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iRSpot-DACC: a computational 
predictor for recombination hot/
cold spots identification based 
on dinucleotide-based auto-cross 
covariance
Bingquan Liu1,*, Yumeng Liu2,*, Xiaopeng Jin3, Xiaolong Wang2,4 & Bin Liu2,4

Meiotic recombination presents an uneven distribution across the genome. Genomic regions that 
exhibit at relatively high frequencies of recombination are called hotspots, whereas those with 
relatively low frequencies of recombination are called coldspots. Therefore, hotspots and coldspots 
would provide useful information for the study of the mechanism of recombination. In this study, we 
proposed a computational predictor called iRSpot-DACC to predict hot/cold spots across the yeast 
genome. It combined Support Vector Machines (SVMs) and a feature called dinucleotide-based auto-
cross covariance (DACC), which is able to incorporate the global sequence-order information and 
fifteen local DNA properties into the predictor. Combined with Principal Component Analysis (PCA), its 
performance was further improved. Experimental results on a benchmark dataset showed that iRSpot-
DACC can achieve an accuracy of 82.7%, outperforming some highly related methods.

Meiotic recombination is the process alleles exchange between homologous chromosomes during meiosis1,2. It 
plays an important role in the process of genome evolution3,4. Since recombination can produce diverse gametes, 
so it provides material for natural selection. Moreover, Recombination also influences the genome evolution via 
gene conversion or mutagenesis5,6.

Although the mechanism of recombination is still unclear, it has been assured that recombination plays an 
important part in promoting genome evolution. The distribution pattern of recombination position has drawn 
much attention and several studies have been performed on chromosomes7–9. Some studies have found that 
recombination presents an uneven distribution across the genome. Genomic regions that exhibit at relatively high 
frequencies of recombination are called hotspots, while those with relatively low frequencies of recombination are 
called coldspots10,11. In the era of rapid development of biology sequencing technology, the number of sequenced 
genome shows explosive growth. Therefore, it is necessary to develop stable methods for the identification of 
recombination spots.

Although a great deal of recombination information can be acquired from experiments concerning recombi-
nation, identifying recombination hot/cold spots by using the information of DNA sequence is still a challenging 
task. Recently, several models have been proposed to predict recombination hotspots and coldspots. For example, 
Zhou et al.12 proposed a SVM-based method based on codon composition to identify hotspots from coldspots. 
Later, Jiang et al.13 employed the Random Forest classifier trained with the gapped dinucleotide composition fea-
tures to identify hotspots from coldspots in Saccharomyces cerevisiae. Guo et al.14 proposed a SVM model based 
on DNA physical properties to predict hot/cold spots in yeast. Combining increment of diversity with quadratic 
discriminant analysis (IDQD), Liu et al.1 presented a model based on sequence k-mer frequencies along with 
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DNA sequences. Wu et al.15 proposed a SVM model based on the features of genomic and epigenomic to predict 
meiotic recombination hotspots in human and mouse. Chen et al.16 presented a SVM model based on pseudo 
dinucleotide composition. Wang et al.17 proposed a method based on gapped kmers. Most of these predictors 
only considered the local sequence-order information, while little global sequence-order information was taken 
into account. However, in many bioinformatics’ tasks, the global sequence-order information has showed strong 
discriminative power as shown in many studies. Therefore, in a predictor, the global sequence-order factor should 
be incorporated. Unfortunately, it is not an easy job, because the lengths of DNA sequences are different.

To address this problem, a feature called dinucleotide-based auto-cross covariance (DACC)18 is applied to 
recombination hot/cold spots identification, which is able to incorporate the global sequence-order effects in 
the DNA sequences into the predictor. Combined with Support Vector Machines (SVMs), a predictor called 
iRSpot-DACC is proposed. Later, in order to further improve its performance and computational cost, Principal 
Component Analysis (PCA)19 is adopted. Experimental results on a benchmark dataset demonstrate that the 
proposed method outperformed some highly related models, including IDQD1 and iRSpot-PseDNC16.

Results
Influence of parameters on the predictive performance of iRSpot-DACC. In iRSpot-DACC, there 
is a parameter, the distance between two dinucleotides lag, would affect its predictive performance. In the current 
study, lag is optimized via the 5-fold cross validation. The influence of lag on the performance of iRSpot-DACC is 
shown in Fig. 1, from which we can see that the optimized value can be achieved when lag =  6, and this parameter 
has little impact on the performance. DACC is the combination of Dinucleotide-based auto covariance (DAC) 
and Dinucleotide-based cross covariance (DCC) (cf. section Material and Methods). With this parameter set-
ting, the lengths of the feature vectors for DAC and DCC are 15 ×  6 =  90 and 15 ×  14 ×  6 =  1260 respectively. 
Therefore, the dimension of DACC is 90 +  1260 =  1350.

The computational performance of iRSpot-DACC can be further improved by using PCA. In 
order to further improve its performance and computational cost of iRSpot-DACC, the Principal Component 
Analysis (PCA)19 is employed.

There is a parameter w (cf. Eq. (18)) in PCA, which would have impact on both the predictive accuracy and 
the dimension of the feature vectors. Therefore, we optimize this parameter utilizing 5-fold cross validation. The 
results show that the iRSpot-DACC-PCA (iRSpot-DACC combined with PCA) achieves the best performance 
when w =  0.99 and its performance is shown in Table 1, from which we can see that iRSpot-DACC-PCA outper-
forms iRSpot-DACC.

Figure 1. The distribution of Acc values achieved by iRSpot-DACC with different lag values based on the 
benchmark dataset through five-fold cross validation. 

Predictor Test method Sn(%) Sp(%) Acc (%) MCC

IDQDa 5-fold 79.40 81.00 80.30 0.603

iRSpot-PseDNCb Jackknife 73.06 89.49 82.04 0.638

iRSpot-DACCc Jackknife 75.71 88.16 82.52 0.647

iRSpot-DACC-PCAd Jackknife 76.33 87.99 82.70 0.651

Table 1.  Results of different predictors on benchmark dataset. aFrom Liu et al.1; bFrom Chen et al.16; cThe 
parameter used: lag =  6 for Eq. (4) and Eq. (7); C =  23 and γ =  2−3 for the LIBSVM47; dThe parameter used: 
lag =  6 for Eq. (4) and Eq. (7); C =  23 and γ =  2−3 for the LIBSVM47; w =  0.99 for PCA.
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The feature vector’s dimension of iRSpot-DACC-PCA is 173, which is significantly smaller than the orig-
inal dimension of iRSpot-DACC (1350). Therefore, the predictive accuracy and the computational cost of 
iRSpot-DACC are further improved by using PCA.

Discriminative visualization and interpretation. In order to further explore the discriminative power 
and indicate the meaning of the feature space in biology, we calculate the discriminative weight vector according 
to the study20. The specific formula of the feature discriminative weight vector W can be formulated as:
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where A is the specific weight for each training samples obtained from SVM training process; M is the feature 
space of the benchmark dataset used in the current study; N is the number of DNA sequences in the training 
dataset; j is the dimension of the feature vector. Therefore, W is a 1 ×  j vector and each element in it represents the 
corresponding feature’s discriminative power.

The feature discriminative weight vector with 1350 features (cf. section Results) is depicted in Fig. 2, in which 
the deeper color spots represent stronger discriminative power than the lighter color spots. From Fig. 2 we can 
see that the top three discriminative features are DAC(2, 3), DCC(2, 8, 3) and DCC(2, 15, 1). All the three features 
are deduced from the same property (F-tilt), which suggests the importance of this property of F-tilt (μ =  2). The 
top ten discriminative features are listed in Table 2. In this table, we can conclude several conclusions. First, the 
correlation between properties F-roll (μ =  1) and several other properties shows strongly discriminative power 
for identifying recombination hot/cold spots. Second, the correlation between F-tilt (μ =  2) and other properties 
including itself also shows strongly discriminative power. Third, when the distance between two dinucleotides 
equals to 1, 2, 3 or 5, the influence of the corresponding features would be important for identifying hot/cold 
spots.

Comparison with other related predictors. Two methods for hot/cold spots identification are compared 
with the proposed methods iRSpot-DACC and iRSpot-DACC-PCA, including IDQD1 and iRSpot-PseDNC16. 
The results of various methods on the benchmark dataset S are shown in Table 1.

According to Table 1, we can see that iRSpot-DACC outperforms the two methods IDQD1 and iRSpot-PseDNC16.  
Furthermore, iRSpot-DACC-PCA outperforms iRSpot-DACC by adopting Principal Component Analysis 
(PCA). The main reasons are described as follows: IDQD1 only consider the local sequence-order information, 
and iRSpot-PseDNC16 improves it by incorporating global sequence-order information. However, iRSpot-DACC 
not only incorporates the global sequence-order information but also contains more DNA properties into the 
feature vectors. Therefore, we conclude that iRSpot-DACC would be a useful tool for hot/cold spots identification.

Figure 2. An illustration for the discriminant visualization. The figure labeled by y-axis and x-axis shows the 
distribution of different features. The adjacent color bar shows the mapping of sum score values.
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Discussion
In this study, we propose a computation method called iRSpot-DACC for yeast hot/cold spots identification. 
The method incorporates long range or global sequence-order information. The result shows that iRSpot-DACC 
outperform other state-of-the-art predictors. Furthermore, iRSpot-DACC incorporates the correlations between 
different dinucleotide DNA properties. Another important advantage of our approach derived from PCA (prin-
cipal component analysis)21 which not only can improve the predictive accuracy, but also can reduce the compu-
tational cost. It can be expected that DACC would be a powerful feature extraction method, and it can be applied 
to other tasks in the field of bioinformatics, such as DNA-binding proteins identification22, protein fold predic-
tion23,24, cytokine detection25,26, protein-protein interaction site prediction27, tumor classification and analysis28, 
etc. Moreover, since publicly accessible web-server is beneficial to develop more useful predictors, we would make 
efforts in our future work to develop a web-server for the method proposed in this paper. Furthermore, we will 
apply other advanced machine learning techniques to establish more accurate predictors for hot spot identifica-
tion, such as deep learning, and neural networks29–32.

Material and Methods
Benchmark Dataset. The benchmark dataset used in this study was constructed by Jiang et al.13, which con-
tains 490 hotspots and 591 coldspots. For more detailed information of this benchmark dataset, please refer to13.

Therefore, the benchmark dataset for the current study can be expressed as:

∪= + −S S S (2)

where S+ is the set of recombination hotspots, S− is the set of recombination coldspots, and ∪  is a mathematical 
operator representing “union”.

Dinucleotide-based auto-cross covariance (DACC). As described above, the global sequence-order 
information shows strongly discriminative power for identifying recombination hot/cold spots. Therefore, it is 
crucial to incorporate the global sequence-order information into our model. In order to deal with this prob-
lem, a feature called Dinucleotide-based auto-cross covariance (DACC)18 is adopted, which incorporates global 
sequence-order information along DNA sequences. DACC is the combination of Dinucleotide-based auto covari-
ance (DAC) and Dinucleotide-based cross covariance (DCC). Next, we will introduce DAC and DCC respectively.

Given a DNA sequence D

= D R R R R R R R (3)L1 2 3 4 5 6

where L is the length of DNA sequence, R1 means the nucleic acid residue at the first position in the sequence, R2 
means the nucleic acid residue at the second position and so forth.

The DAC18,33,34 represents the correlation of one DNA local property between two dinucleotides at a distance 
of lag in the sequence. DAC can be calculated by:

∑µ µ= Θ − −
=

− −

+ + + +lag L lagDAC( , ) ( , R R , R R )/( 1)
(4)i

L lag

i i i lag i lag
1

1

1 1

and

µΘ = − −µ µ µ µ+ + + + + + + +( , R R , R R ) (P (R R ) P ) (P (R R ) P ) (5)i i i lag i lag i i i lag i lag1 1 1 1

where μ is the index of dinucleotide local property; L represents the DNA sequence length; Pμ(RiRi+1) means the 
value of the dinucleotide RiRi+1 at position i for the local property index μ; µP  is the average value of Pμ(RiRi+1) for 
a DNA sequence and can be calculated as:

Features

Parameters

μ1 μ2 lag Discriminative power

DAC F-tilt F-tilt 3 78.56

DCC F-tilt tilt 3 77.98

DCC F-tilt entropy 1 70.56

DCC F-roll F-slide 3 67.56

DCC F-roll twist 1 66.33

DCC F-tilt F-roll 5 63.03

DCC F-roll energy 5 60.57

DCC F-roll F-rise 5 59.84

DCC F-tilt tilt 1 58.81

DCC F-roll rise 2 54.74

Table 2.  The top ten most important features in iRSpot-DACC for identifying hot/cold spots. μ1 and μ2 
are the indices of dinucleotide local property, lag is the distance between two dinucleotides and the value of 
discriminative power represents the discriminative power of the corresponding features. The larger the value is, 
the stronger the discriminative power. The calculation of this value refers to Eq. (1).
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In such way, the feature vector’s length of DAC is N*LAG, where N is the number of dinucleotide properties 
used in this study and LAG is the maximum of lag = lag LAG( 1, 2 , ).

The DCC33–35 calculates the correlation of two different properties between two dinucleotides at a distance lag 
nucleic acid residues in the DNA sequence. DCC can be calculated by using the following equation:

∑µ µ µ µ= Θ − −
=

− −

+ + + +lag L lagDCC( , , ) ( , , R R , R R )/( 1)
(7)

L lag

i i i lag i lag1 2
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µ µ = − −µ µ µ µ+ + + + + + + +( , , R R , R R ) (P (R R ) P ) (P (R R ) P ) (8)i i i lag i lag i i i lag i lag1 2 1 1 1 11 1 2 2

where μ1, μ2 are two different property indices, L represents the DNA sequence length; Pμ1(RiRi+1) Pμ2(RiRi+1)) 
is the numerical value of the dinucleotide (RiRi+1) at position i for the property index μ1 (μ2); µP

1
 µ(P )

2
 is the aver-

age value for property index value μ1 (μ2) along the whole sequence and have the same form with Eq. (6). In such 
way, the feature vector’s length of DCC is N * (N −  1) * LAG, where N is the number of dinucleotide properties 
used in this study and LAG is the maximum of lag = lag LAG( 1, 2 , ). The processes for generating the feature 
vectors of DAC and DCC are presented in the Fig. 3(a,b) respectively.

In this study, fifteen properties from36 are used. Their values are listed in Table 3.

Support vector machine (SVM). Support Vector Machine (SVM) is a pattern recognition technique intro-
duced by Vapnik37, which has been employed for many computational tasks in bioinformatics38–41. It seeks an 
optimal hyperplane via transforming the original feature space into a high dimensional vector space to achieve 
classification.

In the current study, the ANACONDA package (http://www.continuum.io/) is adopted, which contains the 
implementation of SVM. The selected kernel function is radial basis function (RBF), which is defined as:

Figure 3. The process of generating DACC feature vector. (a) The generating process of DAC feature vector. 
It depicts the correlation of the same property index between two dinucleotides. (b) The generating process of 
DCC feature vector. It depicts the correlation of the different property indices between two dinucleotides.

http://www.continuum.io/
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γ= − −( )K (X X ) exp X X
(9)i j i j,

2

Two parameters, the regularization parameter C and the kernel width parameter γ are optimized on the data-
set by using a grid tool provided by ANACONDA. In the current study, the values of the two parameters are 
shown below:

γ






=
= −

C 2
2 (10)

3

3

Principal Component Analysis (PCA). Feature selections are able to remove the noise so as to improve 
the classification performance42. In order to reduce redundant information, in this study, we adopt Principal 
Component Analysis (PCA)19 to reduce the dimension of the original feature vectors. It reduces the dimension 
of the feature vectors through projecting a feature space onto a smaller subspace that represents the dataset well.

Suppose, the original feature space of iRSpot-DACC can be represented as:
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where N is the number of training sample, k is the dimension of the feature vectors. Then, the averages for every 
dimension of X can be expressed as:

∑= =
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e
N

e j k1 ( 1, , )
(12)j
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ij
1

where N and k have the same meaning with Eq. (11). Therefore, the matrix which is composed of mean vectors for 
every dimension in X can be represented as:
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where eij represents the element of X and ei can be acquired from Eq. (12).
Then, the covariance matrix XCov( ) and its eigenvalues can be calculated and the eigenvalues can be repre-

sented as:
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k

AA/TT AC/GT AG/CT AT CA/TG CC/GG CG GA/TC GC TA

F-roll 0.04 0.06 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.03

F-tilt 0.08 0.07 0.06 0.10 0.06 0.06 0.06 0.07 0.07 0.07

F-twist 0.07 0.06 0.05 0.07 0.05 0.06 0.05 0.06 0.06 0.05

F-slide 6.69 6.80 3.47 9.61 2.00 2.99 2.71 4.27 4.21 1.85

F-shift 6.24 2.91 2.80 4.66 2.88 2.67 3.02 3.58 2.66 4.11

F-rise 21.34 21.98 17.48 24.79 14.51 14.25 14.66 18.41 17.31 14.24

roll 1.05 2.01 3.60 0.61 5.60 4.68 6.02 2.44 1.70 3.50

tilt − 1.26 0.33 − 1.66 0.00 0.14 − 0.77 0.00 1.44 0.00 0.00

twist 35.02 31.53 32.29 30.72 35.43 33.54 33.67 35.67 34.07 36.94

slide − 0.18 − 0.59 − 0.22 − 0.68 0.48 − 0.17 0.44 − 0.05 − 0.19 0.04

shift 0.01 − 0.02 − 0.02 0.00 0.01 0.03 0.00 − 0.01 0.00 0.00

rise 3.25 3.24 3.32 3.21 3.37 3.36 3.29 3.30 3.27 3.39

energy − 1.00 − 1.44 − 1.28 − 0.88 − 1.45 − 1.84 − 2.17 − 1.30 − 2.24 − 0.58

enthalpy − 7.60 − 8.40 − 7.80 − 7.20 − 8.50 − 8.00 − 10.60 − 8.20 − 9.80 − 7.20

entropy − 21.30 − 22.40 − 21.00 − 20.40 − 22.70 − 19.90 − 27.20 − 22.20 − 24.40 − 21.30

Table 3.  The values of the fifteen DNA dinucleotide properties.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:33483 | DOI: 10.1038/srep33483

Next, l eigenvectors whose corresponding eigenvalues are more bigger than other eigenvectors’ are chosen to 
form a matrix, which can be represented as:

=
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where each column represents an eigenvector and their corresponding eigenvalues can be represented as:
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where λ′ ≥ λ′ ≥ ≥ λ′ l1 2 . Finally, the new subspace M can be calculated by

=M XW (17)

Therefore, the dimension of the feature space is reduced from k to l. The values of k and l have been discussed 
in section Results.

The selection of principal components is based on the cumulative weight ratio w:

= ∑
λ′

∑ λ
=

=

w
(18)

i
l

i

i i

1

1
1350

The values of w and l have been discussed in section Results.

Jackknife test. In statistical prediction, three cross-validation methods including independent dataset test, 
sub-sampling (or K-fold cross-validation) test and jackknife test are often used to measure the performance of a pre-
dictor43–45. Among the three methods, jackknife test is deemed the most objective which urging it to be widely adopted 
by researchers to evaluate the performance of various classifiers. Therefore, in the current study, jackknife test is also 
adopted to measure the performance of iRSpot-DACC and iRSpot-DACC-PCA. In the jackknife test, each sequence in 
the benchmark dataset would be selected as test sample and the corresponding remaining samples as training samples.

Criteria for performance evaluation. Sensitivity (Se), Specificity (Sp), Accuracy (Acc), and Matthew’s 
Correlation Coefficient (Mcc)46 are used to evaluate the performance of different methods. They are defined as follows:











=
+

=
+

=
+

+ + +

=
× − ×

+ + + +

Se TP
TP FN

Sp TN
TN FP

Acc TP TN
TP TN FP FN

Mcc (TP TN) (FP FN)
(TP FP)(TP FN)(TN FP)(TN FN) (19)

where TP, FP, TN and FN represent the true positive, false positive, true negative and false negative respectively.
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