-sample perspective, using d-PAC-MAN, the fastest approach by our

comparison results, we can perform subpopulation discovery for each sample automatically

and then align the subpopulations across samples to establish dataset-level cellular states. On a

standard Core i7-44880 3.40GHz PC computer, the single-thread data analysis process with all

data points and optimization takes about two hours to complete, which is much faster than

alternative methods. With multi-threading and parallel processing, the data analysis procedure

can be completed very quickly. As mentioned earlier, PAC results for the bone marrow

The overlapped subpopulations cannot be distinguished by clustering (right panel). (c) PAC could be used to

discover more subpopulations, however, the hints of the present of another subpopulation do not help to resolve the

batch effect. Thus, in this case, it is necessary to analyze the samples separately and then find relationships between

the subpopulations across the samples.

https://doi.org/10.1371/journal.pcbi.1005875.g006
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Fig 7. Calculation of sample clusters and their underlying network structures. (a) In the batch effect simulation data, PAC was used to

discover several subpopulations per sample without advanced knowledge of the exact number of subpopulations. Here, the colors denote the

different clusters within each sample. Panels (b)-(c) show the networks of the subpopulations in both samples 1 and 2, respectively, that are

discovered in (a). In these networks, the nodes denote the markers (or genes) measured (in this simulation data, the dimensions are named V1,

V2,. . ., V5). The edges denote correlative relationship in terms of mutual information. These networks can be grouped by similarities to organize the

subpopulations across samples. In the PAC-MAN implementation, the alignment is based on Jaccard dissimilarity network structure, and we

organize the networks with hierarchical clustering of the Jaccard scores.

https://doi.org/10.1371/journal.pcbi.1005875.g007
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subsetted data from this dataset matches closely to that of the hand-gated results. This accuracy

provides confidence for applying PAC to the rest of the dataset.

Fig 8. Resolution of batch effects for simple batch effect scenario. Network alignments allow the resolution of mean shift batch effect. (a)

Resolution of batch effect by networks of all subpopulations discovered. In the left panel, the colors denote subpopulations that are aligned by

network structures. The overlapped subpopulations are correctly labeled. The right panel shows the hierarchical clustering of the subpopulations’

networks via Jaccard dissimilarities. These subpopulations are the same as those in Fig 7. (b) Resolution of batch effect by marker levels.

Alternative to alignment by network, marker levels (subpopulation centroids) can be used. However, the overlap of the different subpopulations from

the two samples makes it impossible to resolve the mean shift in this simulated data. The hierarchical clustering of the centroids organize the

subpopulations differently than that in part (a).

https://doi.org/10.1371/journal.pcbi.1005875.g008
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Figs 12 and 13 show the t-SNE plots for subpopulation discovered (top panel of each sam-

ple) and the representative subpopulation established (bottom panel of each sample) for the

entire dataset. In the PAC discovery step, we learn 50 subpopulations per sample without

advance knowledge of how many subpopulations are present. This moderate over-partitioning

of the data samples leads to a moderate heterogeneity in the t-SNE plots. From tests, we have

found that learning 2–3 times the expected number of subpopulations in the sample works

well; it is important to emphasize that aggressive over-partitioning is suboptimal because it

creates very small subpopulations that have unstable covariance structures, which removes

these small clusters data points from network alignment. Next, the networks are inferred for

the larger subpopulations (with number of cell events greater than 1000), and the networks are

aligned for all the tissue samples. To choose the optimal number of total subpopulations to

output, we perform the elbow point test at this step, in which we calculated the within cluster

standard deviations while varying the number of subpopulations outputted for the entire data-

set. The elbow point rests at 130 clusters (S8 Fig), and we outputted 130 representative subpop-

ulations, also called clades, for the entire dataset to account for the traditional immunological

cellular states and sample-specific cellular states present. Within samples, the subpopulations

that cluster together by network structure are aggregated. The smaller subpopulations (<1,000

Fig 9. Dynamic batch effect scenario. Two subpopulations, in blue color, migrate in a time series fashion (begins in sample 1, and progresses

through samples 2, 3, 4, and 5). In this simulation data, the dimensions are named V1, V2,. . ., V5, and V1 and V2 are the informative dimensions. The

two sample subpopulations almost converge by mean shifts through the time series. The bottom right panel shows the subpopulations pooled into one

figure; the colors denote subpopulations.

https://doi.org/10.1371/journal.pcbi.1005875.g009
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cells each, not involved in network alignment) are either merged to the closest larger subpopu-

lation or establish their own sample-specific subpopulation by expression alignment. We

attempt to assign these very small subpopulations back with larger clades by grouping all sub-

populations within each sample into 5 expression-level clusters (using cluster centroids), and

thus we kept the larger subpopulations and a maximum of 4 minor sample-specific subpopula-

tions for each tissue sample. Subpopulations with less than 100 cell events were discarded. The

representative subpopulations (143 total including sample-specific minor subpopulations) fol-

low the approximate distribution of the cell events on the t-SNE plots and the aggregating

effect cleans up the heterogeneities due to over-partitioning in the PAC step.

The cell type clades are the representative subpopulations for the entire dataset, and they

could either be present across samples or in one sample alone. Their distribution is visualized

by a heatmap (Fig 14). While the bone marrow sample contains many cell types, only a subset

of them are directly aligned to cell types in other samples, which means using the bone marrow

data as the reference point leaves much information unlocked in the dataset. Therefore, the

data suggests that the bone marrow cell types are not adequate in representing all cell types in

the immune system. The cell types in the blood and spleen samples have various alignments

with cell types in other samples. The lymph node samples share many clades likely due to the

connection through the lymphatic vessels; the small intestine and colon samples also share

many clades, probably due to closeness in location and biological function. Nevertheless,

Fig 10. PAC clustering on dynamic batch effect scenario samples. We used PAC to discover several subpopulations per sample without

advanced knowledge of the number of subpopulations present. The colors within each sample denote a distinct PAC subpopulation, but the colors

have no meaning across samples.

https://doi.org/10.1371/journal.pcbi.1005875.g010
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the results show that the tissue samples do not share exactly the same clades, suggesting that

the immune system cells have different states in different organs. On the other hand, the thy-

mus sample has few clades shared with other samples, which may be due to its functional

specificity.

PAC-MAN style analysis can be applied to align the tissue subpopulations by their means

instead of network similarities (S5 Fig). As done previously, 143 overall representative clades

(130 network clades + 13 minor sample-specific subpopulations) were outputted. The same

aggregating effect is observed (S5A Fig), and this is due to the organization from dataset-level

variation in the means. Comparing to the network alignment, the means linkage approach has

more subpopulations per sample; the subpopulation proportion heatmap (S5B Fig) shows

more linking. Although the bone marrow sample subpopulations co-occur in the same clades

slightly more with other sample subpopulations, this sample does not co-occur with many

clades in the dataset. Thus, a PAC-MAN style analysis with means linkage also harvests addi-

tional information from the entire dataset.

In general, the means alignment approach gives many more clades per sample than that of

the network alignment PAC-MAN approach. In fact, the network approach has 88 linkages

while the means approach has 270 linkages. The linkage plot (S6A Fig) shows that the low link-

ages occur slightly more frequently for the network approach. One consequence is that the net-

work approach aggregates PAC subpopulations within sample more frequently; for instance,

Fig 11. Resolution of dynamic batch effects scenario. Comparison of PAC-MAN results between representative clades (number of clades set to

2). Using network structures (left panel) or expression information (middle panel) alone does not resolve the dynamic information. On the other hand,

the dynamic information is resolved first by alignments of networks of larger subpopulations and then by merging smaller subpopulations (with

unstable network structures) by expression into the aligned clades (right panel).

https://doi.org/10.1371/journal.pcbi.1005875.g011
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Fig 12. Visualization of PAC vs. PAC-MAN results for blood, bone marrow, colon, inguinal lymph node, and liver samples.

The PAC (explorative clustering) and PAC-MAN (data-level cellular states) results are presented for each sample in column-wise

fashion. Each tissue sample’s t-SNE plots were generated using 100,000 randomly drawn cell events for that sample. The results

from PAC (top panel) and PAC-MAN (bottom panel) steps are presented in pairs. Initial PAC discovery was set to 50 subpopulations
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in the thymus sample, the network approach yields 13 clades (and 2 minor sample-specific

subpopulations) while the means approach yields 39 clades.

After aggregating, the clade sizes (with unique participants per sample) are plotted (S6B

Fig). The network approach tends to find fewer linkages, as more clades have sizes of less than

4, while the means approach has more clades than the network approach with clade sizes

greater than 4. The network approach is more conservative due to the additional constraints

from network structures. Conventionally, in the cytometry field, only the means are consid-

ered in the definition of cellular states. The network alignment is more stringent in the estab-

lishment of linkages; the network PAC-MAN approach defines cellular states with the

additional information from network structures, and it has the effect of constraining the num-

ber of linkages between samples while finding linkages for subpopulations that are distant in

their means.

Further studies are needed to combine the information from both the marker level and net-

work structures to organize the cellular states discovered in cytometry datasets, for example,

through a weighted score based on the means and network alignments. In this study, we dem-

onstrated that the covariance and network structures built from subpopulations are valuable

and can be utilized to organize data-level cellular state relationships.

Network hubs provide useful annotations

To further characterize the cell types, we annotate the clades within each sample using the top

network hub markers, which constrain the cellular states. The full network structure annota-

tion, along with average expression profiles, is presented in S3 Table. The clade information is

presented in the ClusterID column. The annotations for cells across different samples but

within the same clades share hub markers. For example, in clade 1 for the blood and bone mar-

row samples, the cells share the hub markers Ly6C and CD11b. In the bone marrow sample,

one important set of subpopulations is the hematopoietic stem cell subpopulations. One such

subpopulation is present as clade 33 with the annotation F4/80.CD16/32.Sca1.cKit and is

about 1.18 percent in the bone marrow sample. Clade 33 is only present in the bone marrow

sample, indicating that the PAC-MAN pipeline defines this as a sample-specific and coherent

subpopulation using dataset-level variation. The thymus contains a large subpopulation clade

124 (84.07 percent) that is characterized as CD5.CD43.CD3.CD4, suggesting it to be the

maturing T-cell subpopulation.

Constellation plot combines clade and signal information

PAC-MAN generates both the clade and subpopulation signal (or expression) information. Fig

14 visualizes the occurrence and proportions of representative subpopulations in the dataset. To

understand the expression levels of the markers for the subpopulation, a heatmap is constructed

(Fig 15 and S14 Fig). In high-dimension, the subpopulations can form regions in which similar

cellular states are next to each other. Do subpopulations belonging to the same clade occupy the

same region? In addition, what is the spatial spread of subpopulations belonging to the same

clade? To visualize the clade relationships between subpopulations in the dataset, we construct

the constellation plot (Fig 16). First, the centroids of the discovered subpopulations are inputted

into a t-SNE visualization processing, which projects and separates the centroids onto a 2D

without advanced knowledge of the number of subpopulations in each sample. In MAN, 130 network clades (optimal number from

elbow point analysis) were outputted, and the cellular states are defined by expression (marker signal), network structure, and

dataset-level variation. This composite definition of cellular state naturally aggregates the PAC clusters to yield smaller number of

subpopulations in less variable samples. S11 Fig is a higher resolution version of Fig 12 with subpopulation and clade labels.

https://doi.org/10.1371/journal.pcbi.1005875.g012
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Fig 13. Visualization of PAC vs. PAC-MAN results for lung, mesenteric lymph node, spleen, thymus, and small intestine

samples. The settings and descriptions are the same as those in Fig 12. Continuation of visualization of PAC-MAN results for the

mouse tissue data. S12 Fig is a higher resolution version of Fig 13 with subpopulation and clade labels.

https://doi.org/10.1371/journal.pcbi.1005875.g013
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Fig 14. Heatmap of clade proportions across the tissue samples. Sample-specific clades have a value of

1, while shared clades have proportions spread across different samples. Physiologically similar samples

share more clades. S13 Fig is a higher resolution version of Fig 14 with clade labels.

https://doi.org/10.1371/journal.pcbi.1005875.g014
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plane. Next, the clades are color-coded such that 1) grey color indicates sample-specific clade

and 2) non-grey colors indicate clades with multiple sample representation. Finally, we group

the subpopulations in each clade by drawing lines to connect the closest clade subpopulation on

the 2D plane, analogous to the visualization of stars by constellation nomenclature.

The constellation plot is useful in looking at the spread of the clades in relation to other

subpopulations. For example, clade 10, which contains subpopulations that are CD45+CD3+

CD5+CD8+, and clade 8, which contains subpopulations that are CD45+CD3+CD5+CD4+,

are T cells (S14 Fig); these two clade groups exist next to each other in the constellation plot,

but they do not overlap. Clade 2 is in a region that contains CD45+CD19+B220+ subpopula-

tions, which signify B cells. Furthermore, within each clade, the subpopulation networks are

similar and contain similar hub genes. For instances, clades 2 and 8 represent data-level sub-

sets of T cells and B cells, respectively; clades 2 and 8’s networks are presented in Figs 17 and

18. Each clade has its unique network structures and a set of hub markers. Overall, in this anal-

ysis, we observe that clades defined by signal levels and network structures tend to occupy

defined regions in high-dimensional space. Certainly, not all cell types are present in all tissue

samples, and those immune cell subsets that are similar enough to be in the same clade may

differ due to their tissue-specific, local environmental factors.

Conclusion

We have presented the PAC-MAN data analysis pipeline. This pipeline was designed to

remove major roadblocks in the utilization of existing and future CyTOF datasets. First, we

established a quick and accurate clustering method that closely matches expert gating results;

second, we demonstrated the management of multiple samples by handling mean shifts and

batch effects across samples. We demonstrated that the inter-marker relationship in the form

of mutual information networks is extremely useful in defining cellular states. The alignment

of network structures allows researchers to find relationships between cells across samples

without resorting to pooling of all data points. PAC-MAN allows the cytometry field to harvest

information from the increasing amount of CyTOF data available. It is important to standard-

ize multi-sample data analysis with automation so that discoveries based on multi-sample

CyTOF datasets from different laboratories do not depend on the experts’ manual gating strat-

egies and the grouping of subpopulations that is constrained by non-systematic computations.

Furthermore, due to PAC-MAN’s generality, this pipeline can be utilized to analyze large data-

sets of high-dimension beyond the cytometry field.

Materials and methods

Partition-assisted clustering has two parts

1. Partitioning: a partition method (BSP[5] or DSP[7]) is used to learn N initial cluster centers

from the original data.

2. Post-processing: A small number (m) of k-mean iterations is applied to the rectangle-based

clusters from the partitioning, where m is a user-specified number. We used m = 50 in our

examples. After this k-means refinement, we merge the N clusters hierarchically until the

desired number of clusters (this number is user-specified) is reached. The merging is based

on a given distance metric for clusters. In the current implementation, we use the same dis-

tant metric as in flowMeans[1]. That is, for two clusters X and Y, their distance D(X,Y) is

defined as:

DðX;YÞ ¼ minfð�x � �yÞTS� 1

x ð�x � �yÞ; ð�x � �yÞTS� 1

y ð�x � �yÞg ð1Þ
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where �x; �y are the sample mean of cluster X and Y, respectively. S� 1

x is the inverse of the

sample covariance matrix of cluster X. S� 1
y is defined similarly. In each step of the merging

process, the two clusters having the smallest pairwise distance will be merged together into

one cluster.

Partition methods

There are two partition methods implemented in the comparison study: d-PAC and b-PAC.

The results are similar, with d-PAC being the faster algorithm. Fig 1A illustrates this recursive

process.

d-PAC is based on the discrepancy density estimation (DSP)[7]. Discrepancy, which is

widely used in the analysis of Quasi-Monte Carlo methods, is a metric for the uniformity of

points within a rectangle. DSP partitions the density space recursively until the uniformity of

points within each rectangle is higher than some pre-specified threshold. The dimension and

the cut point of each partition are chosen to approximately maximize the gap in uniformity of

two adjacent rectangles.

Fig 15. Heatmap of average subpopulation expression levels in all tissue samples. The expression

heatmap illustrates the average expression of PAC-MAN-discovered subpopulations. The subpopulations are

grouped by hierarchical clustering, and subpopulations close in expression space are organized into blocks.

S14 Fig is a higher resolution version of Fig 15 with clade labels.

https://doi.org/10.1371/journal.pcbi.1005875.g015

Fig 16. Constellation plot of clades. The constellation plot is designed to visualize both the expression and clade information of discovered

subpopulations. Here, the centroids (average expression) of PAC-MAN-discovered subpopulations in the example tissue dataset are projected onto a t-SNE

2D space. Clades that only occur in one sample are colored grey. The non-grey clades occur in at least two samples, with unique colors and clade

identification denoting each clade. On the constellation plot, the closest multi-sample clade subpopulations are connected by a straight line.

https://doi.org/10.1371/journal.pcbi.1005875.g016

Scalable multi-sample analysis of single-cell data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005875 December 27, 2017 25 / 37

https://doi.org/10.1371/journal.pcbi.1005875.g015
https://doi.org/10.1371/journal.pcbi.1005875.g016
https://doi.org/10.1371/journal.pcbi.1005875


BSP + LL is an approximation inference algorithm for Bayesian sequential partitioning den-

sity estimation (BSP)[5]. It borrows ideas from Limited-Look-ahead Optional Pólya Tree

Fig 17. Network structures of Clade 2: B cells. In each network figure, the markers are denoted by nodes of different

colors. These networks show the top edges that define the network structures for subpopulations in clade 2. The

subpopulation network structures for each subpopulation in clade 2 show that certain markers, such as B220 and MHCII,

are hubs across most, if not all, networks in this clade. This hub combination is consistent and unique to clade 2 (see Fig 18).

https://doi.org/10.1371/journal.pcbi.1005875.g017
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Fig 18. Network structures of Clade 8: CD4+ T cells. The set up is the same as in Fig 17. The subpopulation network structures for each

subpopulation in clade 8 show that certain markers, such as CD3 and CD4, are hubs across most, if not all, networks in this clade. This hub

combination is consistent and unique to clade 8.

https://doi.org/10.1371/journal.pcbi.1005875.g018
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(LL-OPT), an approximate inference algorithm for Optional Pólya Tree[6]. The original infer-

ence algorithm for BSP looks at one level ahead (i.e. looking at the possible cut points one level

deeper) when computing the sampling probability for the next partition. It then uses resam-

pling to prune away bad samples. Instead of looking at one level ahead, BSP + LL looks at h lev-

els ahead (h > 1) when computing the sampling probabilities for the next partition and does

not do resampling (Fig 1B). In other words, it compensates the loss from not performing

resampling with more accurate sampling probabilities. For simplicity, ‘BSP + LL’ is shortened

to ‘BSP’ in the rest of the article.

F-measure

We use the F-measure for comparison of clustering results to ground truth (known in simu-

lated data, or provided by hand-gating in real data). This measure is computed by regarding a

clustering result as a series of decisions, one for each pair of data points. A true positive deci-

sion assigns two points that are in the same class (i.e. same class according to ground truth) to

the same cluster, while a true negative decision assigns two points in different classes to differ-

ent clusters. The F-measure is defined as the harmonic mean of the precision and recall. Preci-

sion P and recall R are defined as:

P ¼
TP

TPþ FP
ð2Þ

R ¼
TP

TPþ FN
ð3Þ

where TP is the total number of true positives, FP is the total number of false positives and FN

is the total number of false negatives.

F-measure ranges from 0 to 1. The higher the measure, the more similar the estimated clus-

ter result is to the ground truth. This definition of F-measure is different than that of FlowCAP

challenge[2]. The use of co-assignment of labels in this definition is a more accurate way to

compute the true positives and negatives.

Purity-measure (p-measure)

Most of the existing measurements for clustering accuracy aim at measuring the overall accu-

racy of the entire datasets, i.e. comparing with the ground truth over all clusters. However, we

are also interested in analyzing how well a clustering result matches the ground truth within a

certain class. Specifically, consider a population with K classes in the ground truth: {C1,C2,. . .,

CK}. We construct a class-specific index called the purity measure, or p-measure for short, to

measure how well our clustering result matches the ground truth. This index is computed as

follows:

1. For each class Ck, look for the cluster that has the maximum number of overlapping points

with this class, denoted by Lik .

2. Define

S1 ¼
jCk \ Lik

j

jLik
j

; S2 ¼
jCk \ Lik

j

jCkj
ð4Þ

where |�| denotes the number of points in a set.
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3. The final P-index for class Ck is given by

P ¼
2S1S2

S1 þ S2

ð5Þ

If we were to match a big cluster with a small class, even though the overlapping may be

large, S1 would still be low since we have divided the score by the size of the cluster in S1. In

addition, we are interested in knowing how many points in Ck are clustered together by Lik
,

which is measured by S2.

Network construction and comparison

After PAC, the discovered subpopulations typically have enough cells for the estimation of

mutual information. This enables the construction of networks as the basis for cell type charac-

terization. In these networks, the nodes represent the markers monitored in the experiment,

while the edges represent a correlation/mutual information dependence relationship between

the marker levels. Computationally, it is not good to directly use the mutual information net-

works constructed this way to organize the subpopulations downstream. The distance measure

used to characterize the networks could potentially give the same score for different network

structures. Thus, it is necessary to threshold the network edges based on the strength of mutual

information to filter out the noisy and miscellaneous edges. In this work, these subpopulation-

specific networks are constructed using the MRNET network inference algorithm in the Par-

migene [15] R package. The algorithm is based on mutual information ranking, and outputs

significant edges connecting the markers. The top d edges (d is set to be 1x the number of

markers in all examples) are used to define a network for the subpopulation. This process

enables a careful calculation of the distance measure.

For each pair of subpopulation networks, we calculate a network distance, which is defined

as follows. If G1 and G2 are two networks, let S be the set of shared edges and A be union of the

of the edges in the two networks, then we define

Similarity G1;G2ð Þ ¼
jSj
jAj

ð6Þ

where |�| denotes the size of a set.

This is known as the Jaccard coefficient of the two graphs. The Jaccard distance, or 1- Jac-

card coefficient, is then obtained. This is a representation of the dissimilarity between each

pair of networks; the Jaccard dissimilarity is the measure used for the downstream hierarchical

clustering.

Cross-sample linkage of subpopulations

We perform agglomerative clustering of the pool of subpopulations from all samples. This

clustering procedure greedily links networks that are the closest in Jaccard dissimilarity, and

yields a dendrogram describing the distance relationship between all the subpopulations. We

cut the dendrogram to obtain the k clades of subpopulations. Subpopulations from the same

sample and falling into the same clade are then merged into a single subpopulation (Fig 5).

This merging step has the effect of consolidating the moderate over-partitioning in the PAC

step. No merging is performed for subpopulations from different samples sharing the same

clade. In this way, we obtain k clades of subpopulations, with each clade containing no more
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than one subpopulation from each sample. We regard the subpopulations within each clade as

being linked across samples.

In the above computation, only subpopulations with enough cells to define a stable covari-

ance are used for network alignment via the Jaccard distance; the rest of the cell events from

very small subpopulations are then merged with the closet clade by marker profile via distance

of mean marker signals. If the small subpopulations are distant from the defined clades, then a

new sample-specific clade is created for these small subpopulations.

Elbow point analysis of optimal number of clades

To efficiently find the practical number of clades to output for PAC-MAN, we utilize the

elbow point analysis approach. Initially in the PAC step, the sample points are clustered into

2–3 times the expected number of sample subpopulations expected by the researcher. Next, we

calculate the within-cluster errors, or distance from the subpopulation centroid, for each clus-

ter in all samples, and we obtain the within-cluster errors for all sample. This calculation is per-

formed for a range of numbers of clades in MAN. Loess smoothing is applied to the average

within-cluster errors over the numbers of clades, and the researcher determines the location of

the elbow point, which is then inputted into the final network alignment.

Constellation plot analysis

To visualize the cellular state distribution in high-dimension, we construct the constellation

plot. On the constellation plot, we observe two layers of information: the distribution of the

clusters by expression level projection and the network similarities. By building the network

structures and performing structural alignments, we remove extraneous connectivity between

subpopulations that may appear close together in ‘expression space’ by grouping only subpop-

ulations with strong network structural similarity. Those subpopulations that are in different

clades but are close together on the constellation plot can be sample-specific subpopulations

worth validating by future sorting and characterization experiments; these subpopulations are

coherent clusters by expression and their network structures are different from those of other

subpopulations.

In the constellation plot construction, Barnes-Hut t-SNE with default setting (perplexity of

30 and 1000 iterations) was run on the centroids (of expression/measurement signal) of the

discovered clade subpopulations for the entire dataset after PAC-MAN; t-SNE plot projects

and separates the centroids in two dimensions. Next, the clades are color-coded such that

1) grey color indicates sample-specific clade and 2) non-grey colors indicate clades with

multiple sample representation. The subpopulations in each clade are grouped by lines con-

necting the closest clade subpopulation, analogous to the visualization of stars by constellation

nomenclature.

Relative Euclidean distances (in the t-SNE embedding) between subpopulations and clade

centers are utilized to prune away subpopulations that are far away within clades. For clades

containing three or more subpopulations, the distances to clade centroids for each clade on

the t-SNE plane are used as thresholds, and subpopulations that are more than twice (thresh-

old constant multiplier) the average distance to their clade centroid are pruned. For clades

with only two subpopulations, the distances between the subpopulations for each two-subpop-

ulation clade are calculated; the mean of these distances for the two-subpopulation clades is

used as a global threshold. Any two-subpopulation clade with separate larger than twice

(threshold constant multiplier) this global threshold is pruned. The researcher also controls a

maximum global separation threshold, and the pruning procedure uses the minimum of the
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thresholds to determine the pruning of clade subpopulations. All pruned away subpopulations

are given new clade designation (S9 Fig).

Network annotation of subpopulations

To annotate the cellular states, we first apply PAC-MAN to learn the dataset-level subpopula-

tion/clade labels. Next, these labels are used to learn the representative/clade networks. The

top hubs (i.e. the most connected nodes) in these networks are used for annotation. This

approach has biological significance in that important markers in a cellular state are often

central to the underlying marker network, which is analogous to important genes in gene

regulatory networks; these important markers have many connections with other markers.

If the connections were broken, the cell would be perturbed and potentially driven to other

states.

Running published methods

To run t-SNE [16] a dimensionality reduction visualization tool, we utilized the scripts pub-

lished here (https://lvdmaaten.github.io/tsne/). Default settings were used.

To run SPADE, we first converted the simulated data to fcs format using Broad Institute’s

free CSVtoFCS online tool in GenePattern[17] (http://www.broadinstitute.org/cancer/

software/genepattern#).

Next, we carried out the tests using the SPADE package in Bioconductor R[18] (https://

github.com/nolanlab/spade).

To run flowMeans, we carried out the tests using the flowMeans package in Bioconductor

R[1] (https://bioconductor.org/packages/release/bioc/html/flowMeans.html).

In the comparisons, we selected only cases that work for all methods to make the tests as

fair as possible.

To calculate the mutual information of the subpopulations, we use the infotheo R package

(https://cran.r-project.org/web/packages/infotheo/index.html).

To run network inference, we use the mrnet algorithm in the parmigne R package [15].

(https://cran.r-project.org/web/packages/parmigene/index.html).

Code availability

The PAC R package can be accessed at: https://cran.r-project.org/web/packages/PAC/index.

html

Simulated data for clustering analysis

To compare the clustering methods, we generated simulated data from Gaussian Mixture

Model varying dimension, the number of mixture components, mean, and covariance. The

dimensions range from 5 to 50. The number of mixture components is varied along each

dimension. The mean of each component was generated uniformly from a d-dimensional

hypercube; we generated datasets using hypercube of different sizes, but kept all the other attri-

butes the same. The covariance matrices were generated as AAT, where A is a random matrix

whose elements were independently drawn from the standard normal distribution. The sizes

of the simulated dataset range from 100k to 200k.

The simulated data are provided as (Datasets 1–6). Datasets 1–6 are for the PAC part. Data-

set 1 contains data with 5 dimensions; Dataset 2 contains data with 10 dimensions; Dataset 3

contains data with 20 dimensions; Dataset 4 contains data with 35 dimensions; Dataset 5
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contains data with 40 dimensions; and Dataset 6 contains data with 50 dimensions. The

ground truth labels are included as separate sheets in each dataset.

When applying flowMeans, SPADE, and the PAC to the data, we preset the desired number

of subpopulations to that in the data to allow for direct comparisons.

Gated flow cytometry data

Two data files were downloaded from the FlowCAP challenges[2]. One data file is from the

Hematopoietic stem cell transplant (HSCT) data set; it has 9,936 cell events with 6 markers,

and human gating found 5 subpopulations. Another data file is from the Normal Donors (ND)

data set; it has 60,418 cell events with 12 markers, and human gating found 8 subpopulations.

The files are the first (‘001’) of each dataset. These data files were all 1) compensated, meaning

that the spectral overlap is accounted for, 2) transformed into linear space, and 3) pre-gated to

remove irrelevant events. We used the data files without any further transformation and filter-

ing. When applying flowMeans, SPADE, and the PAC to the data, we preset the desired num-

ber of subpopulations to that in the data to allow for direct comparisons.

Gated mass cytometry data

Human gated mass cytometry data was obtained by gating for the conventional immunology

cell types using the mouse bone marrow data recently published[11]. The expert gating strat-

egy is provided as S1 Fig. The gated sample subset contains 64,639 cell events with 39 markers

and 24 subpopulations and it is provided as Dataset 9.

To test the performance of different analysis methods, the data was first transformed using

the asinh(x/5) function, which is the transformation used prior to hand-gating analysis; For

SPADE analysis, we utilize the asinh(x/5) option in the SPADE commands. The post-cluster-

ing results from flowMeans, SPADE, b-PAC, and d-PAC were then subsetted using the indexes

of gated cell events. These subsetted results are compared to the hand-gated results.

Simulated data for MAN analysis

To test the linking of subpopulations, we generated simulated data from multivariate Gaussian

with preset signal levels and randomly generated positive definite covariance matrices. There

are two cases, batch effect and dynamic. Each simulated sample file has five dimensions, with

two of these varying in levels; these are the dimensions that are visualized. Dataset 7 contains

the data for general batch effects case and Dataset 8 contains the data for dynamic effects case.

The ground truth labels are included as separate sheets in each dataset.

General batch scenario. Sample 1 represents data from an old instrument (instrument 1)

while sample 2 represents data from a new instrument (instrument 2). There are two subpopu-

lations per sample. These two subpopulations are the same, but their mean marker levels

shifted higher up in sample 2 due to higher sensitivity of instrument 2 (Fig 6A). The subpopu-

lations have different underlying relationships between the markers. In this simulated experi-

ment, five markers were measured. Out of the five markers, two markers show significant

shift, and we focus on these two dimensions by 2-dimensional scatterplots. In Fig 6A, the left

subpopulation in sample 1 is the same as the left subpopulation in sample 2; the same with the

right subpopulation. The same subpopulations were generated from multivariate Gaussian dis-

tributions with changing means with fixed covariance structure.

Dynamic scenario. Dynamic scenario models the treatment-control and perturbation

studies. In the simulation, we have generated two subpopulations that nearly converge over

the time course (Fig 9). The researcher could lose the dynamic information if they were to
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combine the samples for clustering analysis. The related subpopulations were generated from

multivariate Gaussian distributions with changing means with fixed covariance structure.

Raw CyTOF data processing

The researcher preprocesses the data to 1) normalize the values to normalization bead signals,

2) de-barcode the samples if multiple barcoded samples were stained and ran together, and 3)

pre-gate to remove irrelevant cells and debris to clean up the data[9,19]. Gene expressions look

like log-normal distributions[20]; given the lognormal nature of the values, the hyperbolic arc-

sine transform is applied to the data matrix to bring the measured marker levels (estimation of

expression values) close to normality, while preserving all data points. Often, researchers use

the asinh(x/5) transformation, and we use the same transformation for the CyTOF datasets

analyzed in this study.

Mouse tissue data

In the Spitzer et al., 2015 dataset[11], three mouse strains were grown, and total leukocytes

were collected from different tissues: thymus, spleen, small intestine, mesenteric lymph node,

lung, liver, inguinal lymph node, colon, bone marrow, and blood. In each experiment, 39

expression markers were monitored. The authors used the C57BL6 mouse strain as the refer-

ence[11]; the data was downloaded from Cytobank, and we performed our analysis on the ref-

erence strain.

First, all individual samples were filtered by taking the top 95% of cells based on DNA con-

tent and then the top 95% of cells based on cisplatin: DNA content allows the extraction of

good-quality cells and cisplatin level (low) allows the extraction of live cells. Overall, the top

90% of cell events were extracted. The filtered samples were then transformed by the hyper-

bolic arcsine (x/5) function, and merged as a single file, which contains 13,236,927 cell events

and 39 markers per event (S2 Table).

Using PAC-MAN, we obtained 50 subpopulations in each sample, then, using elbow point

analysis, we output 130 clades for the entire dataset. The 130 clades account for the traditional

immune subpopulations and sample-specific subpopulations, which may include resident

immune cells that are unique to certain tissues. In the network alignment step, smaller PAC

subpopulations (<1,000 cells) are left out because they may not have stable covariance and net-

work structures. We attempt to assign the left-out small subpopulations back to the dataset:

hierarchical clustering of the cluster centroids (marker signals or expression level) was per-

formed, and we limit the total number of unique small sample-specific subpopulation by gen-

erating 5 “expression” clades per sample in the clustering (the larger subpopulations with a

maximum of four sample-specific minor subpopulations that have less than 1,000 cells). Subse-

quently, any clade with less than 100 cells was discarded. Subpopulation proportion heatmap

was plotted to visualize the subpopulation-specificities and relationships across the samples.

Network annotation was performed using the hub markers of each representative subpopula-

tion in each sample. Finally, we plotted the expression heatmap for all the clades and the con-

stellation plot to visualize the cross-sample clade relationships.

Supporting information

S1 Fig. Gating strategy of CyTOF data for methods comparison. Biaxial gating hierarchy for

the mouse bone marrow CyTOF dataset. Gating strategy that was used to find 24 reference

populations in the mouse bone marrow CyTOF data. Pre-gating step involved removal of dou-

blets, dead cells, erythrocytes and neutrophils. Non-neutrophils population was either subject

to cluster analysis by computational tools or subsequent gating. Dotted boxes represent 24
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terminal gates that were selected as reference populations for the comparison analysis.

(TIF)

S2 Fig. Subpopulation purity of simulated and real CyTOF data. (a) Subpopulation-specific

purity plot of 35-dimensional simulated data with 10 subpopulations. The blue points denote the

differences between the p-measures of the partition-based method (either d-PAC or b-PAC) and

flowMeans, while the red points denote the p-measure differences between the partition methods

and SPADE. The horizontal line at 0 means no difference between the methods. Most of the blue

and red points are above 0, indicating that the PAC generates purer subpopulations compared to

the ground truth. The two subplots are very similar, which means that d-PAC and b-PAC give

very similar p-measures. More precisely, the sum of differences between d-PAC and flowMeans

and d-PAC and SPADE are 0.85 and 1.09, respectively; and the overall difference between b-PAC

and flowMeans and b-PAC and SPADE are 0.84 and 1.08, respectively.

(b) Subpopulation-specific purity plot of the hand-gated CyTOF data. The same convention is

used as in (S2A Fig). Again, more blue and red points are above 0, indicating that the partition-

based methods generate purer subpopulations compared to the ground truth. There is a cluster of

points below 0 occurring in the middle of the plot, suggesting that flowMeans and SPADE capture

the mid-size subpopulations more similar to hand-gating than the partition-based methods. More

specifically, flowMeans does better (p-measure difference of 0.1 or better; difference of less 0.1 is

considered practically no difference) with finding subpopulations of GMP, CD8 T cells, MEP,

CD4 T cells (compared to d-PAC), and Plasma cells, while SPADE does better with CD19+IgM-

B cells, NK cells (compared to d-PAC), CD8 T cells, NKT cells, Basophils, Short-Term HSC, and

Plasma cells. However, overall, PAC has a much better performance, as the absolute sum of points

above 0 is higher than that of points below 0. More precisely, the sum of differences between d-

PAC and flowMeans and d-PAC and SPADE are 1.21 and 1.45, respectively; and the overall dif-

ference between b-PAC and flowMeans and b-PAC and SPADE are 2.06 and 2.31, respectively.

The difference table is provided in S1 Table.

(TIF)

S3 Fig. Networks inferred from subpopulations in the dynamic example simulated dataset.

Fig 9 introduced the dynamic example in which five samples each having 2 true subpopula-

tions captures the almost-convergence of means. Here the underlying network structures for

the PAC discovered subpopulations (three per sample) in Fig 10 are presented.

(TIF)

S4 Fig. Comparison between aligning cross-sample subpopulations by network, expression

profile, or both. (a) PAC can be used to discover more subpopulations, with the effect of more

partitions from the true clusters. (b) When over-partitioning is present, network or expression

profile alone cannot resolve the dynamic (or batch) effects due to noisy covariance for small

fragments of distributions. However, first aligning the larger subpopulations with more stable

covariance, and thus network structures, and then merge in the smaller subpopulations by

expression profile resolves the effects. (c) If more irrelevant edges were introduced, network

alignment would fail due to the negative impact of the miscellaneous edges; however, eliminat-

ing small subpopulations from the alignment step alleviates the increased edge count problem.

(TIF)

S5 Fig. PAC-MAN style linkage by means. (a) t-SNE plots of mouse tissue samples colored

by representative subpopulations labels from linkage by means. (b) Subpopulation proportion

heatmap of clades of samples from linkage by means.

(TIF)
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S6 Fig. Comparison between network and means PAC-MAN. (a) PAC-discovered subpopu-

lations are aggregated by MAN into clades; the number of PAC subpopulations/clades for the

network and means PAC-MAN approaches are plotted. (b) After aggregating shared clades

within samples, the number of shared clades for the entire dataset is plotted for the two PAC-

MAN approaches.

(TIF)

S7 Fig. Clustering with t-SNE projected points. We use t-SNE plots heavily for visualization

in our study. We tested the approach of clustering on t-SNE projected points using kmeans.

We observe that, despite being a very valuable visualization tool, t-SNE points do not contain

much information for defining well-separated clusters for the usual clustering algorithms that

depend on Gaussian geometry. It is best to perform the clustering using all data points in the

original high-dimensional space, and then use t-SNE to visualize a subset of the points

(amount chosen with computational capacity to run t-SNE).

(TIF)

S8 Fig. Elbow point analysis to find practical optimal number of clades. Elbow point analy-

sis is the most computationally feasible approach to find the optimal number of clades to out-

put. We calculated the within-cluster errors (from the centroid) for each of the example tissue

sample. Next, we averaged the within-cluster errors for all 10 tissue samples. This calculation

was performed for a range of numbers of clades. Next, loess smoothing was applied to the aver-

age within-cluster errors over the numbers of clades. The elbow point occurs at 130 clades,

highlighted by the vertical blue line.

(TIF)

S9 Fig. Pruned constellation plot. As descripted in Materials and Methods, relative distances

between subpopulations and clade centers are utilized to prune away subpopulations that are

far away within clades. Clades 6 and 39 were pruned by setting threshold constant multiplier

at 2.

(TIF)

S10 Fig. t-SNE visualization of clustering methods. Higher resolution version of Fig 4.

(TIFF)

S11 Fig. Visualization of PAC vs. PAC-MAN results for blood, bone marrow, colon, ingui-

nal lymph node, and liver samples. Higher resolution version of Fig 12 (in another color

scheme) with subpopulation and clade labels.

(TIF)

S12 Fig. Visualization of PAC vs. PAC-MAN results for lung, mesenteric lymph node,

spleen, thymus, and small intestine samples. Higher resolution version of Fig 13 (in another

color scheme) with subpopulation and clade labels.

(TIF)

S13 Fig. Heatmap of clade proportions across the tissue samples. Higher resolution version

of Fig 14 with clade labels.

(TIF)

S14 Fig. Heatmap of average subpopulation expression levels in all tissue samples. Higher

resolution version of Fig 15 with clade labels.

(TIF)
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S1 Table. Purity (p) measure differences in CyTOF comparison. p-measure differences in

gated CyTOF data analysis comparison. The differences are shown for all the annotated cell

subpopulations, which are ordered by their sizes. Overall, the PAC methods give more positive

p-measures.

(XLSX)

S2 Table. Sample sizes in mouse tissue CyTOF dataset. The numbers of cells in the samples

of Spitzer et al., 2015 CyTOF dataset. The data is from the C57BL6 mouse strain and a total of

ten tissue samples are present. The raw column shows the number of cells prior to filtering by

DNA and cisplatin values. The final cell counts are shown in the filtered file (3rd) column.

(XLSX)

S3 Table. PAC-MAN subpopulation characterization output for mouse tissue CyTOF

dataset. The full set of annotated results, along with mean expressions, subpopulation propor-

tion and counts, are reported.

(XLS)
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