
Received: 29 September 2021 - Revised: 13 September 2022 - Accepted: 8 November 2022 - IET Systems Biology
DOI: 10.1049/syb2.12055

OR I G INAL RE SEARCH

The effect of normalisation and error model choice on the
distribution of the maximum likelihood estimator for a
biochemical reaction

Caterina Thomaseth | Nicole E. Radde

University of Stuttgart, Institute for Systems Theory
and Automatic Control, D‐70569 Stuttgart, Germany

Correspondence

Nicole E. Radde, University of Stuttgart, Institute
for Systems Theory and Automatic Control,
Pfaffenwaldring 9, D‐70569 Stuttgart, Germany.
Email: nicole.radde@ist.uni-stuttgart.de

Funding information

Deutsche Forschungsgemeinschaft, Grant/Award
Number: EXC 2075–390740016
Open Access funding enabled and organized by
Projekt DEAL.

Abstract
Sparse and noisy measurements make parameter estimation for biochemical reaction
networks difficult and might lead to ill‐posed optimisation problems. This is potentiated
if the data has to be normalised, and only fold changes rather than absolute amounts are
available. Here, the authors consider the propagation of measurement noise to the dis-
tribution of the maximum likelihood (ML) estimator in an in silico study. Therefore, a
model of a reversible reaction is considered, for which reaction rate constants using fold
changes is estimated. Noise propagation is analysed for different normalisation strategies
and different error models. In particular, accuracy, precision, and asymptotic properties of
the ML estimator is investigated. Results show that normalisation by the mean of a time
series outperforms normalisation by a single time point in the example provided by the
authors. Moreover, the error model with a heavy‐tail distribution is slightly more robust
to large measurement noise, but, beyond this, the choice of the error model did not have
a significant impact on the estimation results provided by the authors.

1 | INTRODUCTION

Using chemical reaction kinetics to describe intracellular regu-
lation and signalling processes results in systems of ordinary
differential equations (ODEs). Often, kinetic parameters such as
reaction rate constants are not known and have to be estimated
from time course data. This is usually formulated as an inverse
problem, in which an objective function that describes the
discrepancy between the data and respectivemodel predictions is
optimised with respect to these unknown parameters [1, 2].
Solving this optimisation problem can be difficult, and different
computational schemes and algorithms have been proposed, see
for example, Degasperi et al. [3], Gábor and Banga [4], Hass et al.
[5], Kreutz [6], Raue et al. [7], and Schmiester et al. [2]. In the
context of intracellular process modelling, solutions are often
additionally complicated by sparse and noisy data [3, 7].

Here, we consider the particular problem of parameter
estimation from the relative concentration data. This problem
arises if Western Blot (WB) measurements are used for model
calibration. Western blotting is a technique to quantify protein

amounts, and measured signal intensities are assumed to be
proportional to respective protein amounts. Since proportion-
ality factors depend on the membranes and the antibodies and
are unique for each blot, the data have to be normalised in order
to enable a comparison across different replicates. Hence WB
data provide concentrations in terms of fold changes to a
controlled condition. Compared to absolute concentrations, fold
changes generally contain less information about the kinetic
parameters which are to be estimated [8], and hence constitutes
an additional difficulty for the inference of regulatory networks.

Different normalisation strategies (NS) are applied in prac-
tice [9], leading to different normalised data sets. Moreover,
using the maximum likelihood (ML) estimation to determine the
parameters requires the choice of an error model (EM). Com-
mon assumptions in this context are additive normally distrib-
uted noise [3, 5, 10] or multiplicative log‐normally distributed
noise sources [7, 11].

In this study, we investigate the combined impact of the NS
and EM on the asymptotic properties of the ML estimators,
exemplarily on a simple test‐bed model of a reversible

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. IET Systems Biology published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Syst. Biol. 2023;17:1–13. wileyonlinelibrary.com/journal/syb2 - 1

https://doi.org/10.1049/syb2.12055
https://orcid.org/0000-0002-5145-0058
mailto:nicole.radde@ist.uni-stuttgart.de
https://orcid.org/0000-0002-5145-0058
https://ietresearch.onlinelibrary.wiley.com/journal/17518857


phosphorylation reaction. We investigate in particular (i) the
effects of increasing data set sizes on the accuracy and precision
of the inference results, (ii) the robustness of the estimation to
different noise levels, and (iii) how the choice of the NS and the
EM affects the distribution of the ML estimates. Therefore, we
design a Monte Carlo in silico study. Results show that in this
example we need to measure a relatively large amount of data to
obtain reliable estimates of model parameters. Moreover, nor-
malisation to the mean of a time series outperforms normal-
isation to a single time point. And finally, while the choice of the
EM does not lead to evident differences in the quality of the
estimation results, it does in terms of computational costs.

2 | METHODS

2.1 | Modelling framework

Our in silico simulation workflow is shown in Figure 1. The
general procedure is depicted in the left column; equations for
the example system and respective output of all workflow steps
are shown in the centre column and the right column,
respectively.

2.1.1 | Data simulation

We consider dynamical models of the form

_xðt; θÞ ¼ f ðxðtÞ; θÞ ð1aÞ

zðt; θÞ ¼ hðxðtÞ; θÞ; ð1bÞ

with state variables x ∈ RN
þ , unknown kinetic parameters

θ ∈ RM
þ and output variables z ∈ R

Q
þ. The vector field f and the

function h are continuous functions of x and θ.
The measured data are described by random variables

(RVs) ~ziðtkÞ, whose distributions p~ziðtkÞ
ð~ziðtkÞÞ are functions of

the state variables xi (tk, θ0) obtained via the numerical inte-
gration of Equation (1) with a ‘true’ parameter vector θ0 and a
simulation EM. Western blotting provides signal intensities
that are proportional to protein concentrations, with unknown
scaling factors αm that are specific for each replicate m of the
experiment corresponding to one blot,

~ymi ðtkÞ ¼ αm~ziðtkÞ: ð2Þ

2.1.2 | Normalisation

Normalisation is required to compare across technical repli-
cates, that is, to get rid of the blot specific index m. It con-
stitutes a non‐linear transformation T1 of the original data set
~ymi ðtkÞ (Equation (2)):

yi;NSðtkÞ ¼ TNS
1 ð~y

j
iðtkÞÞ ¼ TNS

1 ð~ziðtkÞÞ: ð3Þ

F I GURE 1 Workflow for the in silico MC study of the distributions of the maximum likelihood (ML) estimates. Left: process workflow, Centre: Respective
equations of the example system, Right: simulation output. Data zi (tk, θ0) are simulated via the ODE model (1) with parameter θ0. These data are corrupted by
noise according to the simulation error model (EM) p

~zi
ðtkÞ

sim
ð~ziðtkÞÞ, leading to ~ziðtkÞ. Theoretically, measurement signals ~ymi ðtkÞ are obtained by multiplying

~ziðtkÞ with a replicate‐specific proportionality factor αm (Equation (2)). Choosing αm is, however, not necessary due to normalisation in the next step. Output of this
first step are two time series ~zðtkÞ with low and high noise levels. Since we have a single output in the example, we have omitted the index i here. Normalised data yi,
NS(tk) is obtained by a transformation TNS

1 ð~ziðtkÞÞ with distribution pyi;NSðtkÞðyi;NSðtkÞÞ. Outputs are 3 � 2 time series yNSj (tk) (three NSs combined with two noise
levels). Three different EMs pEMyi;NSðtkÞ

ðyi;NSðtkÞjθNSÞ are used to formulate the likelihood function (LHF) LEMðθNSÞ, which are combined with the six time series
from the previous step. Optimisation can be interpreted as a second transformation bθ

EM
NS ¼ TEM

2 ðyi;NSðtkÞÞ which transforms normalised data into parameters bθ
EM
NS .

Finally, this leads to an output of 2 � 3 � 3 (low and high noise, 3 NSs, 3 EMs) parameter distributions. MC, Monte Carlo; NS, normalisation strategies.
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Because of the non‐linearity, the normalised data yi,NS(tk)
follow a distribution

pyi;NSðtkÞðyi;NSðtkÞÞ ð4Þ

which is different from that of the original concentrations,
p

~ziðtkÞ
ð~ziðtkÞÞ.

2.1.3 | Error model and likelihood function

The normalised data set yi,NS(tk) (Equation (3)) is used for ML
parameter estimation. Therefore, we formulate different EMs
which allow us to evaluate the likelihood function (LHF)
LEMðθNSÞ. The chosen EM relates the experimental data with
the model parameters θNS. For one data point yi,NS(tk), the EM
defines the density

pEMyi;NSðtkÞ

�
yi;NSðtkÞjθNS

�
: ð5Þ

Exploiting the independence of data points, this leads to
the LHF

LEMðθNSÞ ¼ ∏
k∈INS i¼1;…;N

pEMyi;NSðtkÞ

�
yi;NSðtkÞjθNS

�
; ð6Þ

with INS indicating a time index set that is dependent on the
chosen normalisation strategy and is specified later on.

2.1.4 | Maximum likelihood estimation

The Maximum likelihood estimation (MLE) bθ
EM
NS is obtained

by maximising the LHF,

bθ
EM
NS ¼ arg max

θNS

LEMðθNSÞ: ð7Þ

Under repeated data generation, the estimate bθ
EM
NS is also a

RV, whose distribution is obtained through a non‐linear
transformation TEM

2 of the normalised data set Equation (3):

bθ
EM
NS ¼ TEM

2

�
yi;NSðtkÞ

�
: ð8Þ

Under some regularity conditions, the MLE is often a good
estimator in the sense that it is consistent, that is, it converges
in probability to the true parameters θ* as the number of

samples increases, bθ→
p

θ∗. This implies that bθ is asymptotically
unbiased. Furthermore, it is asymptotically normal, that is,
ffiffiffiffi
N
p �

bθ − θ∗�→d N
�
0; Iðθ∗Þ

−1� with Fisher information matrix
I (θ*), which guarantees that it converges fast enough (with a
rate 1=

ffiffiffiffi
N
p

). And last, the MLE is asymptotically efficient,
meaning that bθ achieves the minimum possible variance among
all unbiased estimators, or the Cramér–Rao lower bound for
large sample sizes, making it a precise estimator. These

properties of MLEs date back to Fisher [12] and can be found
in any statistics textbooks (see e.g. Gelman et al. [13]).

Regularity conditions for consistency are smoothness of
the LHF, identifiability of bθ and existence of the mean value
Eθ∗ log pYk

�
ykjθ

�
. Furthermore, bθ must not lie on the boundary

of the defined domain Θ. In addition, for asymptotic normality
Vθ∗ log pYk

�
ykjθ

�
has to exist. If these are satisfied, then the

distribution of bθ is for large sample sizes that are approxi-
mately normal with a small variance.

In order to study the distribution of bθ
EM
NS , we apply a

Monte Carlo approach in which we generate experimental data
according to Equation (2) and then propagate the noise via the
transformations T1 and T2.

2.2 | A reversible reaction as a simple test‐
bed model

2.2.1 | Data simulation

As a simple test‐bed model, we consider a reversible phos-
phorylation reaction,

P⇌
k1

k2
P∗

where P and P* denote unphosphorylated and phosphorylated
protein and p and p* the respective concentrations. Assuming
mass action kinetics, the dynamics of the fraction

xðtÞ ¼
p∗ðtÞ

pðtÞ þ p∗ðtÞ
ð9Þ

of phosphorylated proteins is given by

_xðt; θÞ ¼ k1 − ðk1 þ k2ÞxðtÞ ð10aÞ

zðt; θÞ ¼ xðt; θÞ ð10bÞ

with θ = (k1, k2) and solution

zðt; θÞ ¼
k1

k1 þ k2

h
1 − e−ðk1þk2Þt

i
þ z0e−ðk1þk2Þt; ð11Þ

where the initial condition z0 is assumed to be known and z0 ≠
0 to avoid structural non‐identifiability [14]. Since N = 1, we
neglect the index i to enumerate components in the following.

For data simulation, we use a mixed EM psim
~zðtkÞ
ð~zðtkÞÞ with a

multiplicative and an additive error as suggested in Gábor and
Banga [4], Kreutz et al. [11],

~zðtkÞ ¼ xðtk; θ0Þηþ ϵ ð12Þ

with noise parameters η ~ log N
�
0; σ2

η

�
and ϵ ~N

�
0; σ2

ϵ
�
.

Standard deviations (SD) ση and σϵ were set to realistic
experimental values according to Ref. [15], where a reference
value of 10% for the proportional component of the
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measurement noise, introduced due to variability in pipetting
the cellular lysates was recorded.

2.2.2 | Normalisation

We consider three commonly used NSs for time series data
(see e.g. presentations of WB data by Degasperi et al. [3, 9],
Jarajapu et al. [16], Jensch et al. [17], Santos et al. [18], Talavera
et al. [19], and Wang et al. [20]), namely

1. Normalisation by the value at the first time point (NS1),
which often also represents a control condition:

yNS1ðtkÞ ¼
~y jðtkÞ
~y jðt1Þ

¼
~zðtkÞ
~zðt1Þ

ð13Þ

The set of time indices k is given by INS1 ¼ f2;…;Kg,
since all relative data at time point t1 are equal to one.

2 Normalisation by the value at the last time point (NS2):

yNS2ðtkÞ ¼
~y jðtkÞ
~y jðtKÞ

¼
~zðtkÞ
~zðtKÞ

ð14Þ

The set of time indices k is here given by INS2¼

f1;…;K − 1g, since all data at time point tK are equal to 1.

3 Normalisation by the mean value of all time points in a time
series (NS3):

yNS3ðtkÞ ¼
~y jðtkÞ

1
K
PK

k¼1~y jðtkÞ
¼

~zðtkÞ
1
K
PK

k¼1~zðtkÞ
; ð15Þ

with INS3 ¼ f1;…;Kg.
The corresponding normalised model outputs, to be used

in the following step for the definition of the LHF, are defined
as follows:

zNS1ðtk; θÞ ¼
zðtk; θÞ
zðt1; θÞ

ð16aÞ

zNS2ðtk; θÞ ¼
zðtk; θÞ
zðtK ; θÞ

ð16bÞ

zNS3ðtk; θÞ ¼
zðtk; θÞ

1
K
PK

k¼1zðtk; θÞ
: ð16cÞ

2.2.3 | Error models and maximum likelihood
estimation

We combine these NSs with three different EMs, which are
then used for the parameter estimation. We note here that we
cannot derive an analytical expression of the distribution (4)

for the EM used for the simulation (Equation (12)) and any of
the three NSs. Thus, we are not able to compare the inference
results in our settings with the true or gold standard model.
However, if none of the NS and EM combinations reveal the
true underlying model, this provides grounds for a fair com-
parison across all combinations.

Using the two common assumptions of normally (see e.g.
Fröhlich et al. [10], Kreutz and Timmer [21], Raue et al. [7],
Weber et al. [22]) or log‐normally (see e.g. Kreutz et al. [11],
Limpert et al. [23], Thomaseth et al. [24]) distributed WB raw
data, we consider three classes of EMs for the normalised data
set, namely normal, log‐normal, or Gaussian ratio (GR) dis-
tributions, which define pEMyNSðtkÞ

and the LHF LEMðθNSÞ:

1. Normal error model (N‐EM):

yNSjðtkÞ~N
�
zNSj
�
tk; θNSj

�
; σ2�; j ¼ 1; 2; 3: ð17Þ

2 Log‐normal error model (LN‐EM):

yNSjðtkÞ~ log N
�
log zNSj

�
tk; θNSj

�
; σ2�; j ¼ 1; 2; 3 ð18Þ

3 Gaussian ratio error model (GR‐EM):

yNS1ðtkÞ~
Nðzðtk; θNS1Þ; σ2Þ

N ðzðt1; θNS1Þ; σ2Þ
; ρ¼ 0 ð19Þ

yNS2ðtkÞ~
Nðzðtk; θNS2Þ; σ2Þ

N ðzðtK ; θNS2Þ; σ2Þ
; ρ¼ 0 ð20Þ

yNS3ðtkÞ~
Nðzðtk; θNS3Þ; σ2Þ

N
�
1
K
PK

k¼1zðtk; θNS3Þ;
σ2

K

�; ρ¼
1
ffiffiffiffi
K
p ð21Þ

with k ∈ INSj for each specific j.
Concerning the GR‐EM, we will restrict ourselves to the

case of independent Gaussian RVs at the numerator and de-
nominator for different time points, leading to a correlation
coefficient ρ = 0 for the first and second NS and ρ¼ 1=

ffiffiffiffi
K
p

for the third one, as demonstrated in SI, Section 1. From the
assumption that all ~xðtkÞ are independent RVs given θNSj, it
follows that

Var

 
1
K

XK

k¼1

~zðtkÞ

!

¼
σ2

K
; ð22Þ

as assumed in the EM Equation (21).
The GR distribution is characterised by four parameters a,

b, r and s (see e.g. Hayya et al. [25], Hinkley [26, 27], Marsaglia
[28, 29]), which in this context are related to the simulated
quantities and therefore functions of the unknown ODE
model parameters. In SI, Section 2 we show the definition of
this parametrisation of the GR distributions for all three NSs
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(Equations (19)–(21)), which were used for the implementation
of the LHF in our simulation study.

For all three EMs we assume that the parameter σ ∈ R>0,
related to the SD of the considered distributions, is the same
for all k of the data set. In the case of the GR‐EM, we assume
that σ2 is the variance of the Gaussian RVs at the numerator
and denominator ~xðtkÞ; ∀k ∈ f1;…;Kg. Two options are used
in practice to assign these values for σ: it can be either a priori
empirically determined from experimental data or it can be
estimated simultaneously with the model parameters θ. Several
studies hint to the fact that the empirical estimation is unreli-
able and should be avoided due to a low number of technical
replicates available for estimation, and simultaneous estimation
should be preferred [3, 7]. Many parametric models are sug-
gested for the estimation of the SD σ [3, 5, 17]. Therefore, in
this study we implemented the estimation of σ simultaneously
to θ = (k1, k2) and decided to consider the most basic model,
for which a single parameter value bσMLE is estimated from the
available experimental data set.

3 | RESULTS

3.1 | Normalisation to the mean of the
simulated time series leads to lower
uncertainty compared to normalisation to a
single time point

In silico‐generated time series data are shown in Figure 2.
Figure 2a shows box plots of the simulated time series data
~zðtkÞ for four exemplary time points tk, k ∈ {1, 2, 3, 4},
obtained with the test‐bed model Equation (11) and the
mixed EM Equation (12). Distributions of the corresponding
means of the four time points are shown on the right. The
parameters and initial condition were set to θ0 = (4, 1) and
z0 = 0.3. In order to compare the effects for low and high
measurement noise, we simulated data with low (Figure 2a
left) and high (Figure 2a right) noise levels. Distributions of
the normalised data yNS(tk) are shown in Figure 2b for the
three NSs and low (left column) and high (right column)
noise levels. As a consequence of the different variances and
coefficients of variation (CV) of the quantities used as
reference conditions for normalisation, the statistical prop-
erties of the obtained normalised data sets also differ. In
particular, the data normalised with NS1 (upper row, refer-
ence condition has largest CV) have the largest uncertainty,
followed by NS2 (lower CV of reference condition compared
to NS1) and finally by NS3, which has the lowest uncertainty.
This comes from the fact that the variance of the mean is
reduced by the factor 1/K (Equation (22)). Furthermore,
NS1 is the most sensitive to higher noise levels (right col-
umn), showing many more outliers in the right tails of the
distributions, which were cut off for representative reasons.
These facts are in line with Degasperi et al. [9], who sug-
gested to avoid choosing normalisation points with low
quantified intensities for hypothesis testing studies, since this
strategy results in large CVs for normalised data.

3.2 | A realistic number of measurements
leads to boundary effects of the estimationand
sloppy parameters

We solved the inference problem via MLE for all combinations
of the three NSs, the three EMs, and low and high noise levels.
The resulting distributions of the ML estimates bk1 and bk2 are
illustrated in Figure 3 exemplarily for N‐EM and NS1. Shown
here are box plots (Figure 3a), as well as 1D marginal distri-
bution histograms and 2D scatter plots for low (left) and high
(right) noise levels and K = 4 (bright colours) and K = 8
(darker colours) time points (Figure 3b). Boundaries for the
optimization have been set to [0,10] for both rate parameters.

The distribution of bk2 accumulates at the lower bound
zero, a boundary effect which can be observed in the scatter-
plots of all EM and NS combinations and both noise levels
(see SI, Section 3.1). It causes bimodal distributions for both
parameters. For our particular example, the boundary effect is
directly visible in the solution Equation (11) of the ODE
system: Here, the parameter k2 only appears as a summand
together with k1, thus in many cases in which the optimiser
wants to assign negative values for k2, which is suppressed by
the lower boundary, it assigns values bk1 > k∗

1 ¼ 4.
When doubling the amount of time points K from four to

eight, while keeping the same noise level (left and right parts in
Figure 3b), some of the samples of bk2 estimated close to zero
are released, and the rest of the distribution moves towards the
true parameter value.

Figure 3c shows confidence bounds for the correspond-
ing inferred model trajectories, along with the box plots of
the normalised data yNS1(tk), k = 1, …K, and the noiseless
trajectory zNS1(t, θ0) (red line). Specifically, the 5th and 95th
percentiles were evaluated: The totality of the trajectories is
represented inside the blue‐coloured area of Figure 3c, where
90% of the trajectories is contained in the darker blue region
and the cut off 5% from top and bottom are contained in the
light blue‐coloured areas. The Inferred confidence intervals
are in good agreement with the noiseless trajectory and the
box plots of the normalised data. Since the distributions for
the different time points are not independent but coupled via
the ODE model, we do anyway not expect a perfect fit be-
tween the box plots and the inferred confidence intervals.
This mainly affects time points near the time point used for
normalisation, where confidence intervals for the inferred
trajectories are smaller than those of the noisy normalised
data. As expected, the uncertainty increases with higher noise
levels (from left to right). Moreover, comparing K = 4 to
K = 8 time points (top to bottom row), the uncertainty does
not become smaller, which is due to the fact that the con-
centration at time point t1 used for normalisation is smaller
for K = 8, which causes a larger spread in the normalised
data. Corresponding figures obtained for the other two NS
NS2 and NS3 as in Figure 3c are given in SI, Section 6,
Figures 14 and 15. In these other two cases, the uncertainty
of model outputs significantly improves in the initial phase of
the trajectories (near t0) comparing K = 4 to K = 8 time
points (top to bottom row).
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Most importantly, for all scenarios shown here, the uncer-
tainty in the inferred trajectories (i.e. the confidence interval
length relative to the nominal value) is consistently smaller than
the uncertainty of the ML estimators, indicating that the very
different parameter combinations can lead to similar model
outputs. This phenomenon is sometimes referred to as sloppy
parameters [30].

Overall, the results show that K = 4 and even K = 8
data points are not sufficient to estimate model parameters

accurately, since the distribution of the ML estimates has a
large variance, and many estimates deviate substantially from
the true values. This causes the described boundary effects
and leads to a visible bias of both estimates in the box
plots. Increasing the data set size is a possible solution to
overcome this problem. However, boundary effects had still
a considerable impact after a six‐fold increase in the number
of replicates from M = 1 to M = 6 in all scenarios (see SI,
Section 3.2).

F I GURE 2 (a) Noisy simulated time series data. Distributions of the state variable ~zðtkÞ at four exemplary time points (t1, t2, t3, t4) = (0.2, 0.4, 0.8, 3), and
distribution of the mean of the corresponding samples at the four time points. We generated n = 10, 000 realisations via Monte Carlo simulations from the noise
model Equation (12). The continuous line represents the noise‐free time course of the state variable z (t, θ0), obtained for z0 = 0.3 and θ0 = (4, 1). (Left) Low noise
level, (Right) high noise level. (b) Noisy normalised time series data. The shown distributions (box plots) are obtained from the sampled noisy realisations of the
normalised variables yNSj (tk), j = 1, 2, 3, for the three different NSs, marked with different colours and are given for low (left) and high (right) noise. NS,
normalisation strategies.
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F I GURE 3 Boundary effects appear in a broad range under realistic experimental settings. (a) Box plots of the estimated parameters bk1 and bk2 obtained
with K = 4 or K = 8 measured time points of the phosphorylated protein concentration. The considered time points are ti, i = 1, …, 4 = (0.2, 0.4, 0.8, 3) for K = 4
and ti, i = 1, …, 8 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 3) for K = 8. (b) Marginal distributions (histograms) and scatter plots in the two‐dimensional parameter space of
bk1 and bk2, obtained for M = 1 replicates for K ∈ {4, 8} time points each. (c) Inferred normalised model trajectories bzNS1ðtÞ corresponding to parameter estimates
shown in (a) and (b) along with the box plots of the normalised data yNS1(tk), k = 1, …K, for K = 4 (upper part) and K = 8 (lower part) and the noiseless trajectory
zNS1(t, θ0) (red line). The results were obtained using the Normal error model (N‐EM), the first set of normalised data (NS1) and two noise levels (low on the left:
ση = 0.05, σϵ = 0.01, high on the right: ση = 0.1, σϵ = 0.02).
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3.3 | A large number of data points is
needed for good maximum likelihood
estimates

This motivated us to increase the number of data points even
further. We decided to compare three numbers of time points,
K ∈ {4, 8, 12} and to consider M = 10 replicates, resulting in a
total number of 40, 80 and 120 simulated measurements,
respectively. In addition, we widened the search space and in
particular allowed the optimiser also to search for negative
values. This was only possible for N‐EM and GR‐EM, while it
could not be implemented for the LN‐EM, since as a conse-
quence the output functions yNSj (t, θ0), j = 1, 2, 3 may assume
negative values that cause errors in the optimization of the
LHF LEMðθNSÞ, which is not defined for negative y (tk) values.

Figure 4 shows the estimation results for the three EMs
and NS1 for low (left) and high (right) noise levels. Despite
the large amount of data used for parameter estimation, the
boundary effects could not be eliminated in the case of the
LN‐EM (Figure 4b), for both noise levels. Concerning N‐EM
and GR‐EM (Figures 4a and 4c), the boundary effects disap-
pear entirely for the low noise level (left column). Instead, for
high noise, we regard only the case K = 12 to be almost un-
affected. The same behaviour can be observed when using
NS2 or NS3 (see SI, Section 3.3).

Since the SDs of the EMs used for estimation have a
completely different meaning from the SDs of the EM used
for data simulation, there is no ‘true’ value for σ for a com-
parison with the estimated values bσ , hence their distributions
are not discussed and for completeness are only shown
exemplarily in SI, Section 4.

Overall, our analysis shows that in our test‐bed scenario a
very large number of data points is needed for the distributions
of ML estimates to behave approximately normal with a small
variance.

3.4 | Normalisation causes a large increase
in parameter uncertainties

We asked the question whether the observed large uncertainty
in ML estimates is mainly caused by the normalisation step.
Therefore, we repeated the estimation procedure with the
unnormalised data ~z (see data in Figure 2a) assuming that we
can quantify the fraction of phosphorylated protein directly
without an unknown scaling factor. The resulting distribution
of the ML estimates are illustrated in Figure 5b exemplarily for
low and high noise levels, K = 4 (light colours) and K = 8
(darker colours) time points and M = 10 replicates. These
settings equal those in Figure 4a (displayed again in Figure 5a
to allow a better comparison), where normalised data with NS1
had been used. Comparing both ML distributions, the one in
Figure 5b is much smaller and tightly distributed around the
true parameter values compared to Figure 5a. The 2D distri-
bution can also well be approximated by a multivariate normal
distribution for both K = 4 and K = 8 time points. Overall, this

clearly demonstrates that data normalisation causes a large loss
in information about the parameters of our model.

3.5 | The Gaussian ratio error model is less
biased than the Normal error model especially
for high noise levels

To further evaluate the quality of the obtained inference re-
sults, we considered the statistical measure of bias of the me-
dian to quantify the accuracy of the estimation, that is, the
closeness of the considered value to the true parameter value.
Additionally, we considered the interquartile range (IQR),
representing a standard measure of the dispersion of a distri-
bution, as an indicator for precision, that is, a characterisation
of the variability of the estimate. Figure 6 visualises the accu-
racy and precision of the inference results for both the esti-
mated model parameters bθ ¼

�
bk1; bk2

�
. Here, the results are

only shown for those scenarios that were not affected by the
boundary effects, that is, N‐EM (first row) and GR‐EM (sec-
ond row), in combination with all three different normalised
data sets (different columns). Increasing data set sizes are
visualised by larger dots, and different colours were used for
the two noise levels. We can observe that increasing the data
set size has a small effect when the noise in the data is low, as
green dots (bk1, low noise) and blue dots (bk2, low noise) of all
sizes are close to each other. Thus, for a very large amount of
measured data, for which the distributions of the ML estima-
tors tend to the asymptotic behaviour, the benefit of doubling
or tripling the amount of measured data is rather minimal with
low input noise, while this is not the case for high noise.
Moreover, especially the bias is much lower for the GR‐EM
than for the N‐EM for high noise levels and NS1 and NS2.
Thus, the GR‐EM is less biased than the N‐EM in these
settings.

3.6 | Impact of normalisation strategies on
the uncertainty of maximum likelihood
estimates

We pose the question of how the three considered NSs affect
noise propagation from raw concentration measurements to
estimated model parameters, while keeping fixed other features
of the inference process.

Results in terms of bias of the median versus IQR values
are shown in Figure 7a for low noise and K = 4 time points
and Figure 7b for high noise levels and K = 12 time points. In
this analysis, we focus only on the results obtained with N‐EM
and GR‐EM. These considered scenarios relate to all cases in
which the estimation results did not present boundary effects.

First, we observe that the impact of the three NSs is
different for the two estimated parameters, hence we cannot
derive a universal statement concerning the impact of the three
NSs on the estimation results. For low noise level (Figure 7a) the
different NSs affect mainly the accuracy of the estimation, while
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F I GURE 4 Effect of the amount of time points on the MLE distributions. Marginal distributions (histograms) and 2D scatter plots of bk1 and bk2, obtained
for K ∈ {4, 8, 12} time points and M = 10 replicates each. These results were obtained using the first set of normalised data (NS1) and (a) Normal error model (N‐
EM), (b) Log‐normal error model (LN‐EM), (c) Gaussian ratio error model (GR‐EM), for two noise levels, respectively (low on the left: ση = 0.05, σϵ = 0.01, high
on the right: ση = 0.1, σϵ = 0.02). The considered time points are ti, i = 1, …, 4 = (0.2, 0.4, 0.8, 3) for K = 4, ti, i = 1, …, 8 = (0.1, 0.16, 0.27, 0.44, 0.72, 1.18, 1.93,
3.16) for K = 8 and ti, i = 1, …, 12 = (0.1, 0.14, 0.19, 0.26, 0.35, 0.48, 0.66, 0.9, 1.23, 1.69, 2.31, 3.16) for K = 12. MLE, Maximum likelihood estimation.
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the IQR is nearly unaffected for both parameters. For high noise
(Figure 7b) they impact both accuracy and precision. The trend
is, however, roughly maintained when considering the same EM
and the same parameter with the increasing noise.

A surprising result is that the NS1 (magenta dots) does not
always lead to the worst results (i.e. both higher bias and higher
IQR) even if the corresponding normalised data used for esti-
mation show the largest variability (Figure 2). Instead, NS2 (blue
dots) causes the largest IQR and also the largest bias for bk1, for
both noise levels. This is probably due to the relative error
contribution for data simulation. Since z is smaller for earlier
time points, its absolute measurement error is also smaller.

In summary, despite the large amount of data used for the
estimation, the impact of different NSs is not univocal on all
estimated parameters under realistic noise settings. Therefore,
choosing NS3, which generally shows the lowest bias also for
higher noise levels, seems to be a good compromise.

An aggregated comparison of the goodness of the estima-
tion results of N‐EM and GR‐EM across the three NSs in terms

of the Bayesian information criterion values is conducted in SI,
Section 5. Here, N‐EM and GR‐EM behave similar for all three
NSs. This similarity is probably due to the validity of the con-
dition for the approximation of the GR distribution with a
Gaussian distribution, which holds in the case of uncorrelated
signals for sufficiently large CVof the nominator RVof the ratio
distribution, as discussed in the study by Hayya et al. [25],
Marsaglia [28, 29]. Based on these results, we suggest to select
the N‐EM, since it is computationally faster to optimise than the
GR‐EM, while leading to similar results.

4 | DISCUSSION AND CONCLUSIONS

In this study, we presented the results of a statistical analysis of
the combined effects of different NS, different EM and low and
high noise levels for WB time series data on the parameter
estimation for a biochemical reaction. We developed a statistical
framework to investigate the noise propagation from the

F I GURE 5 Parameter estimation results from the unnormalised data. Marginal distributions (histograms) and 2D scatter plots of bk1 and bk2, obtained for
K ∈ {4, 8} time points and M = 10 replicates each. These results were obtained using (a) the first set of normalised data yNS1 and (b) the unnormalised data ~z and
Normal error model (N‐EM) for two noise levels, respectively (low on the left: ση = 0.05, σϵ = 0.01, high on the right: ση = 0.1, σϵ = 0.02). The considered time
points are ti, i = 1, …, 4 = (0.2, 0.4, 0.8, 3) for K = 4 and ti, i = 1, …, 8 = (0.1, 0.16, 0.27, 0.44, 0.72, 1.18, 1.93, 3.16) for K = 8
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F I GURE 6 Effect of normalisation strategies (NS) and error model (EM) choice on precision and accuracy of the MLE for varying numbers of time points.
Absolute values of the bias of the median versus interquartile range (IQR) values for both the estimated parameter values obtained with K = 4, 8 and 12 time
points and M = 10 replicates each, given for low noise level (ση = 0.05 and σϵ = 0.01). For high noise (ση = 0.1 and σϵ = 0.02) these statistics are given only for
the case K = 12. Green and red dots refer to the parameter bk1, while blue and magenta refer to bk2. MLE, Maximum likelihood estimation.

F I GURE 7 Effects of three alternative NSs on accuracy and precision of parameter estimates. Absolute values of the bias of the median versus interquartile
range (IQR) values are given for both the estimated parameters bk1 (left) and bk2 (right), obtained with the three considered NSs. These statistics were obtained
assuming either the Normal error model (N‐EM) or Gaussian ratio error model (GR‐EM) as likelihood function (LHF) for the optimisation problem, for M = 10
replicates and (a) K = 4 time points and low noise level (ση = 0.05, σϵ = 0.01) and (b) K = 12 time points and high noise level (ση = 0.1, σϵ = 0.02). NS,
normalisation strategies.
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measured data to the estimated parameters via Monte Carlo
simulations. The methodology was exemplified in an in silico
study in which we used a reversible protein phosphorylation
reaction as a test‐bedmodel to generate time series data by using
a realistic noise model for WB data [11, 15]. For the inference
problem, we used three different NS to normalise WB signals,
which were combined with three EMs for ML estimation. Since
no analytic expression of the LHF is available for the realistic
noise model used for simulation, we could not compare with the
‘gold standard’, that is, the ‘true’ model which was actually used
for data generation. This setup resembles a real case scenario in
which the true statistical process generating the data is in general
different from the EM assumed in the inference problem. In our
in silico study, wemade use of statistical measures such as bias of
the median and IQR to evaluate the accuracy, precision, and
asymptotic properties of the estimation results and to compare
the goodness of results.

From the results, we derived some interesting findings
which give rise to guidelines for the integration of WB data
into mathematical models. First, concerning the choice of the
normalisation strategy, we got a clear recommendation for
applying the third strategy, that is, normalisation by the mean
value, instead of normalisation by a fixed point. Opting for this
normalisation strategy, in fact, leads to the best inference re-
sults in terms of accuracy and precision of the estimated pa-
rameters, independent from the chosen experimental design
and noise level in the input data. We anticipate that this is a
generalisable result, which results from the fact that the vari-
ance of the mean of datapoints is often smaller than the
variance of the individual data points (Figure 2a).

Regarding the experimental design, we analysed the effects
of increasing the total amount of the measured data. As ex-
pected, increasing the number of time points and/or the
number of replicates improves the quality of the estimation. A
less expected result was that typical numbers of time points in
WB data lead to very broad distributions of the ML estimates,
resulting in boundary effects also for large boundaries of the
search space. Even a huge increase in the number of data
points (up to 120 measurements) in combination with larger
boundaries (also in the negative half plane) could not in all
cases remove these boundary effects. In particular, this was not
possible for LN‐EM, hence this EM was neglected in the
subsequent analysis. For the same reason, the data set with the
high noise level was in the subsequent analysis considered in
combination with the largest data set of 120 data points.

The GR‐EM seems to be slightly more robust than N‐EM
for high noise levels, which is probably caused by the heavy‐
tailedness of the GR distribution, which makes the estima-
tion robust against the outliers in the data [31]. Except from
that we observe no significant differences between the N‐EM
and GR‐EM.

Our simulation results highlight the importance of taking
noise transformation into account when dealing with data pro-
cessing techniques like normalisation. This is also supported by
Degasperi et al. [3], who compare two approaches to scale model
simulations to relative measured data: First, introducing scaling
factors to convert the simulated data to the scale of the

experimental data (SF approach = scaling factor), or second,
normalising simulated variables in the same way as the data
(DNS approach = data‐driven normalisation of the simulation).
The authors tested both methods with different objective
functions and optimisation algorithms for the parameter esti-
mation of dynamical systems and concluded that the DNS
approach is favourable in terms of identifiability and conver-
gence speed of the optimisation algorithms and should therefore
be the preferred method in dynamic modelling studies.

Finally, our results indicate that the transformation of raw
data such as normalisation may lead to significant uncertainties
in the estimated model parameters, even for large data sets.
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