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Cerebral Palsy (CP) refers to a heterogeneous group of permanent but non-progressive movement disorders
caused by injury to the developing fetal or infant brain (Bax et al., 2005). Because of its serious long-term conse-
quences, effective interventions that can help improve motor function, independence, and quality of life are crit-
ically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this
challenge. To maximize the potential for functional improvement, all children in this trial received autologous
cord blood transfusions (with order randomized with a placebo administration over 2 years) in conjunction
with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging
(MRI) is used to improve our understanding of how these interventions affect brain development, and to develop
biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI) and subsequent brain connectome
analyses were performed in a subset of children enrolled in the clinical trial (n = 17), who all exhibited positive
but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations be-
tween increases in white matter (WM ) connectivity and functional improvement were demonstrated; however
no significant relationships between either of these factors with the age of the child at time of enrollment were
identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in
children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mech-
anisms of functional improvement, as well as to identify treatments that can best facilitate functional improve-

ment upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Cerebral Palsy (CP) is estimated to affect 3-4 out of 1000 children
(Yeargin-Allsopp et al., 2008) and consists of disordered movement,
often in conjunction with deficits in sensation, cognition, communica-
tion, and behavior (Bax et al.,, 2005; Aisen et al., 2011). A variety of dis-
turbances in the developing fetal or infant brain may lead to CP, with the
resulting neurological deficits correlated with degree and location of
damage to brain structure (Accardo et al., 2004). Brain damage in CP
often consists of diffuse damage and/or focal lesions in white matter
(WM), which are often most severe in periventricular regions (Haynes
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et al., 2003). While CP is typically diagnosed via neurological as-
sessment, neuroimaging techniques such as T,-weighted imaging, and
more recently diffusion MRI, have been used to characterize WM abnor-
malities associated with functional deficits in this disorder at a single
time point (for a systematic review see Scheck et al. (2012)).

There is extensive literature on neuroimaging studies concerned
with functional recovery in brain disorders, (Staudt et al., 2006;
Sawaki et al., 2008; Sharma et al., 2009; Pajonk et al., 2010; Bosnell
et al., 2011; Johansen-Berg, 2012; Madhavan et al., 2014). Neuroimag-
ing studies specifically in CP have indicated relationships between func-
tional and structural changes within discrete anatomical regions, mostly
focusing on sensorimotor regions of interest (ROIs) (Trivedi et al., 2008;
Jain et al,, 2014). Additionally, initial evaluations of the efficacy of experi-
mental treatments for CP - including autologous stem cell therapy - have
been performed (Bae et al., 2012; Lee et al,, 2012; Min et al., 2013), also
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using neuroimaging metrics derived from discrete brain regions to dem-
onstrate structural changes associated with functional improvement.

However, there have been several studies demonstrating damage to
WM tracts throughout the brain (Nagae et al., 2007), as well as diffuse
connectivity deficits associated with severity of functional impairment
(Englander et al., 2013; Pannek et al., 2014) at a single time point.
Furthermore, CP is a heterogeneous disorder with multiple causes and
clinical manifestations, meaning that the specific structural changes
that may underlie improved function are likely to be unique to each pa-
tient. These factors indicate that longitudinal studies in CP should
explore structural change throughout the brain on an individualized
basis, in addition to examining specific changes within the sensorimotor
network.

Therefore, in this report we use diffusion tensor imaging (DTI) and
whole brain connectome analyses to investigate connectivity changes
throughout the brain in relation to functional outcomes in children
with CP. To maximize the potential for functional improvement, all chil-
dren in this trial received autologous cord blood transfusions in con-
junction with more standard physical and occupational therapies. The
aim of this report was to investigate neuroimaging biomarkers that
would reflect diffusely distributed and heterogeneous changes in con-
nectivity in relation to improved functional outcomes following thera-
py. In future analyses, this biomarker can be used to determine the
underlying mechanisms of these functional improvements, potentially
helping to identify the treatments that best facilitate better functional
outcomes.

2. Materials and methods

In this report we used diffusion tensor imaging (DTI) and whole brain
connectome analysis to investigate connectivity changes throughout the
brain in relation to functional outcomes in 17 children with CP, who all
showed positive but varying degrees of functional improvement over
the first 2 years of a longitudinal study. We specifically investigated
whether brain connectivity changes could serve as a biomarker for
improved functional outcomes during therapy in children with CP.

2.1. Subjects

Neuroimaging and functional data were analyzed in a subset of chil-
dren enrolled in our ongoing clinical trial to evaluate the impact of var-
ious treatments (including autologous cord blood infusions) for CP.
These children had a clinical diagnosis of CP, with either unilateral or bi-
lateral impairment. MRI and functional assessments were scheduled at
three time points over a 2-year period, each separated by one year.
The children received an autologous cord blood transfusion in either
the first or second year, with a placebo administered in the alternate
year. The time point at which the experimental treatment was adminis-
tered was randomized across subjects, and the researchers analyzing
the imaging data were blind to the time point at which the treatment
was administered. All children had received a transfusion by the time
of the final MRI session. Patients underwent neurological testing of
motor control, muscle tone and spasticity, overall flexibility and re-
flexes. Children were sedated for the MRI scans to limit subject discom-
fort and motion artifacts. Written informed consent was obtained from
the parents of each participant, and study related procedures were ap-
proved by the Duke University Medical Center Institutional Review
Board.

Children were excluded from this report if they had a seizure disor-
der, brain dysmorphogenesis, or genetic disease. An additional exclu-
sion criterion was significantly abnormal brain anatomy (such as in
the case of perinatal stroke) that would prohibit robust image registration
or parcellation. 25 subjects had completed the functional and neuroimag-
ing assessments at both time points, however 8 subjects for which an ac-
curate anatomical parcellation could not be achieved were not included in
further analyses. These subjects had major anatomical abnormalities due

to stroke. Therefore, 17 children (median age = 2.4 years, age range
1.1-5.1 years at time of enrollment) are included in this report. Demo-
graphic information for these children is presented in Table 1.

2.2. Rehabilitative therapies

In addition to autologous cord blood transfusions, the children in
this study received rehabilitation services in their home communities
which may have included physical therapy (PT), occupational therapy
(OT), developmental therapy, (DT), speech/language therapy (LT),
hippotherapy, vision or hearing therapy, and the use of orthotic in-
tervention and adaptive equipment, as are typically included in the
comprehensive management of CP. A comprehensive list of therapies
is included in Table 2.

2.3. Functional outcome measures

The Gross Motor Function Classification System (GMFCS) levels are
used to evaluate functional impairment at the time of enrollment. The
GMEFCS is a five level classification system (Levels I-V) appropriate
for the assessment of young children, with distinctions between the
levels based on functional limitations and the need for assistive mobility
devices (Palisano et al., 1997). Children classified at Level I have the
least impaired motor function, whereas children classified at Level V
show the most severe functional impairment.

The Gross Motor Function Measure-66 (GMFM-66), the most com-
monly utilized functional outcome measure in children with CP
(Wang and Yang, 2006; Alotaibi et al., 2014), is used to assess changes
in functional abilities during treatment in this study. The GMFM-66
includes the assessment of quality of movement in addition to the
acquisition of age related isolated skills (Russell, 2002). Children in
this report demonstrated GMFM-66 score changes ranging from 2 to
22 points. Here we use a GMFM-66 score change of 10 as a threshold
to stratify the subjects into two groups, a moderate improvement
group (GMFM-66 score change < 10) and a significant improvement
group (GMFM-66 score change > 10). These groups separate subjects
based on their levels of functional improvement over the 2-year period.
This threshold was chosen based on the distribution of GMFM-66 score
changes in the cohort, and it allowed for balanced numbers within each
group as well as a highly significant (p = 0.0003) difference in the mean
change scores associated with each group. The group of children with
GMFM-66 change scores < 10 (n = 9) had a mean GMFM-66 change
score of 4.44 + 1.77, and the group of children with GMFM-66 change
scores > 10 (n = 8) had a mean GMFM-66 change score of 15.5 +
3.61. This group distinction allowed us to assess whether structural
characteristics and functional abilities at the time of enrollment have
an impact on responsiveness to therapy.

2.4. Image acquisition

Diffusion weighted images were acquired on a 3 Tesla GE MR750
scanner (Waukesha, WI) using a 25-direction gradient encoding
scheme at b = 1000 s/mm? with 3 non-diffusion-weighted images.
An echo time (TE) of 70.5 ms and a repetition time (TR) of 12,000 ms
were used. An isotropic resolution of 2 mm® was achieved using a
96 x 96 acquisition matrix in a field of view (FOV) of 192 x 192 mm?.
T;-weighted images were obtained with an inversion-prepared 3D fast
spoiled-gradient-recalled (FSPGR) pulse sequence with a TE of 2.5 ms,
an inversion time (TI) of 450 ms, a TR of 6.5 ms, and a flip angle of
12°, at a 1 mm? isotropic resolution.

2.5. Region of interest parcellation
Region of interest (ROI) parcellation was performed by warping the

JHU-DTI-MNI “Eve” atlas template (Oishi et al., 2009; Faria et al., 2010;
Faria et al., 2011) into each subject’s DTI image space via the Advanced
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Table 1

Demographic information of the CP patient cohort.
Subject Age enrollment GMEFCS level at enrollment GMFM-66 change over 2 years Abnormal Typography

(years) movements

1 1.7 I\% 4 Spasticity with dystonia Q
2 2.4 Il 8 Spasticity D
3 5.1 I 19 Spasticity with dystonia H (Lh)
4 1.2 I\% 4 Spasticity with dystonia Q
5 4.0 Il 2 Spasticity with dystonia H (Lh)
6 4.4 il 4 Spasticity D
7 2.3 Il 11 Spasticity H (Rh)
8 14 Il 17 Spasticity H (Lh)
9 11 1 16 Spasticity with dystonia H (Rh)
10 3.7 Il 11 Spasticity H (Rh)
11 1.5 1\% 2 Spasticity with dystonia Q
12 3.8 1\% 5 Spasticity with dystonia Q
13 2.1 Il 15 Spasticity D
14 2.8 Il 13 Spasticity with dystonia H (Lh)
15 2.8 Il 5 Spasticity D
16 14 I\% 6 Spasticity predominant, mixed with dystonia Q
17 3.0 11 22 Spasticity predominant, mixed with spasticity T (LUE)

Q — quadriplegic, D — diplegic, H (Lh) — hemiplegic left hemisphere, H (Rh) — hemiplegic right hemisphere, T (LUE) — tetraplegic left upper extremity.

Normalization Tools (ANTs) toolkit (Avants et al., 2009), and the
parcellation results were visually inspected to confirm anatomical con-
sistency. The individual regions of this atlas that are associated with the
brainstem were combined to create a single ROI. The bilateral putamen
was removed from the final set as its proximity to the ventricles created
inaccurate parcellation for many subjects. As a result, a total of 61
regions were defined for each individual, 30 gray matter regions in
each hemisphere, and a single region encompassing the brainstem.
The total WM volume of each subject was obtained using FSL FAST
(Zhang et al,, 2001).

2.6. White matter tractography and filtering

After data inspection and rejection (if necessary) for motion arti-
facts, diffusion tensors were derived from the DTI dataset. Deterministic
tractography was performed in the whole brain using the fiber assign-
ment by continuous tracking (FACT) streamline tracking algorithm
(Mori et al., 1999; Mori and Zhang, 2006). Streamlines were spline
and length filtered; streamlines that were less than 20 mm or longer
than 500 mm were removed. With the diffusion and parcellation images
in the same image space, streamlines were classified by which ROIs
contain their origination and termination points. Streamlines were
discarded if they did not start and end in an ROI (Daducci et al., 2012;
Englander et al., 2013). Tractography, parcellation, and streamline clas-
sification were performed via a standardized pipeline for each patient
without regard for the patients’ clinical classification.

2.7. Brain connectome analysis

In the whole-brain connectome analysis, gray matter ROIs (defined
by the parcellation scheme) are defined as “nodes” and the mutual con-
nectivities between pairs of nodes (the volume of voxels containing the
streamlines that originate and terminate within a pair of gray matter
ROIs) are defined as “edges”. Baseline connectivity was determined by
obtaining the sum of the edge values, normalized by the total WM vol-
ume, for each child at the time of enrollment. Baseline fractional anisot-
ropy (FA) was obtained by averaging the FA within the voxels that make
up the edges at the time of enrollment.

The relationships between changes in connectivity and functional
improvements over the first 2-year period of the study were analyzed
for all nodes and edges. Specifically, the relationship between connec-
tivity change between any given node and the rest of the brain, and
functional improvement was examined. In the edge analysis, the corre-
lation between the mutual connectivity change between each pair of

nodes and functional improvement was assessed. Overall mutual con-
nectivity changes were calculated for each child by obtaining the differ-
ence in the sum of edge values (normalized by the change in total WM
volume, and scaled by the maximum increase in total connectivity
across the cohort) throughout the brain and between specific sensori-
motor regions. These metrics are referred in this report as total connec-
tivity change and sensorimotor connectivity change. Here the
sensorimotor regions are limited to those associated with the primary
motor pathway, specifically, the bilateral pre- and post-central gyri,
the bilateral thalamus, and the brainstem.

The aim of this whole-brain connectome analysis was to assess the
changes in brain connectivity resulting from combined therapy. To visu-
alize these changes in each individual, the increases in connectivity
were illustrated in the form of a connectome map, with the thickness
of each edge proportional to the magnitude of its connectivity change.

2.8. Assessment of relationships between age, brain structure, and functional
improvement

Baseline connectivity was compared between children showing
moderate functional improvements (GMFM-66 change scores < 10)
and children who achieved more pronounced functional improvements
(GMFM-66 change scores > 10) using the Mann-Whitney U test. Addi-
tionally, baseline FA and mean GMFCS level at the time of enrollment
was compared between these groups of children. The relationships be-
tween age at time of enrollment and GMFM-66 score change, total and
sensorimotor connectivity changes were examined; and correlations
between structural and functional measures, as well as age, were per-
formed using the Spearman rank correlation.

3. Results

Our connectome analyses revealed several key findings. First, statis-
tically significant relationships between the total connectivity change
and GMFM-66 score change (p = 0.020) (Fig. 1a), and between the sen-
sorimotor connectivity change and GMFM-66 score change (p = 0.035)
(Fig. 1b), were observed. These correlations between structural and
functional changes suggest functionally relevant plasticity and WM
reorganization in response to therapy. In comparison, the change in
connectivity for any given node to the rest of the brain, or the change
in any given edge, did not show significant correlation with functional
improvement, which was expected due to the heterogeneity of symp-
toms in the cohort.
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For graphical illustration, connectome maps representing the 2-year
connectivity changes in four representative individuals (subjects 8 and
9 for significant responders, and subjects 1 and 11 for moderate

Table 2

List of therapies.
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responders) are shown in Figs. 2 and 3, respectively, throughout the
brain and within the sensorimotor system. In subjects with significant
functional improvements (e.g. subjects 8 and 9), the numbers of edges

Subject Therapy (before enrollment)

Therapy (time of enrollment-year 1)

Therapy (year 1-year 2)

1

10

11

12

13

PT initiated at 0-6 months
(4 hours/month),

OT initiated at 0-6 months
(4 hours/month),

DT initiated 12-24 months
(4 hours/month)

PT initiated at 12-24 months
(2 hours/month),

LT initiated 24-36 months
(4 hours/month)

PT initiated >3 years,

OT initiated 24-36 months
(4 days/week),

LT initiated 24-26 months
(4 days/week)

PT initiated 0-6 months
(2 hours/month),

OT initiated 0-6 months
(2 hours/month),

vision therapy initiated
12-24 months

PT initiated 0-6 months

(3 hours/month),

OT initiated 0-6 months
(4 hours/month),

LT initiated 0-6 months

(4 hours/month)

PT initiated 24-36 months
(3 days/week),

OT initiated 24-26 months
(3 days/week),

LT initiated 24-36 months
(2 days/week)

PT initiated 0-6 months
(5 hours/month),

OT initiated 6-12 months
(3 hours/month)

PT initiated 0-6 months

(1 day/week),

OT initiated 6-12 months
(2 days/week)

PT initiated 6-12 months
(2 hours/month),

OT initiated 6-12 months
(2 hours/month)

PT initiated 12-24 months
(1 hour/month),

OT initiated 12-24 months
(2 hours/month),

LT initiated 24-36 months
(2 hours/month)

PT initiated 6-12 months
(8 hours/month),

OT initiated 6-12 months
(8 hours/month)

PT initiated 0-6 months
(4 hours/month),

OT initiated 0-6 months
(4 hours/month),

LT initiated 6-12 months
(2 hours/month),

DT initiated 12-24 months,
Vision therapy initiated
12-24 months

PT initiated 12-24 months,
(2 hours/month),

OT initiated 12-24 months
(2 hours/month),

LT initiated 12-24 months

PT/OT/DT/LT (4 hours/month)

PT (4 hours/month), OT, LT (1 hour/month), vision, hearing
(0.5 hours/month)

PT (2 days/week),
OT (2 days/week),
LT (2 days/week)

OT (4 hours/month),
LT (4 hours/month),
Anat Baniel Method (6 hours/month)

PT (3 hours/month),
OT (4 hours/month),
LT (2 hours/month)

PT/OT/LT (5 days/week)

PT (7 hours/month),
OT (5 hours/month)

PT (4 hours/month), OT (4 hours/month),
LT (2 hours/month)

OT (4 hours/month)

PT (4 hours/month),
OT (4 hours/month),
LT (6 hours/month)

PT (4 hours/month), OT (4 hours/month), LT (8 hours/month), vision
therapy (8 hours/month), infant school (8 hours/month)

PT (4 hours/month),
OT (4 hours/month),
LT (4 hours/month)

PT (1 hour/month),
OT (1 hour/month)

PT (8 hours/month),
OT (4 hours/month),
LT (8 hours/month)

PT (2 hours/month), OT/LT/DT/vision/hearing
(1 hour/month)

PT (1 day/week),
OT (1 day/week),
LT (1 day/week)

PT (16 hours/month)

OT (1 day/week),
LT (1 day/week),
Vision (1 day/week)

PT/OT/LT (3 days/week)

PT (8 hours/month),
OT (6 hours/month)

PT (6 hours/month),
OT (6 hours/month)

None

PT (5 hours/month),
OT (2 hours/month),
LT (4 hours/month)

PT (8 hours/month),
OT (8 hours/month),
LT (3 hours/month)

PT (6 hours/month),

OT (6 hours/month),
LT (4 hours/month)

PT (2 hours/month)
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Subject Therapy (before enrollment) Therapy (time of enrollment-year 1)

Therapy (year 1-year 2)

14 PT initiated 12-24 months
(4 hours/month),

OT initiated 12-24 months
(4 hours/month)

PT initiated 6-12 months
(8 hours/month),

OT initiated 12-24 months
(4 hours/month),

LT initiated 12-24 months,
Vision therapy initiated
12-24 months,

Feeding therapy initiated
12-24 months (4 hours/month)
PT initiated 0-6 months
(12 hours/month),

OT initiated 6-12 months
(12 hours/month),

DT initiated 6-12 months
(4 hours/month),

Feeding therapy initiated
6-12 months (4 hours/month)
PT initiated 12-24 months
(8 hours/month),

OT initiated 12-24 months
(4 hours/month)

PT (4 hours/month),
OT (4 hours/month)

15 PT (8 hours/month),

OT (4 hours/month)

16

17
(2 hours/month)

PT (12 hours/month), OT (12 hours/month), LT (6 hours/month), DT
(4 hours/month), Hippotherapy (4 hours/month)

PT (12 hours/month), OT (4 hours/month), Hippotherapy

PT (4 hours/month), OT (4 hours/month),
Hippotherapy (4 hours/month)

PT (4 hours/month)

PT (10 hours/month), OT (10 hours/month), LT
(8 hours/month), Hippotherapy (4 hours/month)

PT (12 hours/month), OT (4 hours/month),
Hippotherapy (2 hours/month)

showing increased connectivity are far greater than those in moderate
responders (e.g. subjects 1 and 11). These improvements are diffusely
distributed throughout the brain, and include connections that are asso-
ciated with a variety of functional networks well beyond the sensorimo-
tor system.

It was also found that the age of the child at the time of enrollment
(initial time point) was not significantly correlated with total (p =
0.944) or sensorimotor connectivity change (p = 0.848) (Fig. 4a,b). Fur-
thermore, no relationship between enrollment ages and GMFM-66
score changes was observed in this cohort (p = 0. 979, Fig. 5a). Howev-
er, children with the most improved functional scores (GMFM-66 score
changes > 10) demonstrated significantly higher (p = 0.007) baseline
connectivity as compared to children who showed more moderate
functional improvement over the 2-year period (GMFM-66 score
changes < 10) (Fig. 5b). Additionally, children with the most improved
functional scores demonstrated significantly (p = 0.007) higher base-
line FA than children who showed more modest functional improve-
ment (Fig. 5¢). Not surprisingly, children who showed the greatest
functional improvements were classified at lower GMFCS levels at the
time of enrollment (indicating higher levels of gross motor function)

- a
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o ® ©

Total connectivity change
o
»

02 |
00 e o
@®  rho=0.556p=0.02
0.2 — : : :
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Change in GMFM-66

Sensorimotor connectivity change

than did children who improved more modestly (Fig. 5d), a finding
that was expected given the previously demonstrated relationship be-
tween levels of functional ability and baseline connectivity
(Englander et al., 2013) and the observed relationship between baseline
connectivity and functional improvement (Fig. 5b). This group difference
in mean GMFCS levels was significant with p = 0.005. These findings offer
possible new insight into which children are likely to most readily show
the most positive outcomes following various rehabilitative therapies
over a 2-year period.

4. Discussion

Our results reveal statistically significant relationships between
brain connectivity changes and functional outcomes in children with
CP. The observed changes were diffuse (not limited to the sensorimotor
system), consistent with prior evidence of diffuse structural deficits in
CP (Nagae et al., 2007; Englander et al., 2013). Furthermore, it was
found that enrollment ages were not correlated with functional or
structural outcomes, however it was demonstrated that children with
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Fig. 1. Using whole brain connectome analyses, two measures of brain connectivity change were generated, total connectivity change, reflecting the total increase in connectivity through-
out the brain, and sensorimotor connectivity change, reflecting the change in connectivity specifically within the sensorimotor network. Changes in brain connectivity were examined in
relation to changes in functional abilities as measured by GMFM-66 score changes. (a) Statistically significant relationships between total connectivity change and GMFM-66 score change
(p = 0.020), and (b) sensorimotor connectivity change and GMFM-66 score change (p = 0.035) were observed.



320 Z.A. Englander et al. / Neurolmage: Clinical 7 (2015) 315-324

GMFM-66 change > 10

GMFM-66 change < 10

Subject 1

Subject 11

Fig. 2. The distribution of connectivity increases over a 2-year period throughout the whole brain for four representative subjects. To generate these connectome maps, the change in each
edge was normalized by the total WM volume to minimize the effect of age-related brain volume growth. The gray spheres represent the nodes, and the tubes between the nodes represent
positive changes in edges over a 2-year period, with their thicknesses proportional to the magnitudes of the changes.

higher connectivity and FA at the time of enrollment showed better
functional outcomes after 2 years.

4.1. Relationship between brain connectivity changes and functional
outcomes

The connectivity changes were associated with a variety of function-
al networks. In general, children who showed greater functional im-
provement showed more positive connectivity changes throughout
the brain and in the sensorimotor system, and these changes were not
associated with a specific subset of nodes.

The GMFM-66 is a measure of gross motor function that reflects more
than the ability to use isolated movements, and it is designed to capture
changes in ability to combine isolated movement into functional move-
ment that requires coordination between body parts (Russell, 2002).
However, the fact that changes in the GMFM-66 are correlated with dif-
fuse changes in connectivity may reflect the fact that functional move-
ment of the body as a whole, in coordination with the environment,
may require coordinated use of the brain, rather than the isolated use of

what is classically considered the sensorimotor system. Additionally,
change in one aspect of the system may provide permissive conditions
for the entire neural system to function more efficiently, suggesting that
study of the connectivity of the entire system may be as more important,
if not more important, than study of individual parts.

4.2. Relationship between age at time of enrollment and functional outcomes

In this study we did not observe a correlation between functional
outcomes and enrollment ages. This interesting finding is contrary
with the common understanding that younger brains have a greater
propensity for plasticity/functional change (Kennard, 1942). It has
been hypothesized that the increased potential for plasticity at young
ages is due to the excess in synaptic connections that are eventually
pruned by mechanisms associated with experience (Low and Cheng,
2006; Cramer et al.,, 2011). Furthermore, it has been shown since early
CP treatment literature that early diagnosis and treatment result in bet-
ter outcomes (Bobath, 1967).
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GMFM-66 change > 10

Subject 8

GMFM-66 change < 10

Subject 1

321

Subject 9

Subject 11

Fig. 3. The distribution of connectivity increases over a 2-year period within the sensorimotor system for four representative subjects. To generate these connectome maps, the change in
each edge was normalized by the total WM volume to minimize the effect of age-related brain volume growth. The gray spheres represent the nodes, and the tubes between the nodes
represent positive changes in edges over a 2-year period, with their thicknesses proportional to the magnitudes of the changes.

There are several plausible explanations for this finding. One poten-
tially exciting hypothesis is that the autologous cord blood transfusion is
playing a role in improving functional outcomes. It is possible that the
truly relevant correlation between age and eventual levels of functional
improvement may be between age at the time of autologous cord-blood
transfusion and GMFM-66 change scores, and not age at the time of
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enrollment. However, this analysis is not yet possible at this stage of
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to be carried out at a later time when the timing of the autologous
cord blood transfusion is revealed. An alternative, though less exciting,
explanation could be related to the relatively narrow age range of our
cohort. The median age of this cohort was 2.4, with a maximum age of
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322

Z.A. Englander et al. / Neurolmage: Clinical 7 (2015) 315-324

* p=0.007
: 0 | D i
50 t L]
® 7.0
E | =
E 4.0 ] ® ° % 6.0 |
E [}
= 5.0
30 | ® c
% 2 0 = g 40
T 20 | ® . g -
2 L © 30 |
2 °*.° o @
1.0 } L @ 59 L
rho = 0.007, p=0.979
0.0 ta el : : 1.0
0 5 10 15 20 0.0
GMERMsGEEhargs GMFM-66 GMFM-66
* p =0.007 change < 10 change > 10
C d
Ed € a0 } *p =0.005
9] 0 |
040 L £
= |
R |
E e 3.0
o 0.35 §
T = 20
=
0.30 o
= 10
@
(4]
=
0.25 0.0
GMFM-66 GMFM-66 GMFM-66 GMFM-66
change <10 change > 10 change <10 change > 10

Fig. 5. (a) No relationship between enrollment ages and GMFM-66 score changes was observed in this cohort (p = 0. 979). (b) Children with the most improved functional scores (GMFM-66
score changes > 10) demonstrated significantly higher (p = 0.007) connectivity at the time of enrollment as compared to children who showed more moderate functional improvement over
the 2-year period (GMFM-66 score changes < 10). (c¢) Children with the most improved functional scores demonstrated significantly (p = 0.007) higher FA throughout the brain at time of
enrollment than did children who showed more modest functional improvements. (d) Children who showed the greatest functional improvements were classified at lower GMFCS levels at
the initial time point (indicating higher levels of gross motor function) than did children who improved more modestly. The group difference in mean GMFCS level was highly significant

(p = 0.005).

5.1 and minimum age of 1.1 at the time of enrollment. It is possible that
this age range may not have a significantly differential impact on poten-
tial for functional improvement.

4.3. The impact of initial functional/structural deficits at the time of
enrollment on propensity for functional change

It was found that children who had relatively lower functional im-
pairment ultimately demonstrated better functional outcomes during
the course of treatment. This finding is suggestive of two neuroscience
principles — Hebbian learning and long term potentiation - which
indicate that synaptic communication between neuronal assemblies
will, over time, lead to an increase in connection strength and efficiency
between those assemblies (Bliss and Collingridge, 1993; Vidyasagar
et al., 2014), which could potentially lead to structural changes in the
brain. If the initial communication between neuronal assemblies does
not exist, interventions aimed at facilitating plasticity and increased
processing efficiency will have a more difficult time in inducing a func-
tionally significant change, a hypothesis that is directly reflected in
these findings. These data do demonstrate that children with initially
higher levels of connectivity who underwent therapy were more readily
able to achieve a functionally significant change to WM structure. Howev-
er, this is not to say that children with lower connectivity at enrollment or
higher levels of disability are not able to achieve a functionally significant

change, it just suggests that achieving the same levels of improvement
may require a slightly different therapeutic strategy.

Likewise, it was found that children with a higher FA at the time of
enrollment demonstrated more improved GMFM-66 scores over the
2-year period. While FA values could be reflecting multiple different
underlying anatomical scenarios, a higher FA is generally accepted to re-
flect healthier WM tracts and thus better structural integrity (Assaf and
Pasternak, 2008), consistent with the previous points.

4.4, Relationship between treatment and structural/functional changes

Children in this cohort continued their typical course of treatment
throughout the study, which included combinations of physical, devel-
opmental, and/or occupational therapies (Table 2), as well receiving
autologous cord blood transfusions at either the initial or second visit.
At the final time point, when functional/structural changes were assessed,
all children had received a cord blood transfusion, but the researchers in-
volved in analysis were blinded to the time point at which the experimen-
tal treatment was administered. Therefore, we are not currently able to
attribute the functional changes seen in this study to the influence of
the stem-cell therapy specifically, or to any other specific aspect of the in-
dividualized course of therapy. Nevertheless, and importantly, our neuro-
imaging data indicate that brain connectivity can serve as a sensitive
biomarker of improved functional ability in children with CP undergoing
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treatment. Further, in future analyses, this biomarker can be used to de-
termine the underlying mechanisms of the observed functional improve-
ments, potentially helping to identify whether the autologous cord blood
therapies are effective in facilitating better functional outcomes in these
children, upon un-blinding of the timing of the transfusions at the com-
pletion of this study.

4.5. Technical limitations

Neuroimaging, specifically DTI, can provide specific metrics of brain
microstructure non-invasively and at multiple time points in the same
individual. However, there are notable limitations to the tensor model
and the streamline tractography methods used here. The tensor model
assumes that fiber populations are homogeneous within a voxel, and
tractography algorithms based on the principal diffusion direction are
unable to resolve regions of crossing white matter pathways (Mori
and Zhang, 2006). These regions would benefit from a more sophisticat-
ed methodology employing high angular resolution diffusion imaging
(HARDI) (Frank, 2001; Tuch et al., 2002).

5. Conclusions

In summary, our results demonstrate that changes in brain structur-
al connectivity are correlated with functional improvements during
therapy in children with CP. They confirm previous findings that CP
symptoms are related to a diffuse network of WM deficiencies, and
also suggest that functional improvements are similarly associated
with widespread changes in WM organization. Our findings also indi-
cate that children with greater structural connectedness and WM health
at the time of enrollment are likely to achieve more favorable functional
outcomes following therapy, at least within the 2-year time period and
with the treatments in this study. Importantly, we have identified that
brain connectivity change can serve as a biomarker of functional change
in children with CP. Following unblinding of the timing of the adminis-
tration of the autologous stem cell therapy, this biomarker can be fur-
ther used to determine the mechanisms of the observed functional
improvements, and potentially help to identify whether this experi-
mental treatment is effective in facilitating better functional outcomes
in these children.
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