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Summary
The accuracy of polygenic risk scores (PRSs) to predict complex diseases increases with the training sample size. PRSs are generally derived

based on summary statistics from largemeta-analyses ofmultiple genome-wide association studies (GWASs). However, it is now common

for researchers to have access to large individual-level data as well, such as the UK Biobank data. To the best of our knowledge, it has not

yet been explored how best to combine both types of data (summary statistics and individual-level data) to optimize polygenic predic-

tion. Themost widely used approach to combine data is themeta-analysis of GWAS summary statistics (meta-GWAS), but we show that it

does not always provide the most accurate PRS. Through simulations and using 12 real case-control and quantitative traits from both

iPSYCH and UK Biobank along with external GWAS summary statistics, we compare meta-GWAS with two alternative data-combining

approaches, stacked clumping and thresholding (SCT) and meta-PRS. We find that, when large individual-level data are available, the

linear combination of PRSs (meta-PRS) is both a simple alternative to meta-GWAS and often more accurate.
Introduction

Polygenic risk scores (PRSs) are a powerful approach to sum-

marize the individual genetic liability to develop a specific

disease. They are particularly useful for complex traits and

diseases, such as psychiatric disorders,1 as these are often

highly polygenic.2 This is because PRSs aggregate the small

risk contributions from thousands of variants into a single

score, summarizing their overall risk contribution.3 Broadly,

the existing polygenic predictionmethods differ in the type

of data they use for training, i.e., individual-level genotypes/

dosages or GWAS summary statistics. Today, GWAS sum-

mary statistics are widely available for a broad range of dis-

eases and traits in public databases, e.g., the GWAS catalog

containsmore than 1,400 summary statistics.4 For psychiat-

ric disorders, the Psychiatric Genomics Consortium (PGC)

provides GWAS summary statistics based on ever larger sam-

ple sizes, as a result of meta-analyzing the individual efforts

of many research groups worldwide. Furthermore, many

GWAS summary statistics-based PRS methods are broadly

used: clumping and thresholding (CþT),5–7 LDpred,8 or

more recent methods,9–13 and have proven successful to
1The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSY

Aarhus University, 8210 Aarhus V, Denmark; 3Department of Biomedicine and

Denmark; 4Queensland Centre for Mental Health Research, The Park Centre for

University of Queensland, Brisbane, QLD 4072, Australia; 6Institute for Molec
7Center for Genomics and Personalized Medicine, CGPM, Aarhus University, 8

sity, 8000 Aarhus C, Denmark; 9Department of Psychiatry, University of North

ical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, S

Hill, Chapel Hill, NC 27514, USA; 12Copenhagen University Hospital, Mental

Denmark, 2100 Copenhagen Ø, Denmark; 13Department of Clinical Medicin

Neonatal Screening, Department for Congenital Disorders, Statens Serum In

MHC Sct. Hans, Mental Health Services Copenhagen, 4000 Roskilde, Denmark

of Copenhagen, 1350 Copenhagen K, Denmark
17These authors contributed equally

*Correspondence: albinanaclara@gmail.com (C.A.), bjv@econ.au.dk (B.J.V.)

https://doi.org/10.1016/j.ajhg.2021.04.014.

The America

� 2021 The Authors. This is an open access article under the CC BY-NC-ND l
identify individuals with significant increased risk of com-

plex diseases such as coronary artery disease.14

Interestingly, many of these external GWAS summary sta-

tistics-based PRS methods approximate the results of the in-

ternal individual-level data approaches, making some as-

sumptions in the process (e.g., LDpred-inf8 and sBLUP15

approximate the genomic BLUP,16 assuming that linkage

disequilibrium [LD]patterns in the external data fromwhich

the GWAS summary statistics were derived can be captured

using an LD reference). Furthermore, phenotype definition,

genetic architecture, and/or technical artifacts may affect

the prediction accuracy of the derived PRSs.17,18 Using

methods that fit prediction effect sizes jointly on internal

individual-level data for training PRSs makes some of these

assumptions unnecessary, which can lead to improved pre-

diction accuracy8,19 (e.g., Privé et al. found that prediction

of height using penalized linear regressionprovidesmore ac-

curate PRSs compared to CþT [LD clumping an p value

thresholding] when trained on individual-level data20).

Indeed, a number of powerful alternatives exist for deriving

PRSs using individual-level data.20–25 Until recently, most

individual-level datasets have been small, especially in
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Table 1. Overview of the compared data-combining approaches and data utilization

Combining
approach Individual-level data

GWAS summary
statistics Combining strategy Validation Test

Meta-GWAS GWAS – PRS ¼ PM
i¼1; Zi$xi;

Zi ¼
ffiffiffiffiffiffi
nint

p
$zintþ ffiffiffiffiffiffi

next
p

$zextffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nintþnext

p

select PRS
parameters

assess PRS prediction
accuracy

SCT penalized regression of CþT
scores

grid CþT scores
PRS ¼ Pk

j¼1

wj$PRSj
not used

Meta-PRS derive PRSint derive PRSext PRS ¼
wint$PRSint þ wext$PRSext

select PRS
parametersa

Abbreviations: M, number of SNPs; Z, SNP effect size; x, SNP effect allele count; n, effective sample size neff ¼ 4= 1=ð nca þ 1=ncoÞ; int, internal data; ext, external
data; k, number of PRSs in grid; w, weights (either regression coefficients or square root of training sample size).
aWhen the weights for meta-PRS were obtained with linear regression, the validation dataset was also used to train the regression parameters. When the weights
were obtained from the training sample size, the validation set was not used.
comparison to sample sizes achieved in GWAS meta-ana-

lyses, but cheaper genotyping has led to the generation of

large genetic datasets (e.g., iPSYCH for psychiatric disor-

ders26,27 and UK Biobank for a multitude of complex

traits28). Therefore, researchers often have access to large

individual-level genetic data as well as large published

GWAS summary statistics.However,most PRSmethods train

on either of these data types separately but not directly

on both (although many methods do require individual-

level data for hyper-parameter optimization). SCT is the

only exception that we are aware of, as it does train directly

on both types of data.7 By combining and leveraging data,

we aim to increase the training sample size of PRSs and,

ultimately, their prediction accuracy.

In the current paper, we explore and compare different

approaches of combining internal individual-level data

and external GWAS summary statistics for polygenic pre-

diction. Currently, the most widespread approach is

combining the data at the level of GWAS summary statis-

tics by meta-analyzing the marginal effect estimates of

different studies, prior to training the PRS (meta-GWAS).

We believe this approach is reasonable when the individ-

ual-level dataset is small, but may discard its potential for

training when larger sample sizes are available. Alterna-

tively, SCT7 generates a range of CþT PRSs from the

external GWAS summary statistics over a grid of hyper-pa-

rameters (e.g., LD clumping parameters and p value thresh-

olds) and then stacks these PRSs by fitting a penalized

regression model using individual-level data. This results

in a more accurate PRS compared to CþT provided suffi-

cient training data sample size. Based on weighted average

PRSs,29,30 we propose a model with two independently

generated PRS (meta-PRS): an internal PRS, derived from

the individual-level data; and an external PRS, derived

from the GWAS summary statistics; and train the weights

using linear regression on a validation dataset. We derive

the PRSs with methods that work well for highly polygenic

traits—namely we use BOLT-LMM31 for deriving the inter-

nal PRS and LDpred8 for the external PRS. We compare the

prediction accuracy of the three approaches presented

above (meta-GWAS, SCT, and meta-PRS) through simula-

tions and application to real data of psychiatric disorders
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and other complex diseases and traits, using individual-

level data from two large cohorts (iPSYCH and UK Bio-

bank) as well as large GWAS summary statistics that

excluded these cohorts. We show that meta-PRS often out-

performs the other compared data-combining approaches

in terms of prediction accuracy, while being a simpler

approach. We also show that, with larger individual-level

datasets, the performance of meta-PRS is expected to in-

crease. Finally, we provide recommendations for selecting

a PRS approach when GWAS summary statistics and large

individual-level data are available for training.
Material and methods

Approaches for combining internal and external data
We investigated the difference in prediction performance of PRSs

that are trained using both external GWAS summary statistics and

internal individual-level genetic data, but combined through three

different approaches (Table 1). In the first approach (meta-GWAS),

the internal individual-level data were used to derive GWAS sum-

mary statistics that were subsequently meta-analyzed with the

external GWAS summary statistics and finally used for deriving

PRSs. For the second approach (SCT), we used the external summary

statistics to derive a large number of CþT scores and the individual-

level data to fit a penalized regression to linearly combine these

CþT scores. In the third approach (meta-PRS), the individual-level

data and GWAS summary statistics were used for deriving two inde-

pendent PRSs. We obtained a weighted average of the two PRSs by

fitting a linear regression model.

In the three approaches, the individual-level data were split into

training, validation, and test subsets following a 5-fold cross-valida-

tion scheme (4-0.5-0.5; 80% training, 10% validation, 10% testing).

The selection criterion for all method parameters was the parameter

maximizing prediction accuracy in terms of prediction R2 in the

validation data. Consequently, we obtained five estimates of PRS

prediction performance for each method in the test subset and re-

ported the mean. The standard error of the mean prediction accu-

racy was estimated through 10K bootstrap replicates of this mean.
Computing PRSs
Meta-GWAS

We obtained internal GWAS summary statistics for the individual-

level data using linear regression for the simulations and
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continuous phenotypes and logistic regression for the case-control

real phenotypes. For the GWAS, we used the functions big_univ-

LinReg and big_univLogReg from the R package bigstatsr.32 We

used sex, age, genotyping batch, and the first 20 principal compo-

nents (PCs) of each dataset as covariates in the GWAS. We per-

formed an inverse variance-based meta-analysis with the external

GWAS summary statistics using the software METAL.33 We

computed PRSs using LDpred v.1.0.108 (note that this version

already implements some of the improvements made in

LDpred234), using the infinitesimal model and 7 priors assuming

a proportion of causal variants (p ¼ 1, 0.3, 0.1, 0.03, 0.01, 0.003,

0.001). To compute the LD reference panel, we used an LD radius

of 500 variants and a random sample of 5k unrelated individuals

of European ancestry from each individual-level dataset. We

then selected the LDpred PRS with p maximizing the prediction

R2 in the validation set.We also computed PRSs with LD-clumping

and p value thresholding (CþT), selecting the score from a set of

CþT PRSs that maximized the prediction R2 in the validation

set. The CþT PRSs were generated from a grid of parameters: LD

pairwise correlation r2 values (0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95),

base window sizes (50, 100, 200, 500), and 50 p value thresholds

(depending on max and min p value in summary statistics, on a

log-log scale).7 For LD clumping, the SNP p values were used as a

selection variable, i.e., for a pair of correlated SNPs, the SNP with

the lowest p value was kept. A total of 1,400 CþT PRSs were

derived for each chromosome. We performed logistic regression

followed by an inverse variance-based meta-analysis, as this is

common practice for GWASs and all the analyzed case-control

real traits had GWAS summary statistics from logistic regression.

Nevertheless, we observed a slight increase in mean prediction ac-

curacy of the PRSs from linear regression and sample size-based

meta-analysis versus logistic regression and inverse variance-based

meta-analysis (Figure S1), although with highly overlapping CIs.

We also note that some of the variation was expected due to

randomness in the cross-validation subsets.

SCT

We computed CþT PRSs using the external GWAS summary statis-

tics and the same grid of parameters as in the section meta-GWAS.

The final PRS was computed using the function snp_grid_stacking

from the R package bigsnpr,7 which performs penalized logistic

regression, with the 1400 3 22 CþT scores as predictors and phe-

notypes as outcomes in the training set.

Meta-PRS

To obtain the meta-PRS, we first computed two independent PRSs:

PRSint and PRSext . For PRSint, we obtained per-SNP prediction betas

with BOLT-LMM25 (using the flag –predBetasFile) and computed

the PRS as PRSi ¼
PM

¼1

bj$xi;j, where M are the number of SNPs in

the model, bj. For each sample and trait, we ran BOLT-LMM

v.2.3.4 using sex, age, genotyping batch, and the first 20 PCs of

the dataset as covariates. Depending on the polygenicity of the

trait, BOLT-LMM computes a mixture-of-Gaussians prior on SNP

effect sizes or the single-Gaussian BOLT-LMM-inf model, equiva-

lent to best linear unbiased prediction (BLUP). The PRSext was

computed with LDpred or CþT, as described in the section meta-

GWAS. Finally, we defined the meta-PRS with weights wint and

wext as the linear combination of the two PRSs with these weights,

as MetaPRS ¼ w0 þ wintPRSint þwextPRSext (lm function in R). To

avoid overfitting, we trained the weights in a linear regression

model in the validation dataset (lm function in R). For the linear

combination, we also used as weights the square root of the respec-

tive PRS training data sample size. In these cases, PRSs were stan-
The America
dardized prior to being combined. The latter use of weights is high-

lighted in the text, otherwise the weights in the meta-PRS came

from the linear regression model.

Data and quality control
iPSYCH data

We used genotype and phenotype data from the iPSYCH 201226

and iPSYCH 201527 case-cohort samples. The iPSYCH2015 is an

expansion of the iPSYCH2012 data and includes the samples of

the latter. Both datasets were analyzed separately to show the ef-

fect of increasing the sample sizes in the method comparison.

The iPSYCH2015 case-cohort sample is nested within the entire

Danish population born between 1981 and 2008, including

1,657,449 persons. Cases were identified as persons with schizo-

phrenia (SCZ), autism (ASD), attention-deficit/hyperactivity disor-

der (ADHD), and major depressive disorder (MDD); we identified

control subjects as persons from the randomly selected cohort

that were not diagnosed with any of the previous disorders. We

also included the anorexia nervosa (AN; ANGI-DK) samples from

the Anorexia Nervosa Genetics Initiative (ANGI).35 The genetics

dataset consists of 134,677 individuals and 8,785,478 SNPs

imputed following the RICOLPILI pipeline.36 We computed

KING-relatedness robust coefficient37 and excluded at random

one of the individuals in the pairs >3rd degree relatedness, result-

ing in 14,789 individuals excluded. We performed principal

component analysis (PCA) following Privé et al.38 and obtained

20 PCs. We also identified 122,197 genetically homogeneous indi-

viduals based on these 20 PCs. We define homogeneous individ-

uals as <4.8 log(dist) units from the center of the 20 PCs, calcu-

lated using the function dist_ogk from R package bigutilsr.38

This resulted in a subset of 108,623 unrelated individuals of homo-

geneous ancestry. After removing SNPs with minor allele fre-

quency (MAF) < 0.01 and Hardy-Weinberg p value (c2 (df ¼ 1)

test statistic pHWE) < 10�6, we restricted to the HapMap3 vari-

ants. The final dataset was composed of 108,623 individuals and

1,184,443 SNPs.

UK Biobank data

We used genotype and phenotype data from the full release of the

UK Biobank,28 consisting of 488,377 individuals with genetic in-

formation. Specifically, we imported dosage data from BGEN files

using the function snp_readBGEN from the R package bigsnpr.32

We identified individuals with either self-reported or ICD-10 diag-

nosis for breast cancer (BC), coronary artery disease (CAD), type 2

diabetes (T2D), and major depressive disorder (MDD), setting the

undiagnosed individuals as control subjects and restricting to

women for breast cancer. We also identified individuals with

standing height and body mass index (BMI) measurements to

use as quantitative traits. We restricted the analysis to unrelated

(as described in the section iPSYCH data) and ‘‘white British’’ ge-

netic ancestry individuals. We removed SNPs with MAF < 0.01

and restricted to HapMap3 variants. The final dataset was

composed of 337,475 individuals and 1,194,574 SNPs.

Simulations

We simulated case-control phenotypes using 1,194,574 HapMap3

SNPs and the subset of 337,475 unrelated European-ancestry indi-

viduals from the UK Biobank. The phenotypes were simulated

with two different numbers of causal variants: Mcausal ¼ 10k and

100k, representing polygenic traits. We also used two different to-

tal sample sizes: n ¼ 337,475 (large simulations) and n ¼ 50,000

(small simulations) individuals. Each causal variant was assigned

an effect size drawn from Nð0;h2 =McausalÞ, where the heritability

h2 ¼ 0.5. The case-control status was assigned under a genetic
n Journal of Human Genetics 108, 1001–1011, June 3, 2021 1003



Table 2. Summary of real datasets

Traits Individual-level sample size GWAS sample size Ratio int:ext rg internal-external (SE)

iPSYCH dataset

Anorexia nervosa (AN)45 7,713 35,274 1:5 0.8147 (0.0945)

Bipolar disorder (BD)46 8,436 48,609 1:6 0.7855 (0.0804)

Schizophrenia (SCZ)47 15,421 48,307 1:3 0.6175 (0.0677)

Autism spectrum disorder (ASD)48 39,068 10,610 4:1 0.6241 (0.0671)

Attention deficit hyperactivity disorder
(ADHD)49

43,405 12,214 4:1 1.3137 (0.1216)

Major depressive disorder (MDD)50 49,234 646,483 1:13 0.8115 (0.0477)

UK Biobank dataset

Coronary artery disease (CAD)51 35,457 162,973 1:5 0.8644 (0.0672)

Breast cancer (BC)52 35,707 227,688 1:6 0.9378 (0.085)

Type 2 diabetes (T2D)53 57,086 88,825 1:2 0.9567 (0.0595)

Major depressive disorder (MDD)54 83,900 123,796 1:2 0.8156 (0.0632)

Body mass index (BMI)55 269,106 339,224 1:1 0.9536 (0.0347)

Height56 269,407 253,288 1:1 0.9389 (0.0417)

Effective sample sizes of the six psychiatric disorders in iPSYCH 2015 and ANGI, four diseases and two continuous traits in the UK Biobank, along with the effective
sample sizes of the corresponding external GWAS summary statistics. The table reflects sizes of European, unrelated samples (see material and methods).
liability model, with a simulated prevalence of 0.2. Each simula-

tion scenario was repeated 5 times.

From the sample of individuals, 90%were used as the training set,

5% as the validation set, and 5% as the test set. To represent sce-

narios with different sample sizes of the individual-level data and

GWAS summary statistics, the training set was further split

randomly according to the following partitions: 90%–10%, 75%–

25%, 50%–50%, 25%–75%, and 10%–90%. One part was used to

derive summary statistics and act as the external summary data,

while the other part was used as individual-level data. The labels

9:1, 3:1, 1:1, 1:3, 1:9 used in the results reflect the sample size ratio

of GWAS summary statistics (left) and individual-level data (right).

Prediction accuracy
The prediction accuracy of the PRSs was assessed in terms of

squared correlation (R2) and area under the curve (AUC).39 The

PRSs prediction R2 were reported as the squared partial correla-

tion40 (using sex, age, genotyping batch, and first 20 PCs as cova-

riates) for the quantitative traits and transformed to the liability

scale for the case-control data.41 Additionally, the AUC was re-

ported for the case-control data.

LDSC regression
We obtained estimates of the genetic correlation rg and intercept

from a bivariate LD score regression (LDSC)42,43 between the inter-

nal and external GWAS summary statistics of the traits in Tables 2

and S1. We used the R package GenomicSEM.44
Results

Performance on simulated data

We evaluated the prediction accuracy of the PRSs using

simulated data to explore the relationship between the
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combining approaches and the training sample size. Using

the UK Biobank genetic data, we simulated traits with

10,000 (10k) and 100,000 (100k) causal SNPs, aiming at

representing the polygenicity range of complex traits,

and different sizes of training sample (10%, 25%, 50%,

75%, and 90% of n ¼ 303,728 and 45,000 individuals) of

individual-level data (internal) and GWAS summary statis-

tics (external). First, we compared the prediction accuracy

of PRSs trained only on internal data (using BOLT-LMM) or

external data (using CþT or LDpred) in terms of mean pre-

diction R2 (Figure 1A) and AUC (Figure S2A). For all simu-

lated scenarios, the BOLT-LMM outperformed other

methods, with a larger relative improvement in the simu-

lations with 10k causal SNPs. The comparison between

the GWAS summary statistics-based methods resulted in

CþT being generally preferred in the simulations with

10k and LDpred in the ones with 100k causal SNPs. These

results highlight the benefits of using the individual-level

data for training PRSs over the derived GWAS summary

statistics.

We also compared the prediction accuracy of PRSs using

different data-combining approaches (SCT, meta-GWAS,

and meta-PRS) in the simulated traits (Figures 1B, S2B,

and S3). The external and internal datasets were matched

to create combinations with different ratios of each data

type (9:1, 3:1, 1:1, 1:3, 1:9; e.g., 3:1 indicates a scenario

where the external data was 75% and the internal data

was 25% of the total N �300k individuals in the training

set). For meta-PRS, we observed a positive relation between

the size of the internal data and the mean prediction R2.

The opposite was observed for SCT, where larger external

datasets provided larger mean predictions. The ratio of
e 3, 2021
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Figure 1. Prediction accuracy of the PRSs
in the simulation study
Each panel displays the mean and 95% CI
of the PRS prediction R2 (y axis) for each
data combining approach. The traits were
simulated from a liability threshold model
with 10,000 (10k) and 100,000 (100k)
causal SNPs and heritability h2 of 0.5,
and case-control status was inferred from
a disease prevalence of 0.2. Mean and
95% CI of prediction R2 were obtained
from 10k non-parametric bootstrap sam-
ples of 5 independent replicates.
(A) Effect of training sample size in the
PRSs prediction accuracy. The x axis indi-
cates the percentage of individuals from
the total training set (n ¼ 303,728) used
as individual-level data for BOLT-LMM or
GWAS summary statistics for CþT and
LDpred.
(B) Effect of the ratio between internal and
external data in the combining ap-
proaches. The x axis indicates the relative
amount of external versus internal data,
e.g., 3:1 indicates a scenario where the
external data was 75% and the internal
data was 25% of the total sample. Figure 1
is a simplified version of Figure S3, select-
ing a single method per combining
approach between CþT and LDpred,
where the method maximizing mean pre-
diction R2 was selected.
data showed no effect for meta-GWAS, with constant pre-

diction R2 along the simulated ratios (Figure 1B). These re-

sults indicated that it was possible to optimize PRS predic-

tion accuracy by selecting a data-combining approach

depending on the sample size ratio between the available

internal and external data. While the classical meta-

GWAS was a valid strategy in ratios of 1:1, scenarios with

a more skewed ratio benefit from approaches like meta-

PRS (for larger individual-level data) and SCT (for larger

GWAS summary statistics), which use the individual-level

data for training.

We also performed simulations with smaller effective

sample sizes for both individual-level data and GWAS sum-

mary statistics (Figure S4). Using a total sample size of 50k

individuals, these simulations correspond better to the

sample sizes used in the real data analysis. We observed

similar mean prediction R2 for both meta-PRS and meta-

GWAS in these simulations (Figure S4B). The method-spe-

cific differences only showed an increase in mean predic-

tion of the BOLT-LMM PRS over the LDpred PRS when

the training sample was 90% of the total, i.e., when the

effective sample size was 40.5k individuals (Figure S4A).

To better understand the relationship between the sam-

ple size and the difference in mean prediction R2 between

meta-PRS and meta-GWAS, we plotted it as a function of

the ratio neffint$h
2=

ffiffiffi
p

p
, where neffint is the effective sample

size in the individual-level data, h2 is the heritability, and p

is the fraction of causal variants, i.e., 0.1 and 0.01 for the
The America
simulations with 100k and 10k causal SNPs, respectively.

We note that this ratio is related to the expected prediction

accuracy by Daetwyler et al.,57 i.e., the larger it is the more

accurate predictions we can expect. We found that the

observed benefit from applying meta-PRS over meta-

GWAS increased as a function of this quantity

(Figure S5). Interestingly, we also found that the effective

sample size of the external GWAS summary statistics did

not influence this relative performance.

Aiming to simplify the construction of the meta-PRS, we

attempted to use the square root of the effective sample

size (
ffiffiffiffiffiffiffiffi
neff

p
) to weight the internal and external PRSs. This

simplified version of meta-PRS is faster and does not

need of a validation dataset. In the previously described

simulated scenarios, we compared the mean prediction

R2 of PRSs weighted by
ffiffiffiffiffiffiffiffi
neff

p
and PRSs weighted by linear

regression effect sizes (using a validation dataset). We

only observed a small increase in mean prediction R2 in

the scenarios with large individual-level data (ratios 1:3

and 1:9), with the other remaining the same. We also

compared to a meta-PRS between the meta-GWAS and

the internally trained PRS with BOLT-LMM, observing no

increase in mean prediction R2 (Figure S6).

Performance on real data

We investigated the prediction accuracy of the data-

combining approaches (meta-PRS, SCT, and meta-GWAS)

in real complex traits using internal individual-level data
n Journal of Human Genetics 108, 1001–1011, June 3, 2021 1005
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Figure 2. Prediction accuracy of the combining approaches in 12 complex traits from iPSYCH 2015 and UK Biobank
Each panel displays the mean and 95% CI of the PRS prediction R2 (y axis) for each data combining approach, of PRS trained on indi-
vidual-level data (int), GWAS summary statistics (ext), or both (extþint) (x axis). The predictionR2 was transformed to the liability-scale
using a population prevalence of 0.01 (ASD), 0.05 (ADHD), 0.15 (MDDUK Biobank), 0.05 (T2D), 0.01 (AN), 0.03 (CAD), 0.01 (SCZ), 0.07
(BC), 0.01 (BD), and 0.08 (MDD iPSYCH). The methods noted as int and ext were fitted using BOLT-LMMwith individual-level data and
LDpred or CþT with GWAS summary statistics, respectively. For simplification, only the ext PRS with larger mean prediction R2 is
shown, the full results are available in Figure S8. Mean and 95% CI of the prediction R2 were obtained from 10k non-parametric boot-
strap samples of the 5 cross-validation subsets.
from large genotype cohorts (iPSYCH26,27,35 and the UK

Biobank28) and external GWAS summary statistics. The

set of traits selected included the six major psychiatric dis-

orders (ASD, ADHD, MDD, BD, SCZ, and AN), three other

complex diseases (BC, T2D, and CAD), and two contin-

uous complex traits (height and BMI) (Table 2). The

external GWAS summary statistics were selected to not
1006 The American Journal of Human Genetics 108, 1001–1011, Jun
have sample overlap with the individual-level datasets

used. This was confirmed by checking the intercept of a

bivariate LDSC regression between the internal and

external data (Table S1). Of all traits, only height showed

an intercept different from 0 (0.099, SE: 0.0265). Large

sample sizes in GWASs (specifically for height) have been

reported to cause this effect in the bivariate LDSC
e 3, 2021



regression intercept.58 The set of SNPs used for each trait

was the intersection between the SNPs in the individual-

level data, GWAS summary statistics and the 1,440,616

HapMap3 SNPs.

No single combining approach provided the largest

mean prediction R2 for all traits (Figure 2) or AUC

(Figure S7) for all traits. In the cases where the sample

size of individual-level data was larger than the summary

statistics (int > ext), meta-PRS increased mean prediction

R2 over SCT and meta-GWAS for height, while both

meta-GWAS and meta-PRS had similar results for ASD

and ADHD, with large and overlapping CIs. In the cases

with equal data training sample sizes (1:1), meta-PRS

increased prediction accuracy over meta-GWAS and SCT

for BMI and T2D, while the results for meta-GWAS and

meta-PRS were similar for MDD UKB. Finally, in the cases

where the sample size of the GWAS summary statistics

was larger than the individual-level data (ext > int), the re-

sults were also diverse. For AN, CAD, SCZ, BD, and MDD

iPSYCH, there was no major difference between meta-

GWAS and meta-PRS. However, for BC, the data-

combining approach with the largest mean prediction R2

was SCT.

Generally, the meta-GWAS resulted in a similar mean

prediction R2 with meta-PRS for the psychiatric disorders,

with large and overlapping CIs. This was independent of

the sample size ratio of internal versus external data. Re-

sults using either iPSYCH 2012 or 2015 were similar,

despite the iPSYCH 2015 data having almost twice as

many individuals (Figure S9, Table S1). For most outcomes

validated in the UK Biobank data, the most accurate

approach was meta-PRS, where the largest improvement

was for height, BMI, and T2D. For these outcomes, the in-

ternal effective sample size was larger than for most of the

other outcomes. BC was the only trait where SCT led to the

most predictive PRS, even though the ratio internal:exter-

nal was similar to other traits like CAD.

The difference in mean prediction R2 between meta-PRS

and meta-GWAS was plotted as a function of the internal

effective sample size (neffint ), SNP-heritability (h2), and pro-

portion of causal variants (p) (Figure S10). We observed a

similar trend as observed earlier in our simulations

(Figure S6). While all of the psychiatric disorders showed

small values of neffint$h
2=

ffiffiffi
p

p
, all the other disorders and

traits showed an increase inmean prediction R2 from using

meta-PRS as the data-combining approach over meta-

GWAS.

We also compared the meta-PRS constructed with linear

regression weights to the one weighed by effective sample

sizes (
ffiffiffiffiffiffiffiffi
neff

p
) of training data (Figure S11). As in the simula-

tions, we only observed an increase in mean prediction R2

in the traits with large individual-level data (height and

BMI). In the rest of the traits, there was no preference for

a specific weight type. The use of
ffiffiffiffiffiffiffiffi
neff

p
as weights is there-

fore recommended for these traits, as it does not require a

validation set. Additionally, we constructed a meta-PRS be-

tween the meta-GWAS PRS and the BOLT-LMM PRS. As
The America
observed in the simulations, the mean prediction R2 of

this PRS was similar to the one obtained from the linear

regression meta-PRS, which combines the BOLT-LMM

PRS to the PRSext .
Discussion

With genetic data now available to researchers as both

large individual-level datasets and GWAS summary statis-

tics, we want to understand how to best combine these

two types of data to optimize polygenic prediction. With

this aim, we have evaluated the predictive performance

of PRSs generated with different data-combining ap-

proaches: meta-GWAS, SCT, and meta-PRS. We find that

the simple approach of combining two different PRSs

(meta-PRS), trained on individual-level data and GWAS

summary statistics separately, may yield more accurate

PRSs than a meta-GWAS, particularly in the cases with suf-

ficiently large individual-level datasets. We observe this in

simulated data, where meta-PRS consistently increases the

mean prediction R2 over the widely used meta-GWAS

approach, and in the real complex traits with a large indi-

vidual-level dataset e.g., height, BMI, and T2D. Another

advantage of meta-PRS is that it allows to combine multi-

ple pre-calculated PRSs, irrespective of prediction method.

When validation data are not available, we show that one

can use the square root of the training sample sizes as

weights. The same approach could also be used to combine

multiple PRSs (e.g., in the PGS Catalog59), being standard-

ized and averaged together with their corresponding

training sample sizes. As an alternative approach, the

scores in a meta-PRS could be weighted using MT-BLUP.60

Additionally, we also tried using the meta-GWAS as one

of the variables for meta-PRS, which provided similar

performance.

In the case of BC, which has several large effects and rela-

tively low polygenicity, the SCT PRS prediction is the most

accurate, presumably because it relies more on variant

thinning. For psychiatric disorders, we found that the

meta-GWAS and meta-PRS generally yielded similar re-

sults, despite these disorders being very polygenic and

often having relatively large individual-level data sample

sizes. We also note that the expected relative improvement

of meta-PRS over meta-GWAS is small when polygenicity is

large. Our simulations and real data suggest that the rela-

tive prediction gain of meta-PRS over meta-GWAS in-

creases as a function of the individual-level data sample

size and seems to be independent of the external sample

size. This is consistent with the observation that BMI and

height display the largest benefit from using meta-PRS

over meta-GWAS. As a general rule of thumb, we set the

threshold value of Neffint$h
2=

ffiffiffi
p

p
at 100k. However, we

also note that our results suggest that meta-PRS can be

applied using smaller sample sizes without loss in predic-

tion accuracy. Meta-PRS may be easier to construct in prac-

tice, as it does not require tomake ameta-analysis of GWAS
n Journal of Human Genetics 108, 1001–1011, June 3, 2021 1007



summary statistics. In addition, meta-PRS can be updated

easily when new external data becomes available, as it

only requires one to generate a new PRS on the new

external GWAS summary statistics or even take it from a

resource like the PGS Catalog.59

Our simulations represent an idealized scenario where

we assume that the genetic architecture is invariant be-

tween cohorts/samples (i.e., genetic correlation is 1).

Studies have shown that psychiatric disorders can be quite

heterogenous between cohorts.18 As previously shown by

Schork et al.,61 we have estimated the genetic correlation

for psychiatric disorders between external and iPSYCH

samples to be between 0.5 and 0.8, while the genetic corre-

lation was larger (>0.8) for the rest of the analyzed com-

plex traits. Similar to disease heterogeneity, differences in

genetic ancestry between the training and testing data

can also decrease the prediction accuracy of PRSs.17 In

the case of ancestry heterogeneity, the linear combination

of PRSs trained independently on different ancestries im-

proves prediction for admixed individuals,62 but the

extent to which these sample heterogeneities affect each

of the prediction accuracies in the compared data-

combining approaches should be further studied.

In meta-PRS we combined the BOLT-LMM and LDpred

(or CþT) predictions, and therefore the results may not

be fully generalizable to other methods, e.g., a more accu-

rate methodmay lead to more accurate meta-GWAS scores.

Nevertheless, given that LDpred generally performs well

for polygenic traits in independent comparisons,63,64 we

believe it acts as a good proxy for other similar methods,

such as lasso regression,9 SBayesR,11 and PRS-CS.10 In the

case of individual-level data and low polygenicity, L1-

penalized regression may also provide more accurate

PRSs than BOLT-LMM.20

In summary, we found that a simple additive model of

twopolygenic scores (meta-PRS) oftenoutperformed the ac-

curacy of approaches that first meta-analyzed SNP effects

(meta-GWAS) in highly polygenic traits. Fundamentally,

the improvement in meta-PRS prediction accuracy stems

from the fact thatmethods that train apolygenic prediction

model on individual-level data have access tomore training

information thanmethods that only train on a summary of

this data and usually make fewer assumptions. However,

meta-GWAS has the advantage that each effect estimate is

updated separately, possiblymaking itmore robust to small

sample sizes and changes in genetic architecture.
Data and code availability

Access to individual-level Denmark data is governed by Danish au-

thorities. These include the Danish Data Protection Agency, the

Danish Health Data Authority, Scientific Ethical Committee, Sta-

tistics Denmark, and the European legislation (General Data Pro-

tection Regulation). Each scientific project must be approved

before initiation, and approval is granted to a specific Danish

research institution. International researchers may gain data ac-

cess through collaboration with a Danish research institution.
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More information about getting access to the iPSYCH data can

be obtained at https://ipsych.au.dk/about-ipsych/. UK Biobank

data are available through a procedure described at https://www.

ukbiobank.ac.uk/using-the-resource/. All code used is available

in the GitHub repository https://github.com/ClaraAlbi/paper_

MetaPRS/.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.04.014.
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