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Hematopoietic cell transplant is a curative therapy for many pediatric patients with

high risk acute lymphoblastic leukemia. Its therapeutic mechanism is primarily based

on the generation of an alloreactive graft-versus-leukemia effect that can eliminate

residual leukemia cells thus preventing relapse. However its efficacy is diminished by

the concurrent emergence of harmful graft-versus-host disease disease which affects

healthly tissue leading to significant morbidity and mortality. The purpose of this review

is to describe the interventions that have been trialed in order to augment the beneficial

graft-versus leukemia effect post-hematopoietic cell transplant while limiting the harmful

consequences of graft-versus-host disease. This includes many emerging and promising

strategies such as ex vivo and in vivo graft manipulation, targeted cell therapies,

T-cell engagers and multiple pharmacologic interventions that stimulate specific donor

effector cells.

Keywords: pediatric B-ALL, graft-versus-leukemia, graft-versus-host disease, relapse, hematopoietic cell

transplantation

INTRODUCTION

Hematopoietic cell transplantation (HCT) is a curative treatment for many children with high-
risk or relapsed acute lymphoblastic leukemia (ALL). Its primary benefit comes from the
generation of an effective alloreactive immune response that targets leukemia cells termed
the graft-versus-leukemia (GVL) effect. However, its efficacy is hampered by the simultaneous
occurrence of a graft-versus-host disease (GVHD) process in which the alloreactive donor cells
attack healthy tissue leading to significant non-relapse related morbidity and mortality. These two
processes are closely but not invariably linked; therefore the ultimate goal of the HCT community
is to develop strategies that maximize GVL while preventing GVHD.
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THE GRAFT-VERSUS-LEUKEMIA (GVL)
EFFECT

The efficacy of HCT is based on two principles. First, the use
of high-dose myeloablative conditioning before HCT reduces
the risk of graft rejection facilitating full donor chimerism and
directly kills leukemia cells. Several cohort studies of pediatric
patients with ALL demonstrate that full donor chimerism
is associated a lower risk of relapse (1–4). Secondly, the
donor graft mediates a graft-versus-leukemia GVL effect, via
alloreactive T, NK and B cells. The primary mechanisms
underlying the GVL effect involves donor T-cells attacking
cells expressing recipient self-antigens and NK cells attacking
recipient cells lacking expression of inhibitory ligands. The
therapeutic potential of donor T-cells has been surmised from:
(1) clinical studies demonstrating that recipients of syngeneic
HCT have a higher incidence of relapse with a reduction in
GVHD (5); (2) increased relapse risk associated with extensive
ex vivo T-cell depleted donor grafts (6); (3) cure of patients who
underwent non-myeloablative and reduced intensity HCT where
the conditioning would provide minimal anti-leukemia effect;
(4) the successful use of donor lymphocyte infusions post-HCT
in treating relapse and most importantly (5) a decreased risk of
relapse associated with grade I-II acute GVHD (aGVHD) and
chronic GVHD (cGVHD).

NK cells are part of the innate immune system, kill cancer cells
without prior sensitization and have demonstrated an important
role in GVL, particularly in T-cell depleted haploidentical HCT.
Their function is dictated by a range of inhibitory and activating
cell surface receptors including killer cell immunoglobulin-like
receptor (KIR) and C-type lectin receptors. Major ligands for
KIR are MHC class I molecules that define “immune self.”
Specific MHC-I-binding inhibitory KIR receptors on NK cells
prevent these cells from attacking normal cells that have the
matching MHC-I surface molecules. This allows donor NK
cells to preferentially attack abnormal cells that have down-
regulated surface MHC-I molecules, an event that occurs in
cancer and virus-infected cells termed missing self-recognition,
or recipient cells with incompatible inhibitory KIR ligands
arising from HLA-disparate transplants. To date, KIR-ligand
mismatch in the graft-versus-host direction has only been shown
to be associated with a significant reduction in relapse in acute
myeloid leukemia, primarily in the setting of T-cell depleted
haploidentical transplantation (7, 8). A large analysis of donor
KIR in the pediatric acute leukemia population did not support
the use of KIR in the selection of unrelated donors for children
undergoing T-replete transplantation (7).

B cells may also play an important role in GVL. It is well
described that both major histocompatibility complex and minor
histocompatibility antigens can elicit B-cell antibody responses.
The presence of circulating HLA donor-specific antibodies
increases the risk of primary graft failure in HLA-mismatched
allografts (9). It is possible that alloantibodies may also play a
role in disease remission. Studies have shown a highly significant
association between H-Y antibodies and decreased relapse in
male patients with female donors (10, 11). However, this effect
is also directly related to increased rates of chronic GVHD.

The most serious consequence of the GVL effect is the
potential risk of both acute and chronic GVHD, where
alloreactive T-cells attack recipient antigens expressed on healthy
tissue, in addition to those restricted to hematopoietic lineages
containing the malignant cells. The ultimate goal of the GVL
effect is to direct donor T-cells to attack antigens unique to
leukemia cells whilst sparing other recipient antigens that are
ubiquitously expressed.

IMPACT OF GVHD ON ALL RELAPSE

The first description of the GVL effect was in ALL, where
post-HCT recipients with moderate to severe chronic GVHD
(cGVHD) were significantly less likely to relapse (12). The most
recent comprehensive analysis to evaluate the relative roles of
both aGVHD and cGVHD on the GVL effect following HCT
for ALL was performed by the Center for International Bone
Marrow Transplant Research (CIBMTR) on 5,215 transplant
recipients (13). Three cohorts were assessed: 2,593 adults in
first or second complete remission (CR1/CR2), 1,619 pediatric
patients in CR1/CR2, and 1,003 patients with advanced (CR≥3
or active disease) ALL. For children with ALL in CR1/CR2,
aGVHD of any grade was associated with lower risk of relapse
compared to no GVHD, however, grade III-IV aGVHD with
or without cGVHD was associated with increased non-relapse
mortality (NRM), resulting in decreased disease free and overall
survival. For pediatric and adult patients with advanced ALL,
development of grades III-IV aGVHD or de novo cGVHD was
associated with lower relapse rates, however increased NRM
resulted in significantly worse DFS, compared to significantly
improvedOS among patients with cGVHDwith or without lower
grade aGVHD.

The relative importance of aGVHD for children with ALL
was confirmed by the Westhofen Intercontinental Group (N =

616) analysis from both European and North American patient
cohorts (14). This analysis focused on the role of both minimal
residual disease (MRD) and aGVHD on event-free survival and
relapse rates. Patients with and without MRD had a three-fold
decrease in relapse rates post-HCT if they developed aGVHD.
Importantly, as in the CIBMTR analysis, aGVHD grade IV
resulted in poorer outcome due higher non-relapse mortality,
negating any benefit of GVL. This study did not assess the impact
of cGVHD on relapse. The occurrence of aGVHD was also been
found to be important in defining relapse risk of a pre-HCT
next generation sequencing (NGS)-MRD positive population
of pediatric patients with B-ALL. Among 19 pre-HCT MRD
positive patients, the estimated 2-year relapse probabilities were
73% for patients with no aGVHD by day +55 and 17% for those
who experienced aGVHD by day+55 (P = 0.02) (15). An earlier
Italian study that evaluated the impact of cGVHD on pediatric
HCT outcomes included 450 patients with malignancy, including
268 with ALL (16). In the cohort of patients with malignant
disease, cGVHD was associated with decreased risk of relapse,
and this effect seemed strongest in patients with ALL. When the
entire cohort was analyzed, no impact of aGVHD grades 0-I vs.
II-IV was observed on the risk of relapse.

Frontiers in Pediatrics | www.frontiersin.org 2 March 2022 | Volume 10 | Article 796994

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Rozmus et al. Separating GVL From GVHD

While there is evidence that both aGVHD and cGVHD
contribute to the GVL effect in children with ALL, it is difficult to
translate this understanding into actionable clinical interventions
for any given patient because despite both acute and chronic
GVHD being associated with GVL, severe GVHD results in
increased NRM and decreased survival. New post-HCT strategies
are needed to further augment GVL with minimal to no acute or
chronic GVHD.

INTERVENTIONS TO PROMOTE GVL

GVL and GVHD have similar but not identical targets. The goal
for the HSCT field remains the enhancement of the GVL effect
while limiting or eliminating GVHD. The purpose of this review
is to describe several strategies that have been undertaken in an
attempt to tip the alloimmune balance toward GVL (Table 1;
Figure 1).

1. Early Withdrawal of Immunosuppression
and Donor Lymphocyte Infusions
Early withdrawal of immune suppression and donor lymphocyte
infusions are commonly used strategies for relapse post-HCT,
although there is a lack of published evidence as to their
efficacy in pediatric ALL. Clinically meaningful effects related to
donor lymphocyte infusion (DLI) have been described in chronic
malignancies such as follicular, mantle cell, small lymphocytic,
Hodgkins lymphoma, chronic myeloid leukemia and myeloma
(17, 18, 49, 50). Withdrawal of GVHD prophylaxis to reduce
relapse risk is an intervention that can only be done early post-
HCT. There is broad consensus, despite the absence of published
standardized pediatric guidelines, that the duration of GVHD
prophylaxis after HSCT for malignant disease should be 180
days (19). In a survey of European pediatric HSCT centers, the
duration of GVHD prophylaxis was shortened to 60–120 days
post-HSCT if the relapse risk was categorized as high (20). It
is reasonable to define fast withdrawal of immunosuppression
(FWI) as occurring prior to 60 days post-HSCT. Therefore,
FWI really only applies to early relapse, which implies high-
risk disease and may be expected therefore to have limited
benefit. Immunosuppression is usually withdrawn as a prelude
to another interventions, such as DLI. DLI used alone or
in combination with additional agents has been employed to
enhance GVL in the setting of relapse after HCT. However, the
use of DLI is limited by development of GVHD. Data for DLI
alone have largely come from adult studies that demonstrate
minimal efficacy in lymphoid malignancies with a high risk
of GVHD (21, 22). A single center retrospective review of 30
pediatric patients (myeloid, n = 23; lymphoid (ALL), n=7)
receiving DLI for relapse after HCT reported a 5-year disease
free survival of 32% for all patients. The lymphoid group had a
5-year survival rate at 71±17% compared to the myeloid group
at 22 ± 9%. In the case of HLA-matched donors the initial
median CD3/kg doses were 1–5 × 107/kg with escalation to 8
× 107/kg for subsequent doses. For HLA-mismatched donors,
the initial median CD3/kg dose was lower at 5 × 105/kg with
subsequent infusions escalated to median of 5 × 106/kg. In this

retrospective study, the development of GVHD did not affect
overall survival (23). In an attempt to improve effectiveness
while minimizing toxicity, several centers are trialing dose
escalating schedules of DLI or repetitive administration of low
dose DLI (51, 52).

An alternate strategy would be to pre-emptively withdraw
immune suppression combined with DLI early in select patients
based on high-risk features such as pre- and post-HCT MRD
or mixed chimerism post-HCT. One study of pediatric patients
with mixed chimerism undergoing immune withdrawal and
DLI included 17 patients with ALL out of total of 43. The
first step was FWI with evidence of mixed chimerism post-
HCT, followed by increasing DLI doses if mixed chimerism
persisted after withdrawal of immunosuppression. Twenty-six
(60%) patients with mixed chimerism were assigned to immune
withdrawal, which started at a median of 49 days (range, 35 to
85 days) after HCT. Fourteen patients proceeded to DLI after
withdrawal at a median of 118 days (range, 85 to 194 days). The
DLI dose for matched donor transplant recipients was 1 × 106

CD3/kg escalating to 1 x 108/kg; 1 x 105/kg to 1 x 107/kg for
mismatched donor transplant recipients. The intervention cohort
had a similar 2-year event-free survival (EFS) [73; 95% confidence
interval (CI), 55 to 91%] compared with patients who achieved
full donor chimerism spontaneously (83; 95% CI, 62 to 100%).
There were no late relapses in the observation group with full
donor chimerism, but 50% of all relapses in the intervention
group occurred more than 2 years after transplantation and
their EFS declined to 55% (95% CI, 34 to 76%) at 42
(SD, 11) months. Nineteen percentage of patients undergoing
the intervention developed GVHD. Consistent with previous
observations, the development of cGVHD was protective against
relapse (53).

There are a number of strategies being investigated to reduce
the risk of GVHD associated with DLI while maintaining GVL
including depleting the DLI product of alloreactive T-cells by ex
vivo photodepletion and inserting an inducible suicide gene in
donor lymphocytes so that they can be eliminated when GVHD
occurs (54, 55).

2. Post-HCT Cyclophosphamide (PTCy)
and TCR αβ+/CD19+ Depletion
The last decade has seen a rise in the use of HLA haploidentical
allogeneic HCT for pediatric and adult ALL. Several T-
cell replete and T-cell depleted haploidentical transplant
strategies are currently used to overcome the barriers of
GVHD and graft failure. In T-cell replete haploidentical
HCT, which involves the infusion of unmanipulated stem
cell product followed by in vivo depletion of alloreactive T-
cells, the use of post-transplant cyclophosphamide (PTCy)
has rapidly increased due to its simplicity and efficacy. In
terms of ex vivo T-cell depletion strategies, TCR αβ+/CD19+

depletion is increasingly being used as it maintains NK cell
alloreactivity while limiting GVHD. Given excellent outcomes
in the haploidentical setting, both of these approaches are
increasingly being explored in the matched unrelated and
sibling donor setting. An interesting observation seen with
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TABLE 1 | Cellular and pharmacologic approaches to modify graft vs. leukemia effect post-HCT for ALL.

Intervention Proposed mechanism

of action

Outcome Limitations Active pediatric

clinical trials

References

Donor lymphocyte

infusion

Enhance GVL* 20–70% RR# Severe GVHD& NCT05009719

NCT03297528

(17–23)

CAR-T Antigen directed

genetically modified

autologous T-cell

immunotherapy

50–80% RR# Antigen negative

relapse, CRS∧,

neurotoxicity

NCT04544592

NCT03853616

NCT04016129

NCT04276870

NCT04173988

NCT02650414

(24–27)

NK-CAR Antigen directed NK-CAR 73% RR# in adult

Phase I/II study

N/A NCT03056339 (28, 29)

Blinatumomab CD19 BITE that may

redirect an otherwise

unengaged polyclonal

donor T-cells to attack

CD19+ ALL cells

N/A Many upfront and

bridging therapies

are incorporating

this agent,

potentially

diminishing its

utility

NCT04044560

NCT02790515

NCT03849651

(30, 31)

mTOR inhibitor Decrease Grade 2–4

aGVHD& and relapse

Decreased

aGVHD& but did

not improve

survival

Increase of

transplant related

morbidity

No active trials (32)

Zoledronic Acid Induce differentiation and

increase cytotoxicity of the

Vδ2 subset

N/A N/A NCT02508038 (33, 34)

Vaccines Expand donor derived

leukemic specific T-cells

N/A N/A NCT03559413 (35–42)

Immune

Checkpoint

Inhibitors

Inhibit the immune

regulatory molecules

expressed on leukemic

cells

0–70% RR# Severe GVHD& NCT03286114

NCT03588936

NCT03146468

NCT01822509

(43–48)

*Graft vs. leukemia, #Response Rate, &Graft vs. host disease, ∧Cytokine Release Syndrome. Cellular therapy and Pharmacologic Interventions to Promote GVL.

both approaches has been acceptable leukemia free survival but
with relatively lower incidences of severe grades III-IV aGVHD
and cGVHD (56–60). This suggests preservation of a GVL
effect but with diminution (although not complete abrogation)
of GVHD.

Initial models suggested the mechanism by which PTCy
induced immune tolerance involved the selective killing
of highly proliferative host-alloreactive donor T-cells after
cyclophosphamide infusion on day +3. Longer-term immune
tolerance induction then occurred through intrathymic clonal
deletion of donor HSC-derived anti-host T-cells (61). Clinical
observation, however, has shown that grade II aGVHD is
still frequent after PTCy (20–40% range) and when present,
improves progression free survival in hematologic malignancies
(62–65). This suggests that alloreactive donor T-cells capable of
inducing both GvHD and GVL persist after cyclophosphamide.
Murine models have provided further insight into PTCy
mechanisms of action, raising questions about the original
mechanisms believed to underly PTCy immune tolerance (66–
69). More contemporary working models of PTCy suggest: (1)
CD4+CD25+Foxp3+ regulatory T-cells (TREGS) are imperative
in the early prevention of GVHD after PTCy, helping to
control alloreactive effector donor T-cells. High levels of
aldehyde dehydrogenase in TREGS, the major detoxifying

enzyme for cyclophosphamide, prevents their killing to the
same extent as effector T-cells after PTCy, allowing early
and expanded post-transplant TREG reconstitution despite
CD4 lymphopenia (24, 25). Preferential TREG reconstitution
following PTCy has also been demonstrated to be time and
dose dependent in an MHC-haploidentical murine mouse
model, with greatest impact on TREG reconstitution when
cyclophosphamide is given on day +4 (24). The suppressive
effects of TREGS appear to constrain new host-alloreactive
effector T-cells both early and late after PTCy HCT, thus
keeping severe aGVHD and cGVHD in check (27). (2)
Highly proliferative host-alloreactive donor CD8+ effector
T-cells are not eliminated after PTCy, but are intact and
made functionally impaired, reducing their ability to cause
GvHD (26). This impairment is likely related to both direct
effects of PTCy (immediate) and preferential reconstitution
of TREGS (late). (3) Host-alloreactive donor CD4+ effector
T-cells are killed and have reduced proliferation after PTCy, a
phenomenon that appears important in preventing aGVHD.
Providing PTCy in either reduced dose or on different days
increases CD4+ effector T-cells and results in rapid death in
an MHC-haploidentical acute GVHD mouse model (28). Our
understanding of how PTCy modulates immune tolerance,
while still allowing GVL to develop and prevent leukemia
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FIGURE 1 | Strategies postulated to augment GVL response, and/or enhance GVL without increasing GvHD: (i) Enhance selective T-cell populations; (ii) Drive T-cell

activation against tumor antigen; (iii) Engage non-T-cell immune responses.

relapse, remains incomplete. The impact of other concurrently
administered GVHD prophylaxis medications used in clinical
practice, such as calcineurin inhibitors, mycophenolate mofetil
and anti-thymocyte globulin and the selective infusion of
other effector cells on GVHD and GVL after PTCy, require
further investigation. For example, there is a phase II pilot

study investigating whether the infusion of ex-vivo expanded
natural killer cell infusions in children wih myeloid leukemia
receiving HLA-haploidentical HCT with PTCy decreases
relapse rates and infectious complicaitons without increasing
GVHD (NCT#04836390). In addition, recent registry data
suggest that HLA matching still matters with PTCy, with
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lower rates of grade III-IV aGVHD in adults with acute
leukemia following matched unrelated donor compared to
HLA-haploidentical transplant when a common PTCy backbone
was compared (25).

By comparison, ex-vivo graft manipulation to remove GVHD
causing TCRαβ+ T-cells (TCRαβ+/CD19+ depletion) has also
gained traction in pediatric acute leukemia to overcome HLA
disparity (60). The selective removal of most TCRαβ+ T-
cells appears to reduce both aGVHD and cGVHD, while
maintaining NK cells and TCRγδ+ T-cells that have less host
alloreactivity but are able to mediate GVL (26). A number
of potential mechanisms exist by which TCRγδ+ T-cells and
NK cells mediate GVL, including the shared presence of
activating receptors (e.g., NKG2D) that are independent of
tumor antigen recognition in the context of MHC, thus able to
bypass tumor escape through MHC class I downregulation (27).
NK alloreactivity through killer immunoglobulin-like receptor
(KIR) recognition of MHC class I KIR/KIR-ligand mismatch in
a donor-versus-recipient direction has been also purported to
exert a GVL effect although this has not been seen to impact
leukemia-free survival in one large acute leukemia study in
children (69).

3. Non-HCT Cellular Therapy
Some anti-leukemic strategies used in the pre-HCT setting
are also being used in the setting of relapse post-HCT,
including CAR-T and CAR-NK (29). However, a significant
proportion of patients relapse after cellular immunotherapy
without HCT consolidation, suggesting that lasting GVL may
require immune responses that are oligoclonal. Therapeutic
efficacy has been observed with the use of tisagenlecleucel,
a CD19-directed CAR-T therapy that is FDA approved for
the treatment of relapsed, refractory pre-B ALL and has
demonstrated durable remissions in patients that relapse after
transplant (70). However, there are limitations to this approach,
including the ability to generate autologous CAR-T cells from
patients that may be lymphopenic after transplant, time to
manufacture product, and antigen escape. To address some of
these barriers, donor-derived CAR-T cells have been successfully
tested by several groups, with low risk of GHVD and response
rates ranging from 50 to 80% (30, 31). Donor-derived virus-
specific T-cells, engineered to express CD19.CAR, have also
demonstrated antitumor activity early post-HCT for relapsed
B-cell malignancies (71).

Other groups have explored the utility of CAR-NK cells
to avoid the CAR-T related toxicities of cytokine release
syndrome (CRS), neurotoxicity, and prolonged B-cell
aplasia. Herrera et al. explored the utility of CAR-NK cells
obtained from peripheral blood or cord blood as a potential
candidate for allogeneic therapy (72). Additionally, due to
the shorter lifespan of NK cells, they hypothesized that
B-cell aplasia may not be as prolonged as typically seen
after CAR-T cell infusion. Indeed, a recent Phase I/II trial
of adult patients with lymphoid malignancy demonstrated
a 73% response rate in 11 patients treated with CAR-NK
cells with no patients developing CRS, neurotoxicity, or
GVHD (73).

4. Pharmacologic Agents During/After HCT
That Stimulate Donor Immune Effector
Cells
A. Blinatumomab
Blinatumomab is a bispecific T-cell engager (BiTE) consisting
of CD3 and CD19 single-chain variable regions that allow
cytotoxic T-cells to specifically target and lyse CD19-positive
cells, i.e., malignant and normal B cells. Unlike more traditional
antibody-drug conjugate such as inotuzumab, BiTEs form a
link between T-cells and leukemia cells. In the post-HCT
setting, it is hypothesized that blinatumomab could redirect
an otherwise unengaged polyclonal donor T-cells to attack
CD19+ ALL cells. Blinatumomab could serve as an adjuvant for
the GVL effect by redirecting donor T-cells toward malignant
lymphoblasts. This approach could be especially beneficial in
patients with genomic loss of HLA expression on malignant
cells post-HCT, which occurs in up to 30% of haploidentical
HCTs (74, 75). This renders them invisible to donor T-cells
attacking minor histocompatibility antigens. However, the usage
of blinatumomab post-HCT may be limited by its’ increased use
as a bridging therapy pre-HCT to achieve MRD negativity, which
unfortunately leads to the downregulation of CD19 expression
on leukemic cells in a significant proportion, up to 25%, of cases
(76). The role of blinatumomab post-HCT is currently being
evaluated in a number of single arm, open label studies, including
a multi-centre Canadian phase II study using blinatumomab
for treatment of detectable MRD in the first year following
allogeneic HCT for patients with B-ALL (NCT#04044560),
as well as studies examining TCRαβ and CD45RA depleted
haploidentical HCT followed by blinatumomab in the early post-
engraftment period and TCRαβ/CD19-depleted haploidentical
HCT followed by CD45RA-depleted DLI and blinatumomab
in pediatric patients with CD19+ malignancy (NCT#02790515
and NCT#03849651).

B. Protein Kinase Inhibitors
Some pharmacologic strategies may produce a synergistic effect
of GVHD suppression while generating GVL, for instance
tyrosine kinase inhibitors (TKIs). Whether the use of TKIs
in GVHD results in improved GVL or lower relapse rates
has not been elucidated, but could be anticipated given that
tyrosine kinases, including Syk, Btk, and Itk, are key molecular
targets in both, hematologic malignancies (32) and in alloreactive
T-and B cells in GVHD (77). Given expanding therapeutic
use of TKIs for GVHD (33, 34) the potential impact on
GVL could be evaluated. Similarly JAK inhibitors, including
ruxolitinib (35, 36) and itacitinib, that are either approved or
undergoing clinical testing for GVHD, respectively, have the
potential to impact on GVL (less clear whether positively or
negatively), which warrants further study. In a randomized
phase 3 COG/PBMTC trial, the addition of sirolimus, an
mTOR inhibitor, to tacrolimus/methotrexate GVHD prophylaxis
in children with ALL decreased grade 2–4 aGVHD but
did not improve survival as the occurrence of grades 1–3
aGVHD showed a trend toward decreased relapse and improved
EFS (37).
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C. Zoledronic Acid
A previous study showed that subsets of γδ T-cells taken
from children following αβ+T cell and CD19+ B cell depleted
HLA-haploidentical HCT, display a cytotoxic phenotype and
degranulate when challenged with lymphoid leukemic blasts.
These cells have been shown to expand in vitro following
exposure to zoledronic acid and are able to efficiently lyse primary
lymphoid blasts (38). Zoledronic acid infusions were shown
to induce differentiation and increase cytotoxicity of the Vδ2
subset in vivo (39). This led to an open-label, feasibility, proof-
of-principle study in 46 children on the use of zoledronic acid
to enhance TCRγδ+ lymphocyte function after TCRαβ/CD19-
cell depleted haploidentical HCT (40). However, due to the
limited number of patients enrolled and events observed, it
was not possible to draw any firm conclusions on reduction in
relapse. Further investigation is needed and a non-randomized
prospective trial is ongoing (NCT02508038).

D. Vaccines With Immune Adjuvants
Another active area of research is the use of vaccines in
the immediate post-HCT setting to expand donor derived
leukemic specific T-cells while taking advantage of the strong
lymphopenia-triggered drive for lymphocyte expansion post-
HCT (41). This immune response can be further boosted
using adjuvants as TLR agonists and exogenous cytokines
which induce expression of effector cytokines and chemokines,
recruit and activate immune cells and enhance antigen uptake
and presentation (42, 43, 78). In murine models, treatment
with synthetic oligodeoxynucleotides, containing unmethylated
cytosine-phosphate-guanosine (CpG) motifs that bind TLR9,
enhanced GVL effects without worsening GVHD (44–46). CpG
stimulation of primary precursor B-ALL samples induced the
release of proinflammatory cytokines and IL-10 and shifted
allogeneic T-cell responses toward a Th1 pattern of cytokine
production (47).

There have also been pilot trials assessing the feasibility of a
WT1 peptide-loaded donor-derived dendritic cell (DC) vaccine
given with DLI to enhance and direct the GVL effect (48, 79).

E. Immune Checkpoint Inhibitors
PD-1 blockade has been used in patients with refractory/relapsed
B-cell ALL with CAR T-cell loss or insufficient response to
anti-CD19 CAR T-cell therapy (80). There are only 3 reported
cases of immune checkpoint inhibitor (CPI) therapy being used
in adult patients with relapsed ALL post-HCT (81, 82). Only
one patient experienced a therapeutic response. Risk of GVHD
with CPI exposure is around 23% if given to a post-allo-HCT
population (83). About 14% of cases were reported with aGVHD
and 9% of patients suffered from cGVHD. Fatal GvHD has
been reported in relapsed lymphoma post-HCT (84, 85). The
studies so far in other hematological malignancies suggest the
frequency and severity of immune-related adverse events and

GVHD are higher in anti-PD-1 treated patients than in anti-
CTLA-4 treated patients in the post-HCT setting (86). It remains
to be seen whether a particular dosage or proper timing of CPI
can increase efficacy while lowering the risk of GVHD. There
are several open phase I studies investigating the augmentation

of the GVL effect via checkpoint blockade in adult patients
with relapsed ALL post-HCT (NCT03286114, NCT03588936,
NCT03146468, NCT01822509).

F. Targeting Alloreactive T-Cell Metabolism
It has been proposed that T-cells follow 2 different differentiation
pathways post-HCT based on their metabolic activity. Some
activated naïve T-cells rapidly increase their metabolic activity
by switching from fatty acid β-oxidation and pyruvate oxidation
via the tricarboxylic (TCA) cycle to aerobic glycolysis and
glutaminolysis (87–89). This population is driven toward a
terminally differentiated effector state that is associated with
limited lifespan, diminished replicative potential, and ultimately
earlier cell senescence. It is hypothesized that these T-cells are
associated with GVHD. In contrast, lower metabolism rates
during T-cell activation may favor the formation of longer-lived
memory T-cells that enhance the GVL effect (90). Therefore, it is
possible that inhibition of glycolysis could inhibit GVHD driven
by hypermetabolic terminally differentiated effector T-cells while
preserving a GVL effect reliant on long term memory T-cells.

CONCLUDING REMARKS

The development of better strategies to preferentially augment
GVL will only come from the further elucidation of the
mechanisms underlying the alloreactive immune responses post-
HCT. It is clear that the GVL effect is intimately related to GVHD
but emerging evidence from laboratory models and translational
research suggest there are differential mechanisms which can be
exploited. By isolating and amplifying those immune processes
that specifically target leukemia cells we can tip the balance
toward a beneficial alloreactivity while limiting toxicity. The
ultimate goal of fully separating GVL from GVHD has yet to
be realized.
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