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ABSTRACT

Alternative splicing of pre-mRNA generates protein
diversity. Dysfunction of splicing machinery and ex-
pression of specific transcripts has been linked to
cancer progression and drug response. Exon micro-
array technology enables genome-wide quantifica-
tion of expression levels of the majority of exons and
facilitates the discovery of alternative splicing
events. Analysis of exon array data is more
challenging than the analysis of gene expression
data and there is a need for reliable quantification
of exons and alternatively spliced variants. We intro-
duce a novel, computationally efficient method-
ology, Multiple Exon Array Preprocessing (MEAP),
for exon array data pre-processing, analysis and
visualization. We compared MEAP with existing
pre-processing methods, and validation of six
exons and two alternatively spliced variants with
qPCR corroborated MEAP expression estimates.
Analysis of exon array data from head and neck
squamous cell carcinoma (HNSCC) cell lines
revealed several transcripts associated with 11q13
amplification, which is related with decreased
survival and metastasis in HNSCC patients. Our
results demonstrate that MEAP produces reliable
expression values at exon, alternatively spliced
variant and gene levels, which allows generating
novel experimentally testable predictions.

INTRODUCTION

Alternative splicing is a well-established post-
transcriptional mechanism that has an essential role in
regulating gene expression. Transcripts from �95% of
multiexon genes undergo alternative splicing and there
are more than 100 000 intermediate- to high-abundance

alternative splicing events in major human tissues (1).
Transcript variation can be caused by multiple processes,
such as alternative promoters or polyadenylation by
utilizing different 50 or 30 exons or introns (2–4). Some
transcript variants are associated with diseases such as
spinal muscular atrophy, premature-aging disorder and
familial dysautonomia (5). Furthermore, several reports
have recently shown that alternatively spliced patterns sig-
nificantly affect a number of cellular events critical for
cancer development and progression, including cell prolif-
eration, motility and drug response (6,7).
The abundance of alternatively spliced variants can be

quantified with specific exon microarrays, such as
Affymetrix Human Exon 1.0 ST Array. This microarray
platform contains probes for �80% of human exons and
thus provides an option to quantify expression levels for
exons, alternatively spliced variants and genes. Most of
the studies using exon array data aim at detecting alterna-
tively spliced events. The most popular method is the
splicing index (SI), which measures the difference in the
exon-gene expression ratio in two groups (8–13). Other
published methods are based on outlier detection (14),
correlation-based metrics (8) or weighted fold changes
(15). While these methods list putative alternatively spliced
events, they do not produce quantitative expression values
at exon, transcript and gene levels for downstream
analyses. Thus, there is a need for computationally effi-
cient exon array data analysis methodologies that are able
to produce reliable exon, alternative splice variant and
gene expression levels enabling splicing event identifica-
tion and other interesting biological studies.
We introduce here a Multiple Exon Array

Preprocessing (MEAP) framework for Affymetrix
Human Exon 1.0 ST microarray platform. MEAP is
designed for large-scale exon array data analysis and is
computationally efficient. A key feature in MEAP is a
novel approach to estimate probe background using
genomic and antigenomic background probes. This
allows more reliable expression estimation than the

*To whom correspondence should be addressed. Tel: +358 9 191 25419; Fax: +358 5 033 64765; Email: sampsa.hautaniemi@helsinki.fi

Published online 10 July 2011 Nucleic Acids Research, 2011, Vol. 39, No. 18 e123
doi:10.1093/nar/gkr513

� The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



existing background correction methods as shown in our
case studies. Another novel feature in MEAP is its ability
to calculate robust expression estimates especially for
alternative splice variants. Here, we demonstrate the
utility of MEAP by quantifying alternative splice variant
expression levels from 15 head and neck squamous cell
carcinoma (HNSCC) cell lines and verifying experimen-
tally randomly selected findings.

MATERIALS AND METHODS

MEAP consists of background correction, normalization,
data summarization, differential analysis and visualization
as illustrated in Figure 1.

MEAP algorithm

MEAP is distributed as an R-package and tested on
Linux. It is also implemented as a pipeline in the
Anduril computational framework (16). The Anduril com-
pliance enables the use of a wide variety of multivariate

statistical tools, pathway and Gene Ontology methods for
the MEAP processed exon microarray data. MEAP
contains also Linear Models for Microarray Data
R-package (limma) (17) in addition to t-test. The
P-values from t-test are not corrected for multiple
hypotheses testing by default. The MEAP package with
a comprehensive user guide and precomputed probe an-
notations for human, mouse and rat are available at
http://csbi.ltdk.helsinki.fi/meap/index.html.

MEAP annotations. Annotations for exon array probes
should be updated when the reference genomes are
updated (18). In MEAP, we construct annotation
database to support summarization of either probeset or
exon expression. Annotation was done by using BLAST
alignment with 24 bp perfect match (identity 100%) for
all main probes on Affymetrix Exon 1.0 array against
Ensembl core database (version 58). We collected probes
mapping to exonic regions and discarded probes
mapping to different loci in the genome. MEAP annota-
tion for human, rat and mouse can be downloaded

Figure 1. MEAP workflow. The workflow contains modules for data pre-processing, differential expression analysis, and visualization. Data
pre-processing uses a novel background estimation model (PM-BayesBG) and is followed by collective quantile normalization and multi-dimensional
expression summarization based on user defined data type (probeset, exon, spliced variant or gene). Differential analysis enables finding biologically
interesting targets. MEAP also includes web-based visualization for alternatively spliced events. See http://csbi.ltdk.helsinki.fi/meap/example/
MEAPvisual/MEAP_visual_homepage.html for more information.
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at http://csbi.ltdk.helsinki.fi/meap/download.html. The
probe annotations used in MEAP are updated regularly
when updates to the reference genome are published.

MEAP background estimation model. Affymetrix
GeneChip Exon 1.0 ST Array contains a pool of
genomic and antigenomic background probes (BGP)
that can be used to estimate background expression
levels. So far published background correction models
for exon array are global, PM-GCBG (19) and MAT
(20,21). Briefly, the global background model estimates
universal background from the median intensity of
probes with different GC content. PM-GCBG predicts
the background of a perfect match probe by the me-
dian intensity of BGP with the same GC content.
The MAT model estimates probe background intensities
with an 80-parameters linear model that considers the
composition of nucleotides at each position in a probe
sequence.

We introduce a novel sequence-specific background
model (PM-BayesBG) that estimates the probe back-
ground signals from the nucleotide composition of a
probe sequence. PM-BayesBG uses a naive Bayes
approach for background signal estimation as follows.
Let the random variable � denote probe background in-
tensity. The background estimation model estimates the
probability of background intensity given a probe
sequence s, i.e. P(�|s). This can be formulated with
Bayes’ equation:

Pð�jsÞ ¼
Pð�Þ � Pðsj�ÞP
�

Pð�Þ � Pðsj�Þ
: ð1Þ

The variables in Equation 1 are estimated from the
background probe intensities. The continuous anti-
genomic and genomic background probe intensities are
discretized into separated classes with user defined
interval value. Thus, the prior probability of each back-
ground class is calculated by the number of probes in a
class divided by the total number of background probes;
Pð�iÞ ¼

Ni

N .
In each background class, the label is taken to be the

median of the intensities belonging to that background
class. For each background class we compute a base
occurrence rate matrix (BORM) that contains
probabilities pj 2 R

4�1 for the occurrence of the four
possible nucleotides fA,T,G,C} at each locus j in s. An
example of a BORM for a typical 25nt probe is given in
Table 1.

The BORMs are used to calculate the likelihood for
i-th background category (L(s|�i)), where we use the

occurrences of each nucleotide in a probe sequence.
From pj we choose a value for the nucleotide corres-
ponding to the j-th nucleotide in s and denote it as
pi,sj. For example, in Table 1, if j=2 then
pj ¼ 0:3 0:4 0:3 0

� �T
, sj= fG} and pi,sj=0.4.

We assume that each locus j in the probe sequence s is
independent from its neighbor nucleotides. Therefore,
for i-th BORM we can use pi,sj to calculate the likelihood
function:

Lðsj�iÞ ¼ �25
j¼1Lðsjj�iÞ ¼ �25

j¼1pi,sj : ð2Þ

The background intensity for a probe, which is used in
the MEAP background correction step, is estimated from
the maximum posterior probability �̂ ¼ maxi Pð�ijsÞ,
where

Pð�ijsÞ ¼
Pð�iÞ � Lðsj�iÞP
j

Pð�jÞ � Lðsj�jÞ
¼

Pð�iÞ � Lðsj�iÞ

C
¼

Ni ��
25
j¼1pi,sj

N � C
:

ð3Þ

Expression summarization. MEAP annotation gives
mappings for ‘probe-probeset’ and ‘probe-exon’.
Mapping probes to their corresponding exons, i.e.
skipping the probeset level, allows the use of a larger
number of probe intensity values to summarize exon ex-
pression values than probesets having four probes per set.
Median polishing (22) is used in MEAP exon summariza-
tion where probes are mapped uniquely to the exon
regions.
In MEAP, the alternatively spliced variant level expres-

sion is quantified by considering the problem of trans-
forming the exon-level data to transcripts as a least
squares problem. The idea is similar to non-negative
matrix factorization approach introduced by Wang et al.
(23) and further developed in (24) and (25) for exon or
junction probes. For i-th gene having m exons and n tran-
scripts in Ensembl by transcript quality control, we define
ei 2 R

m�1 and Ai 2 R
m�n. Transcript expression values

ti 2 R
n�1 are solved from the equation Ati= e using the

QR decomposition to ensure numerical stability (26). If
the equation cannot be solved or negative solutions
appear in some samples, transcripts’ expression values
are denoted as missing values. If there are negative solu-
tions or no solution for all samples, the transcripts of the
query gene will be removed from the final expression
matrix.
As an example, suppose that a gene g contains three

transcripts {t1,t2,t3} and three exons {e1,e2,e3} with
summarized intensity values {1024,724.1,512}. Assume
further that the transcripts t1, t2 and t3 are composed of
{e1,e2,e3}, {e1,e3} and {e1,e2}, respectively, giving:

t1+t2+t3 ¼ e1

t1+t3 ¼ e2

t1+t2 ¼ e3

ð4Þ

Table 1. An example of base occurrence rate matrix (BORM)

Nucleotide/probe sequence A G G T A . . .

A 0.6 0.3 0.1 0.1 0.7 . . .
G 0.1 0.4 0.3 0.1 0.1 . . .
C 0.2 0.3 0.5 0.6 0.2 . . .
T 0.1 0 0.1 0.2 0 . . .
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Thus, the transcript expression vector tg can be
solved by

tg ¼ log2

1 1 1
1 0 1
1 1 0

0
@

1
A
�1

1024
724:1
512

0
@

1
A

0
@

1
A ¼

7:7
8:2
9:0

0
@

1
A: ð5Þ

MEAP also allows the use of transcript quality in the
analysis. Ensembl transcript annotation data, which are
used in the MEAP quality-control step, are fetched from
several databases including UniProt-SwissProt, UniProt-
TrEMBL and NCBI Refseq. In the quality-control step
only transcripts that are curated and thus match to any of
CCDS, UCSC, NCBI RefSeq or Havana/Ensembl merges
are retained in the downstream analysis.
A schematic of steps used to produce gene level data is

illustrated in Supplementary Figure S1. Briefly, probes
that map to the user specified number of the gene’s alter-
natively spliced variants (default 60%) are used to sum-
marize the expression at the gene level.
In qPCR, Ct (cycle threshold) value represents the cycle

number at which a reaction reaches a fluorescent intensity
that supersedes fluorescence background. Thus, we use
here �Ct values to indicate gene expression levels.
Correlations between MEAP estimated gene expression
values and qPCR normalized �Ct values for eight refer-
ence genes from 15 HNSCC cell lines are shown in
Supplementary Figure S2.

Parallel computing in MEAP. The calculations in MEAP
are executed in parallel to achieve efficient memory and
CPU consumption. The parallelization is implemented
with the OpenMPI (27) and Rmpi (28) R-packages.

Head and neck cancer cell culture

Head and neck squamous cell carcinoma (HNSCC) cell
lines from tongue UT-SCC-21, UT-SCC-24B,
UT-SCC-30, UT-SCC-67, UT-SCC-73, UT-SCC-76A,
UT-SCC-81, UT-SCC-87, UT-SCC-95 and larynx
UT-SCC-8, UT-SCC-11, UT-SCC-75 were provided by
the Department of Otorhinolaryngology-Head and Neck
Surgery at the Turku University Central Hospital (Turku,
Finland). Cells were cultured in DMEM supplemented
with L-glutamine and 10% fetal bovine serum at 37�C in
an atmosphere of 5% CO2. HNSCC cell lines SCC-4,
SCC-9, SCC-25 were ordered from American Type
Culture Collection (ATCC; Manassas, VA, USA) and
cultured according to the ATCC recommendations.

Exon expression array experiments

HNSCC samples were preprocessed for Affymetrix
Human Exon 1.0 ST microarrays using Affymetrix
GeneChip Whole Transcript (WT) Sense Target
Labeling Assay according to the manufacturer’s instruc-
tions (manual version 4). Total RNA from HNSCC cell
lines was isolated using RNeasy mini kit from Qiagen. The
quality of total RNA was assessed with Agilent
Bioanalyzer. The starting amount of total RNA was
1 mg. Single-stranded cDNA was first synthesized from

total RNA using engineered random primers with T7
promoter sequences. Single-stranded cDNA was then
converted to double-stranded cDNA which was further
used as a template for IVT reaction to synthesize and
amplify antisense cRNA with T7 RNA polymerase.
Sense-stranded cDNA was produced by the reverse tran-
scription of cRNA using random primers. cRNA template
was hydrolyzed with RNase H leaving single-stranded
cDNA. 5.5 mg of single-stranded cDNA was enzymatically
fragmented and end-labeled with Affymetrix DNA
Labeling Reagent. Labeled cDNA was hybridized on
Human Exon 1.0 ST microarray for 17 h, washed and
stained using Affymetrix Fluidics Station and scanned
with Affymetrix GeneChip Scanner. The exon array data
are deposited to GEO with accession number GSE27501.

Sample preparation for qRT-PCR

RNase-Free DNase Set (Qiagen) was used to remove
contaminating genomic DNA in RNA samples.
Concentration and purity of RNA was determined using
the Qubit Quantification Platform (Invitrogen) and
Quant-iT RNA assay kit (Invitrogen). Quant-iT dsDNA
HS Assay Kit was used to evaluate DNA contamination
of RNA samples. Reverse transcription was carried out
using QuatiTect Reverse Transcription Kit with addition-
al elimination of genomic DNA (Qiagen). One microgram
of RNA was incubated in gDNA Wipeout Buffer for
2min at 42�C and placed on ice. RNA templates were
added to reverse transcription master mix containing
optimized blend of oligo-dT and random primers. The
reactions were incubated for 15min at 42�C and
heat-inactivated for 3 min at 95�C.

Primer design and qRT-PCR

qRT-PCR was carried out using the LightCycler480 and
SYBR Green dye system (Roche) for exon expression
analysis or Probe Master TaqMan (Roche) for transcript
expression analysis. RT-PCR primers for reference genes
and exons were designed by SIGMA (oligo
.design@sial.com). Sufficient qRT-PCR assay efficiencies
were determined by standard curves of serial dilutions of
cell line cDNA. The TaqMan assays for the quantification
of the differentially expressed transcripts were designed by
TIB MOLBIOL (www.tibmolbiol.de). All primer/probe
information is given in Table 2, Table 3 and
Supplementary Table S1. Ensembl IDs and corresponding
annotations are from Ensembl v.58. TaqMan assay for
human b-actin has been published by Kreuzer et al. (29):
b-ACTIN forward primer AGCCTCGCCTTTGCCGA,
b-ACTIN reverse primer CTGGTGCCTGGGGCG,
ACTIN TM 6FAM-CCgCCgCCCgTCCACACCCgCC–
BBQ. Each sample was measured in duplicate and the
data were analyzed by the �Ct method for comparing
relative expression results.

Determination of endogenous reference genes

A panel of eight reference genes was used, comprising
commonly used reference genes and genes identified
as being consistently expressed across the exon array
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data set at a level similar to the expression level of exons
selected for validation. Expression of reference genes was
evaluated from 15 HNSCC cell lines. Samples were tested
in duplicate and median values were calculated. Using
geNorm (30) and BestKeeper (31) software, b-actin and
HPRT1 were selected as best housekeeping genes for the
cell lines used in this study.

Statistical analysis of the qRT-PCR data

qRT-PCR data were analyzed according to the �Ct

approach. In short, the mean of duplicate measures of
the exon target in each sample was normalized using the
mean of the two selected endogenous reference genes.
b-actin served as an endogenous control to normalize
the expression levels of NEO1 and ORAOV1 splice
variants. Exons and splice variants expression fold
changes were calculated by dividing the mean expression
of the 11q13+ samples by the mean expression of the
11q13� samples. Two separated one-sided Mann–
Whitney tests were applied to evaluate the statistical sig-
nificance of differences in the relative mRNA expression
levels of exons and splice variants between 11q13+ and
11q13� samples.

RESULTS

Background correction comparison using colon
cancer data

Background correction is one of the most important steps
in quantifying the probe intensities as the errors in cor-
recting for background can propagate to downstream
analyses, which may severely bias the results.

To illustrate the impact of different background correc-
tion approaches to probe intensities, we tested four
approaches [global, PM-GCBG (19), MAT (20,21) and
here introduced PM-BayesBG] using a colon cancer
exon microarray data set consisting of 14 samples from
Affymetrix public resources. Each exon array contains
37 687 antigenomic and genomic background probes. As
these sequences should not be present in the samples, the
ratio between a probe intensity and the estimated back-
ground signal should equal to one. With this experimental
setting we can compare the performance of different back-
ground models.
The results for background correction comparison are

illustrated in Figure 2. While all methods resulted in a
number of outliers, global, PM-GCBG and MAT
models produced several gross outliers (>10� fold
change) that are absent with PM-BayesBG. We further
used ANOVA to test whether the means of ratios are sig-
nificantly different. With the significance level of P< 0.05,
the means for the PM-GCBG and global background
models were higher than the ones obtained with
PM-BayesBG and MAT. The mean of ratios based on
the MAT method is also slightly higher than the one
resulted by PM-BayesBG but the difference is not statis-
tically significant.
These results indicate that the PM-BayesBG and MAT

background models are better in estimating probe back-
ground signals than PM-GCBG and global background
models. In particular, the global background correction
model results in a very large number of outlier values,
which are likely to affect the downstream analyses nega-
tively. PM-BayesBG resulted in fewer outliers than the

Table 3. Primers and probes for TaqMan assays

Transcript EnsemblID Primer/probe name Targeted exon index

ORAOV1-201 ENST00000279147 ORAOV1_F forward Exon 3
ORAOV1_147R reverse Exon 5
ORAOV1_V1_TM Exon 4

ORAOV1-202 ENST00000376587 ORAOV1_F forward Exon 3
ORAOV1_587R reverse Exon 6
ORAOV1_V1_TM Exon 4

NEO1-201 ENST00000339362 NEO_V2_S forward Exon 25–26
NEO_V2_A reverse Exon 26
NEO_V2_TM Exon 26

NEO1-202 ENST00000379842 NEO_V3_F forward Exon 18–19
NEO_V3_A reverse Exon 20–21
NEO_V3_TM Exon 20

The transcript names in the 1st column are used in the text. The targeted exons and primer/probe sequences are given in Supplementary Table S1.

Table 2. Primer sequences designed for exon qRT-PCR validation

Exon Gene Forward Reverse

ENSE00000833461 TTC26 AGTATATTCTCAAAGGAGTG ACCCATTTCCTGGCCAA
ENSE00000855493 PMP22 AGAACTTGCCGCCAGAAT GTGGAGGACGATGATACTCAG
ENSE00001382781 PDE4A TTGTCAGGAGTCGAGGAA CTGTGCCATAACTTCCAA
ENSE00001131505 EMP3 CCTCATTCTCTGCTGTCT GCATAGAAGAGACCTCCT
ENSE00001628012 DBNL CGGCTTGGCAGACTCA GGGATGCAGGAAGGATGT
ENSE000001442185 KCNK1 CTGAGGGTTTTATCTCCTGATTTG GCTCTCTCCTTTAGGCACTT
ENSE00001597418 ACTB CTTCACCACCACGGC CCATCTCTTGCTCGAAG
ENSE00001904310 HPRT1 GCCTAAGATGAGAGTTCAAGTT AACAACAATCCGCCCAAA
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other methods and it requires less parameters to be
estimated than in MAT, which uses an 80-parameters
linear model (21).

Identification of differentially expressed exons in HNSCC

Identification of differentially expressed genes or tran-
scripts between two or more conditions is one of the
most important objectives in studies using transcriptome
data. As exon array gives an opportunity to quantify also
exon expression levels, we compared the performance of
four pre-processing methods (RMA, FIRMA, PLIER,
MEAP) in identification of differentially expressed exons
(DEEs) in HNSCC cell lines.
One of the most common genomic alterations in

HNSCC is amplification of the chromosome region
11q13. This alteration is present in 30–50% of HNSCC
patients (32) and patients with this amplification are
shown to have higher propensity for metastasis and
decreased survival (33–35). Here, we use exon array data
from seven HNSCC cell lines having 11q13 amplification
(11q13+) and eight cell lines without this amplification
(11q13�) to compare exon array pre-processing
algorithms.
We quantified exon level expression with RMA, PLIER

(Affymetrix Power Tool with PM-GCBG background
correction) and FIRMA by translating the probeset
values to exon level by taking a median of probesets be-
longing to the exon region according to the Ensembl
database (v.58) (36). For MEAP we generated exon level
expression directly from probes as explained in ‘Materials
and Methods’ section. The number of DEEs varied greatly
between the pre-processing methods (RMA: 4420;

PLIER: 7620; FIRMA: 4303; MEAP: 7284). The
methods agreed in 2383 DEEs (nominal P-value <0.05
and absolute fold change >2) out of 12 650 unique
DEEs identified by at least one method. The number of
common DEEs is unexpectedly small and indicates that
the choice of the exon array pre-processing method has a
large impact to the results.

We then validated randomly chosen four exons that
were identified as DEEs by MEAP alone, as well as two
exons that were not identified as DEEs by most methods
(Table 4). The expressions of these six exons were
quantitated with qRT-PCR in all 15 HNSCC cell lines
and the results are shown in Figure 3. The box plots
show three outliers in three exons and these were
excluded from the statistical analyses. Four exons that
were identified as DEEs by MEAP alone were statistically
significantly different also in the qRT-PCR experiments.
Likewise, the two exons that were not identified as DEEs
by most of the methods were not significantly different in
the qRT-PCR experiments. These results demonstrate that
MEAP is able to produce exon expression estimates that
allow reliable identification of differentially expressed
exons.

Identification of differentially expressed alternative splice
variants in HNSCC

Quantification of alternative splice variants is a non-trivial
task because an exon may belong to several variants. As
an exon expression value may have been influenced by
several alternatively spliced variants, simply averaging
exons associated with an alternatively spliced variant
may severely bias the transcript expression values. In
order to address this issue, we use a linear algebra based
approach to quantify alternatively spliced variants (see
‘Materials and Methods’ section for details).

To demonstrate the benefits of the MEAP in quantify-
ing the expression values for alternatively spliced variants,
we analyzed alternatively spliced variants of three genes
(ORAOV1, ANO1 and PPFIA1) located in the 11q13
amplified region and associated with HNSCC. ORAOV1
is involved in the regulation of cell growth, apoptosis
and tumor angiogenesis (37, 38). Furthermore, the ampli-
fication of ORAOV1 is associated with several
clinicopathological features (39, 40). ANO1 has been
reported to function as a calcium-dependent chloride
channel (CaCC) (41). Overexpression of ANO1 in cancer
cells with low endogenous ANO1 levels stimulates cell mi-
gration and channel activity is required for this effect (42).
Alternative splicing of ANO1 is an important mechanism
to regulate channel properties, such as sensitivity to
calcium (43). PPFIA1 is a member of the LAR
protein-tyrosine phosphatase-interacting protein (liprin)
family and it is involved in the regulation of cell spreading
and migration (44–46). Alternatively spliced variants of
PPFIA1 are regulated in a developmental- or region-
specific manner (47).

Expression values of alternatively spliced variants and
fold changes for ORAOV1, ANO1 and PPFIA1 genes are
given in Table 5. ORAOV1-201 and ORAOV1-203 are
clearly overexpressed in 11q13+ samples, whereas

Figure 2. Boxplot for the ratios of raw intensity of each probe versus
estimated background signal. We used human colon cancer exon array
data from Affymetrix public resource and calculated signals of
antigenomic and genomic background probes on global, PM-GCBG,
MAT and PM-BayesBG background correction models. Ideally, the
background intensities of these probes from a background model
should be the same as their detected signals. MEAP has the lowest
mean ratio according to the mean ratios labeled in the figure.
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ORAOV1-202 expression is almost identical in both the
11q13+ and 11q13� samples. This is evident also from
Figure 4 that contains MEAP visualization for the
ORAOV1 gene. For ANO1, all variants were 1.9–2.8
times more expressed in 11q13+ than in 11q13�
samples. Our results further suggest that alternatively
spliced variant PPFIA1-201 is very strongly expressed
whereas PPFIA1-202 is weakly expressed. Furthermore,
PPFIA1-201 is three times more expressed in 11q13+
samples as in 11q13� samples.

In addition to analyzing genes inside the 11q13 region,
we identified all differentially expressed transcripts
(DETs) between 11q13+ and 11q13� samples. This
resulted in 615 DETs with P< 0.05 and absolute fold
change of at least two. In this experimental setting
amplifications and deletions independent of the 11q13
amplification may confound the results as these 11q13-
independent genomic aberrations, which are abundant in
these 15 HNSCC cell lines (48), may introduce high or low
expression values. In order to overcome this confounding

Figure 3. Boxplot of the normalized �Ct values for randomly selected exons in HNSCC samples. Exons ENSE00000833461, ENSE00000855493,
ENSE00001131505 and ENSE00001382781 are statistically significantly differentially expressed between 11q13+ and 11q13� groups (**P< 0.01;
*P< 0.05). * represents an outlier.

Table 4. Fold changes and P-values of six randomly selected exons with MEAP, RMA, PLIER and FIRMA

ExonID MEAP PLIER RMA FIRMA
P-value, FC P-value, FC P-value, FC P-value, FC

ENSE00001442185 0.0272, 1.7658 0.0278, 1.4750 0.0179, 2.1503 0.0472, 1.8533
ENSE00001628012 0.0422, 0.6100 0.0387, 0.6588 0.0065, 0.5370 0.0139, 0.4833
ENSE00000833461 0.0328, 0.2246 0.1218, 0.6572 0.0075, 0.7272 0.0111, 0.7761
ENSE00000855493 0.0130, 0.2531 0.2772, 0.5612 0.0191, 0.6641 0.0256, 0.6345
ENSE00001382781 0.0043, 2.2765 0.0443, 1.4478 0.0230, 1.5832 0.0132, 1.7690
ENSE00001131505 0.0376, 0.3468 0.0392, 0.6565 0.0324, 0.7334 0.0332, 0.7119

Quantitative exon expression values were generated from the median intensity of corresponding probeset expression values for PLIER, RMA,
FIRMA and directly from probe intensities for MEAP. Four differentially expressed exons found by MEAP alone are ENSE00000833461,
ENSE00000855493, ENSE00001382781 and ENSE00001131505. The other two exons (ENSE00001442185 and ENSE00001628012) without signifi-
cant differential expression are found by most of the methods. The threshold defining a significant differentially expressed exon was P< 0.05 and
linear-scale fold change more than two. The first column of the bolded values denotes significances (P-values). The bolding refers to exons that were
detected by MEAP alone.
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factor, we used copy number data from the same 15 cell
lines (Lepikhova et al. in preparation) and excluded 285
DETs that mapped to amplified/deleted regions. The list
of the remaining 330 11q13-specific DETs and their ex-
pression levels is given in Supplementary Table S2.
To verify the results produced by MEAP, we performed

qRT-PCR for alternatively spliced variants of ORAOV1
and NEO1 in all 15 HNSCC cell lines. NEO1 (neogenin
homolog 1), whose alternative splice variants’ fold
changes were 2.4–3.3, was randomly chosen from the list
of 330 11q13-specific DETs. Two NEO1 alternative splice
variants (NEO1-202 and NEO1-001) were 8–13 fold
up-regulated as compared to NEO1-201 in 11q13+ and
11q13� samples. For NEO1 we experimented the expres-
sion levels of the two transcripts NEO1-201 and

NEO1-202, since there is no specific assay for the third
alternative splice variant NEO1-001. The hypothesis here
is that NEO1-202 is expressed at a higher level than
NEO1-201 in both 11q13+ and 11q13� samples, and
both NEO1-201 and NEO1-202 are overexpressed in
11q13+ samples. For ORAOV1, we experimented
whether ORAOV1-201, but not ORAOV1-202, is signifi-
cantly overexpressed in 11q13+ samples as predicted by
MEAP.

The qRT-PCR results for NEO1 and ORAOV1 are
shown in Figure 5. We performed two independent
one-sided Mann–Whitney U tests using the normalized
Ct values (�Ct) between the 11q13+ and 11q13�
HNSCC samples. There is a significant increase in the
expression of ORAOV1-201 (P< 0.0006) in the 11q13+

Figure 4. MEAP splice visualization plot for gene ORAOV1. Top ‘P-value’, ‘Fold Change’ and ‘Expression Curve’ sections display the t-test
P-values (�log10), fold change (log2), expression intensities of each exon in a gene between two sample groups (Group1: 11q13+;
Group2: 11q13�). Gaps may occur when there are no probes designed against a specific exon region. Sections ‘Expression’ and ‘Transcript’ give
the exon expression profile and the expression of each splice variant of ORAOV1 in 11q13+/11q13�. G1/G2 in the exon expression profile corres-
ponds to the fold change between 11q13+ and 11q13� samples, in which green represents downregulation and red represents upregulation.
Expression values are on log2-scale.

Table 5. MEAP quantification of transcripts for genes ANO1, PPFIA1, ORAOV1 and NEO1

Transcript EnsemblID GeneName 11q13+ 11q13� Fold change

ANO1-201 ENST00000316296 ANO1 92.347 48.840 1.891
ANO1-202 ENST00000355303 ANO1 188.707 67.696 2.788
ANO1-203 ENST00000398543 ANO1 321.795 115.520 2.786
PPFIA1-201 ENST00000253925 PPFIA1 629.473 209.528 3.004
PPFIA1-202 ENST00000389547 PPFIA1 19.522 12.159 1.606
ORAOV1-201 ENST00000279147 ORAOV1 91.076 23.687 3.845
ORAOV1-202 ENST00000376587 ORAOV1 16.268 15.649 1.040
ORAOV1-203 ENST00000441922 ORAOV1 62.813 23.884 2.630
NEO1-001 ENST00000261908 NEO1 38.639 16.000 2.415
NEO1-201 ENST00000339362 NEO1 4.780 1.456 3.283
NEO1-202 ENST00000379842 NEO1 46.656 18.975 2.459

In our HNSCC dataset, there are 7 samples in 11q13+ and 8 samples in 11q13� group. Median is applied to represent the expression of each
transcript in 11q13+ or 11q13� group. Expression and fold changes in this table are on linear-scale.

e123 Nucleic Acids Research, 2011, Vol. 39, No. 18 PAGE 8 OF 12

http://nar.oxfordjournals.org/cgi/content/full/gkr513/DC1


group, whereas no significant changes were observed
for ORAOV1-202 (P< 0.0837). Both NEO1-201
(P< 0.0320) and NEO1-202 (P< 0.0246) were signifi-
cantly upregulated in the 11q13+ samples. Furthermore,
NEO1-201 was expressed at a lower level as compared to
NEO1-202 in both sample sets. These results corroborate
the predictions made with MEAP and demonstrate that
MEAP is able to produce reliable expression values for
alternatively spliced variants.

DISCUSSION

Alternative splicing plays an important role in a wide
spectrum of biological processes. Exon microarray tech-
nology enables quantitative measurement of exon-specific
expressions, which allows advanced analysis of

alternatively spliced transcripts in complex diseases. We
have designed and implemented a comprehensive exon-
array data processing approach that is able to produce
trustworthy data at probeset, exon, alternatively spliced
variant and gene levels using a novel background estima-
tion model. MEAP is implemented to take advantage of
distributed computing and thus it is able to process large
sets of exon arrays rapidly. For instance, analysis of 500
glioblastoma multiforme primary tumors subjected to
exon arrays (49) with MEAP took 4 h with a small
cluster (data not shown). MEAP also has a visualization
interface that facilitates identification of novel
alternatively spliced variants.
In order to assess performance of MEAP and three

other exon array processing methods, we assessed
their performance in background correction,

Figure 5. Relative expression level of spliced variants from qRT-PCR. NEO1-201 and NEO1-202 both have high relative expression values in the
11q13+ group compared to the 11q13� group. Meanwhile, the expression level of NEO1-201 is lower than NEO1-202 in both the 11q13+ and
11q13� groups. For ORAOV1, transcript ORAOV1-201 is overexpressed in the 11q13+ group. The SD of �Ct values in the 11q13+ group for
transcript ORAOV1-202 is high and such a variant does not have significant expression changes between two groups. (**P< 0.01; *P< 0.05).
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identification of differentially expressed exons and alter-
natively spliced variants. The key observations were
further validated with qRT-PCR. The results demonstrate
that the MEAP generated expression values for exons and
alternatively spliced variants are trustworthy, which facili-
tates advanced downstream analyses. The major reason
for MEAP to outperform other exon array pre-processing
methods is its background correction model together with
linear algebra-based method to calculate expressions of
alternatively spliced variants using exon expression
values. A drawback of the linear algebra approach is
that sometimes expression value for an alternatively
spliced variant may become negative. This is due to
small values within some exons in the transcript as well
as missing probes for an exon (Affymetrix exon array
contains probes for �80% of the exons). However,
MEAP is able to result in an expression value at the
gene level even in cases where alternatively spliced
variant expressions cannot be produced as shown in
Supplementary Figure S2 in which the MEAP gene ex-
pression values correlate well (R=0.76, . . . , 0.95) with
qPCR quantifications.
We identified 330 differentially expressed transcripts

between 11q13+ and 11q13� samples. These variants
belong to several genes involved in the regulation of pro-
liferation, survival, adhesion and invasion, including
NEO1, NME1, FAP, CYP26A1. After identifying the dif-
ferentially expressed alternatively spliced variants between
11q13+and 11q13� samples we further corroborated the
expression pattern of NEO1 alternatively spliced variants
with qRT-PCR.
NEO1 encodes a protein with 50% amino acid

homology to the human tumor suppressor molecule
deleted in colon cancer (DCC) though DCC and
neogenin mediate different responses (50–52). Neogenin
is present in tissues where active growth takes place, and
ubiquitous expression of neogenin was observed in a wide
variety of human cancers (50,51). The role of NEO1 in
cancer progression, however, is controversial (53,54).
Our results show that all alternatively spliced variants of
NEO1 were co-expressed in 15 HNSCC cell lines and
overexpressed in 11q13+ compared to 11q13� sample
groups. However, NEO1-201 was expressed 8–10 times
lower as compared to NEO1-001 and more than 10
times lower as compared to NEO1-202 in 11q13+ and
11q13� cell lines. In contrast, the difference in expression
level between NEO1-201 and NEO1-001 or NEO1-202
variants in two normal keratinocyte cell lines was only
7-fold (data not shown). As neogenin is a multi-functional
receptor regulating many diverse processes (55,56), both
the nature of the ligand and alternatively spliced variants
could be responsible for the different functional outcomes
of neogenin activation. This could explain different ex-
pression levels of alternatively spliced variants not only
in cancer such as HNSCC but also during development
[57]. NEO1-201 differs from other variants by exclusion of
exon 26 which contains several potential phosphorylation
sites. Thus, our results suggest that the phosphorylation
pattern of neogenin could determine the downstream
intracellular signaling through the binding of different
molecules, and deletion of exon 26 could lead to abolished

interactions and consequently lower expression of
NEO1-201.

As alternatively spliced variants of several
cancer-related genes located at 11q13 amplicon have
been reported to differ significantly in their ability to
promote tumor progression (58,59), we studied further
the alternatively spliced variants located in the 11q13
region. For example, two alternative splice variants of
human cortactin, which lack exon 11 or exons 10 and
11, show reduced ability to induce cell migration when
compared with the form of cortactin that includes exon
11 (58). While upregulation of a cancer associated
splice variant does not necessarily correlate with the
gene amplification, there is evidence for amplified and
overexpressed genes to show distinct pattern of splice
variants in comparison to tumors without amplification
(60). Accordingly, we tested whether expression levels of
alternative splice variants belonging to the 11q13 region
are associated with the amplification status using exon
array data from 15 HNSCC cell lines.

Our results suggest that ANO1-203 variant with
deletion of exons 13 and 15 is expressed at a higher level
compared to ANO1-202 with inclusion of both exon
13 and 15 in all tested HNSCC cell lines. Interestingly,
skipping of exon 13 and exon 15 in ANO1 has a strong
effect on the properties of CaCC (43). Both ANO1-202
and ANO1-203 were 2.8 times more expressed in the
11q13+group while the difference in the expression level
of ANO1-201 was only 1.9-fold. Thus, our results point to
the direction that different ANO1 transcripts are expressed
in 11q13+ cases, which could result in alterations in the
properties of CaCC.

In summary, these findings indicate that MEAP is able
to quantify expression of alternatively spliced variants in
complex diseases, such as cancer. When splice variants are
translated, this results in a set of closely related, but dif-
ferent proteins that could have different functional
properties in normal and cancer cells. Our results highlight
a number of alternatively spliced variants that may have
an impact in development of head and neck squamous cell
carcinoma. While more work is needed to firmly establish
the role of these alternatively spliced variants in HNSCC
progression, our results demonstrate that MEAP can
quantify exon and alternatively spliced transcripts estab-
lishing a solid basis for generating experimentally testable
predictions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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