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Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract that
is often characterized by abdominal pain, rectal bleeding, inflammation, and weight
loss. Many studies have posited that the gut microbiome may play an integral role in
the onset and exacerbation of IBD. Here, we present a novel computational analysis
of a previously published IBD dataset. This dataset consists of shotgun sequence
data generated from fecal samples collected from individuals with IBD and an internal
control group. Utilizing multiple external controls, together with appropriate techniques
to handle the compositionality aspect of sequence data, our computational framework
can identify and corroborate differences in the taxonomic profiles, bacterial association
networks, and functional capacity within the IBD gut microbiome. Our analysis identified
42 bacterial species that are differentially abundant between IBD and every control group
(one internal control and two external controls) with at least a twofold difference. Of the
42 species, 34 were significantly elevated in IBD, relative to every other control. These
34 species were still present in the control groups and appear to play important roles,
according to network centrality and degree, in all bacterial association networks. Many
of the species elevated in IBD have been implicated in modulating the immune response,
mucin degradation, antibiotic resistance, and inflammation. We also identified elevated
relative abundances of protein families related to signal transduction, sporulation and
germination, and polysaccharide degradation as well as decreased relative abundance
of protein families related to menaquinone and ubiquinone biosynthesis. Finally, we
identified differences in functional capacities between IBD and healthy controls, and
subsequently linked the changes in the functional capacity to previously published
clinical research and to symptoms that commonly occur in IBD.

Keywords: microbiome, gut, IBD, species, shotgun sequencing, association, networks

INTRODUCTION

Inflammatory bowel disease (IBD) is a heterogeneous disorder characterized by chronic
inflammation of the gastrointestinal tract. The two main manifestations of IBD are Crohn’s Disease
(CD) and Ulcerative Colitis (UC). CD most often affects the terminal ileum but can affect any
part of the gastrointestinal tract in a non-contiguous fashion, sometimes known as ‘skip lesions,’
and often results in diarrhea, bloody stools, abdominal pain, cachexia, and fatigue (Flores et al.,
2015; Veauthier and Hornecker, 2018). UC most often affects the large intestine, extending
from the rectum, and is characterized by contiguous inflammation and often results in rectal
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bleeding, bloody stools, diarrhea, cachexia, and fatigue (Flores
et al., 2015; Yu and Rodriguez, 2017). While the etiology of
IBD is not well understood, it is believed that the disorder
arises due to environmental and host-related factors causing an
aberrant immune response in genetically predisposed individuals
(Kish et al., 2013; Chiara et al., 2020). One such factor is
believed to be the microbiome, specifically the gut microbiome
(Duranti et al., 2016).

The human microbiome is the collection of microbes that
exists on and within the human body, and this collective has been
implicated in maintaining health, as well as possibly contributing
to a multitude of diseases such as IBD, Irritable Bowel Syndrome
(IBS), diabetes, Parkinson’s disease, and amyotrophic lateral
sclerosis (Brown et al., 2011; Gevers et al., 2014; Wu et al., 2015;
Petrov et al., 2017; Kho and Lal, 2018; Vich Vila et al., 2018).
The bacterial composition of the microbiome can be studied
using DNA sequencing, either by targeted sequencing of a marker
gene or by shotgun sequencing. Targeted sequencing involves the
amplification of specific regions of bacterial genomes, such as
the 16S ribosomal RNA gene, for use as a phylogenetic marker
(Fox et al., 1977). However, due to the highly conserved nature of
the marker genes, such as 16S rRNA gene, and the short lengths
of the regions within the gene that are commonly targeted, the
taxonomic resolution generated by these types of studies are
often inadequate to distinguish bacterial species and accurate
relative abundance estimation is difficult (Fox et al., 1992; Rastogi
et al., 2009; Ranjan et al., 2016; Ibal et al., 2019). In contrast,
shotgun sequence data generated from the DNA extracted from a
sample can be used to obtain more accurate estimates of relative
abundance, higher resolution of bacterial taxonomy, and a more
accurate representation of genomic functional capacity (Ranjan
et al., 2016; Laudadio et al., 2018).

Regardless of the sequencing framework used, the generated
sequence data are compositional in nature, in that it is only
possible to infer relative abundances of the constituent microbial
taxa from these data (and not absolute abundances) (Gloor
et al., 2017). This compositionality aspect makes it difficult to
analyze differential abundance, infer associations, and estimate
correlations (Aitchison, 1982; Pearson, 1896; Friedman and Alm,
2012; Tsilimigras and Fodor, 2016). By utilizing a Centered
Log-Ratio (CLR) transformation of the relative abundance
data, we can examine the differential abundances more clearly
and without inducing spurious correlations (Aitchison, 1982;
Pearson, 1896; Friedman and Alm, 2012; Tsilimigras and Fodor,
2016). Furthermore, the covariance matrix of log-transformed
relative abundance data provides a good approximation of the
covariance matrix of the log-transformed absolute abundance
data enabling us to better model the associations between bacteria
(Kurtz et al., 2015).

Associations within a bacterial community are comprised
of the direct and indirect interactions between the community
constituents and are important for understanding the underlying
dynamics at play in a microbial community (Kurtz et al.,
2015). Bacterial association networks are often constructed
using pairwise correlation methods on relative abundance or
count data of the bacteria found within the samples. Due
to the compositional nature of sequencing data, however,

it is difficult to accurately identify correlations from counts
generated from sequencing data due to spurious correlations
that arise (Friedman and Alm, 2012). Even after CLR-
transformation of the sequencing data, pairwise correlation
methods are unable to account for conditional independence
between bacterial species causing these methods to produce
inaccurate bacterial association networks (Kurtz et al., 2015).
In this paper, we used a Gaussian Graphical Model (GGM)
framework in conjunction with a graphical lasso (glasso)
to construct bacterial association networks from the CLR-
transformed relative abundance data (Friedman et al., 2008;
Loftus et al., 2021). Utilizing the GGM framework on the CLR-
transformed data, enables us to approximate the covariance
structure of the absolute abundances as well as account
for conditional independence between the constituent species
(Aitchison, 1982; Wermuth and Lauritzen, 1990).

Due to the Random Forest Classifier’s (RFC) ability to deal
with ’noisy,’ non-normally distributed, multi-dimensional data,
it has become an important tool for identifying important
features and differences in the microbiome (Breiman, 2001;
Shi et al., 2005; Díaz-Uriarte and Alvarez de Andrés, 2006;
Saulnier et al., 2011; Loomba et al., 2017; Roguet et al., 2018).
These features can include bacterial relative abundances and
metadata thus allowing us to generate a model that accounts
for subject characteristics as well as gut microbiota taxonomic
profiles. Another benefit of the RFC is its ability to assign
importance to the features used for the classification. The feature
importance’s allow us to quantify the role a specific feature plays
in making a prediction and can allow us to determine which
features may be informative. One shortcoming of these feature
importance’s, however, is their lack of statistical significance. Due
to the stochastic nature of model construction using an RFC,
some features may be relatively important in one instance of
an RFC modeled using a specific diagnosis label, but relatively
unimportant in another instance of the RFC modeled using the
same diagnosis label as the previous model. To enable us to utilize
RFC feature importance to distinguish potentially important
features and reduce the dimensionality of our data, we formulated
a framework that allowed us to add statistical significance to the
feature importance’s.

Here, we utilized the IBD Multi-omics DataBase (IBDMDB)
cohort from a previously published study to study IBD (Lloyd-
Price et al., 2019). This dataset consists of shotgun sequence
data generated from CD, UC, and an internal control group
(henceforth also referred to as non-IBD samples). The non-
IBD samples were collected from subjects that underwent
histopathologic examination (via colonoscopy) but were not
diagnosed with IBD. These samples are derived from subjects
presenting for routine screenings, gastrointestinal (GI) distress,
or non-specific symptoms generating a heterogeneous control
group. This control group design may obfuscate important
differences between healthy and IBD gut microbiomes, especially
if the differences may be related to presentations common
between IBD and GI distress, such as diarrhea, bloating, or
abdominal pain. Additionally, many studies examining the
microbiome suffer from a lack of cross-cohort consistency
making it difficult to generalize findings to populations rather
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than just the utilized study groups (Pasolli et al., 2016). One
proposed remedy for this lack of cross-cohort consistency is
to utilize external samples from independent cohorts, especially
when comparing diseased and healthy microbiomes, and
applying the same methods and techniques across all samples
(Pasolli et al., 2016; Thomas et al., 2019). To enable us to
generalize our findings and utilize healthy control groups in
our analysis, we incorporated samples from both the Human
Microbiome Project (Huttenhower et al., 2012) referred to as
the Healthy-1 cohort, and from Johnson et al. (2019) referred
to as the Healthy-2 cohort, as external controls. The external
cohorts we elected to use were shotgun sequence datasets
generated from fecal samples collected from healthy subjects (no
overt or reported disease) and utilizing the same sequencing
platform as the IBDMDB cohort (Illumina). Furthermore, due
to the similarity of the results produced by the Chemagic DNA
extraction kit (IBDMDB cohort) and the Mo Bio PowerSoil DNA
extraction kit (Healthy-1 and Healthy-2 cohorts), we concluded
that these cohorts could serve as external controls without the
addition of a significant amount of technical bias (Multinu et al.,
2018). Also, due to the use of replicates within the Healthy-
2 cohort and the IBDMDB cohort, we were able to examine
temporal variation within subjects diagnosed with IBD relative
to the non-IBD group (internal control) and the Healthy-2
group (external control). By incorporating these two independent
healthy cohorts, we can compare the IBD samples to healthy
samples and mitigate the possible issues inherent in the design
of the IBDMDB internal control group (non-IBD group) as
well as arrive at more robust and generalizable conclusions
from our analysis.

To understand the effects of changes in the microbiome,
we cannot solely focus on the presence, absence, or differential
abundances that are found. We also need to examine the
bacterial associations as well as the functional differences to
understand how the microbiome is being shaped (Heintz-
Buschart and Wilmes, 2018). By examining the taxonomy, the
bacterial associations, and the functional changes of the gut
microbiome, our study aims to identify bacterial species that may
play a role in the onset or exacerbation of IBD or IBD-related
symptoms. By utilizing two external healthy controls, we are also
able to corroborate our conclusions when comparing IBD and
healthy samples and generalize our findings more confidently
to the population. Additionally, we utilized a machine learning
framework and a prevalence threshold to identify potentially
important bacterial species. We also compared the functional
capacity of the gut microbiome of IBD samples to non-IBD and
control samples and identified important potential functional
differences that may play a role in symptoms IBD patients
typically experience.

MATERIALS AND METHODS

Data Acquisition
Shotgun sequence data generated from 574 fecal samples
were obtained from three previously published studies of the
human gut microbiome (United States populations). Of these,

two cohorts were downloaded from NCBI’s Sequence Read
Archive (SRA): Human Microbiome Project (SRA: PRJNA48479;
203 samples) and the IBD Multi-omics Database (SRA:
PRJNA398089; 257 samples). The Johnson et al. (2019) cohort
was downloaded from the European Nucleotide Archive (ENA)
(ENA: PRJEB29065; 114 samples). We were able to access
metadata for sex and age/age-group for all cohorts.

Data Pre-processing
Reads from the whole genome sequencing data were trimmed
using Trimmomatic (version 0.36) and then reads corresponding
to the human genome were filtered out using BowTie2
(version 5.4.0) and the GRCh38.p121 human reference genome
(Langmead and Salzberg, 2012; Bolger et al., 2014).

Read Mapping and Taxonomic
Identification
Reads from each sample were mapped to 10,839 bacterial
reference strain genomes obtained from the NCBI RefSeq
database using BowTie2 (O’Leary et al., 2016). Bacterial
genome relative abundances in each sample were estimated
using a probabilistic framework based on a mixture model.
The framework utilized an Expectation-Maximization (EM)
algorithm to perform soft assignment of the reads to the reference
genomes and was found to be highly accurate (Xia et al.,
2011; Loftus et al., 2021). We have previously demonstrated
that samples with less than 250,000 mapped reads display
diminished accuracy for taxonomic profiling, consequently all
samples that contained less than 250,000 mapped reads threshold
were not used for downstream analysis (Loftus et al., 2021). When
calculating relative abundances, any value below 1 × 10−5 was
considered statistical noise (and set to 0). For each sample, the
relative abundances of strains belonging to the same species were
aggregated. In this manner, an n x D sample-taxa matrix was
created from n input samples and D species. Entry (i,j) in this
matrix represents the relative abundance of species j in sample i.
Row i is also referred to as the sample relative abundance vector
for sample i, and the values in this vector sum to 1. The sample
relative abundance vectors were then transformed using the CLR
transformation and the CLR-transformed data was used for all
downstream analyses except for the alpha-diversity analysis. The
CLR transformation for a vector x (i.e., row of sample-taxa
matrix) is defined as:

CLR(x) =

[
ln

x1

G(x)
, ln

x2

G(x)
...ln

xD

G(x)

]
where x is the sample relative abundance vector, D is the total
number of species, and G(x) is the geometric mean of x. The
geometric mean is defined as:

G(x) = D√x1 × x2 × ...xD.

1www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38
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Sample Inclusion Criteria
IBDMDB Inclusion Criteria
To reduce potential confounders within the internal control
group (non-IBD samples), we instituted a set of inclusion criteria
for the non-IBD group: no colonoscopy within the last 2 weeks,
no history of bowel surgery, no immunosuppressants use, no
antibiotic use, no IBS, and no diarrhea in the past 2 weeks. Due
to the adverse associations between these variables and the gut
microbiome that have been noted in the literature, we excluded
any samples from subjects that violated these criteria (Dethlefsen
et al., 2008; Schubert et al., 2014; Bhat et al., 2017; Halfvarson
et al., 2017; Vich Vila et al., 2018; Nagata et al., 2019). We also
did not utilize any samples collected prior to week 26 of the
study to ensure that subjects had ample time to overcome any
gastrointestinal distress they have been experiencing at the time
of study initiation. To limit any potential bias from an over-
representation of a subject within the cohort, no more than five
randomly chosen samples were retained from any one subject
for any of the sample groups in the IBDMDB cohort (CD,
UC, non-IBD) resulting in a mean number of replicates of 2.5
and a median of 2.

Healthy-1 Cohort Inclusion Criteria
Samples for the healthy-1 cohort were derived from Huttenhower
et al. (2012) and were generated as part of the Human
Microbiome Project. All 203 samples utilized were derived from
unique individuals and demonstrated over 250,000 mapped reads
so all samples were included in the analysis.

Healthy-2 Cohort Inclusion Criteria
Samples for the healthy-2 cohort were derived from Johnson
et al. (2019) and were generated as part of a longitudinal analysis
of fecal shotgun metagenomes in healthy subjects. The study
by Johnson et al. (2019) aimed to examine gut microbiome
responses to a changes diet. Subject were randomly given fatty
acid supplementation on days 10–17 of the study. To ensure
that our analysis reflected healthy samples on habitual diets,
only samples taken prior to day 10 of the study were used.
Furthermore, subjects were sampled daily for 17 days but not
all subjects consistently had more than five samples with greater
than 250,000 (minimum threshold for inclusion) mapped reads
so to limit the number of replicates from a single subject a
maximum of five randomly chosen samples were retained from
any one subject resulting in a mean number of replicates of 3.3
and a median of 3.

Diversity Analysis
Alpha diversity was analyzed using the Shannon entropy. The
Shannon entropy, H, is defined as:

H = −
D∑

i=1

pi log 2(pi)

where D is the number of species in the sample and pi is the
proportion of species i in the sample (Shannon, 1948). The
non-transformed relative abundances were used for the Shannon
entropy calculations.

Intrapersonal and Interpersonal
Dissimilarity
The Bray–Curtis dissimilarity (BCD) between replicates within a
subject was used to quantify intrapersonal variation within each
cohort with replicates (IBDMDB and Healthy-2 cohorts). The
BCD between subjects within diagnosis groups (interpersonal
dissimilarity) was also examined to observe the variability of the
gut microbiota within the diagnosis groups. The BCD between
two samples, i and j, was calculated as

BCDi,j = 1−
2Cij

Si + Sj

where Cij is the sum of the relative abundances of the species
with the lowest combined relative abundance within samples
i and j. Si and Sj are the sums of the relative abundances
found in sample i and sample j, respectively. The intrapersonal
dissimilarity was calculated by generating pairwise BCD’s for
samples from the same subject. The interpersonal dissimilarity
was calculated by generating pairwise BCD’s between samples
from different subjects.

Prevalent Species
To reduce the dimensionality of our data, we utilized only
bacterial species that were present in at least 90% of samples
within each diagnosis group (IBD, non-IBD, Healthy-1, and
Healthy-2) for our downstream analysis (Loftus et al., 2021). The
union of the bacterial species present at a prevalence greater than
or equal to 90% in each diagnosis group was then used for the
classification of the signature species.

Classification of Signature Species
A modified Random Forest Classifier (RFC) framework was used
to identify bacterial species for downstream analysis (Breiman,
2001). The RFC was used to classify samples by the sample groups
(IBD, non-IBD, and Healthy). The Healthy-1 and Healthy-2
cohort were combined for the RFC analysis to enable us to
identify bacterial species importance’s by health status, rather
than by cohort. A random noise column was added into the
data prior to RFC analysis. The noise column was generated by
creating a normal distribution resembling the CLR-transformed
data of the genome relative abundances and randomly sampling
from the distribution. The data was then label encoded due to
the presence of categorical data. This process was performed
100 times, where a new random noise column would be
generated each time, and the feature importance’s of every
feature (bacterial species, metadata, and the random feature)
were stored for all runs. A Mann–Whitney U test (Mann and
Whitney, 1947) was then performed on the importance’s of
all features with a mean feature importance higher than the
random feature to determine if the importance’s of these features
were significantly different from the feature importance’s of
the random column. The Benjamini–Hochberg procedure for
controlling false discovery rate was utilized to account for the
multiple-testing and only features with a q-values less than 0.05
were considered significantly different from the random column
(Benjamini and Hochberg, 1995). This framework allows us

Frontiers in Microbiology | www.frontiersin.org 4 July 2021 | Volume 12 | Article 673632

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-673632 July 13, 2021 Time: 17:18 # 5

Hassouneh et al. IBD Gut Microbiome Changes

to identify the bacterial species and metadata whose feature
importance’s were significantly higher than the random noise.
The bacterial species that were significantly more important
than the random noise column are referred to as the ‘signature’
species due to their ability to provide a non-random signal during
classification. The RFC was implemented in Python 3.8 using Sci-
kit Learn 0.23.1 (Van Rossum and Drake, 2009; Varoquaux et al.,
2015).

Cross-Validation of Random Forest Classifier
To estimate RFC model accuracies, we utilize a train-test sample
split of 70% for training and 30% for testing. The testing data was
then used to estimate the accuracy of the RFC model using the
F1-score metric. The F1-score, also known as the harmonic mean
of precision and recall, is defined as

F1 =
2(p× r)

p+ r

Where p is defined as precision and r is defined as recall.

Differential Abundance Analysis
Differential abundance analysis was conducted by performing a
Mann–Whitney U test and the Benjamini–Hochberg multi-test
correction on the CLR-transformed relative abundance profiles.
The IBD group was compared to the non-IBD group, the
Healthy-1 group, and the Healthy-2 group individually. Bacterial
species that were significantly differentially abundant in IBD
relative to every other individual group were designated as
differentially abundant.

Bacterial Association Network
Construction
We represent bacterial association networks using an unweighted
graph in which nodes denote bacterial species and an edge
between two nodes denotes an association between the
corresponding bacterial species. The signature species were used
to create a sample-taxa matrix of CLR-transformed relative
abundances in each sample. The GGM framework, as previously
described, was used to generate the bacterial association networks
using the above sample-taxa matrices for each cohort (Loftus
et al., 2021). In brief, the HUGE package in R was used to
compute a sparse precision matrix. The stability approach to
regularization selection (StARS) method was used to determine
the tuning parameter in the l1-penalty model for sparse precision
matrix estimation. To reduce false positives, the final precision
matrix, �, underwent bootstrap testing. If �[i,j] 6= 0, then
�’[i,j] = �[i,j] if[i, j] 6= 0 in f∗r or greater precision matrices
estimated from bootstraping. Otherwise, �’[i,j] = 0. The value
r = 50 (bootstrap replicates) and f = 0.8 (threshold between 0
and 1 indicating proportion of edges that must be non-zero).
Networks were visualized and analyzed using Python 3.8 and
NetworkX 2.4 (Hagberg et al., 2008).

Eigenvector Centrality
Eigenvector centrality (EVC) measures the influence a node
has in a network by accounting for the connections of the
node in question as well as the connections of its neighbors

(Bonacich, 1972; Ruhnau, 2000). The EVC, x, for a given node,
i, is defined as:

xi =
∑

j

Aijxj

where A is the adjacency matrix and j is a neighboring node of i.

Bacterial Genome Functional Annotation
Prodigal (version 2.6.3) was used to identify genes and generate
protein sequence translations (Hyatt et al., 2010). The protein
sequence translations were provided to InterProScan (version
5.39-77.0) to identify protein families using the TIGRFAM
(versions 15.0) protein family database (Haft, 2001; Hunter
et al., 2009). TIGRFAM counts were generated for each
reference genome. Bacterial species that were greater than 90%
prevalent within a diagnosis group (IBD, non-IBD, Healthy-
1, and Healthy-2) were used for functional annotation to
reduce the effects of potentially transient species when analyzing
the genomic functional capacity of the microbiomes (Ursell
et al., 2012; Saunders et al., 2016). Then the TIGRFAM
counts were weighted based on CLR-transformed genome
relative abundance and summed by total for each cohort.
Differential abundances of TIGRFAM profiles were therefore
calculated by using the CLR-transformed relative abundances
of the TIGRFAMs within each cohort. The TIGRFAM CLR-
transformed relative abundances were then tested using a Mann–
Whitney U test.

Statistical Analysis and Graph Creation
Statistical analysis and graph creation was performed using
Python 3.8 (Van Rossum and Drake, 2009).

RESULTS

A total of 574 shotgun sequence datasets from 3 previously
published studies (IBDMDB, Healthy-1, and Healthy-2) of
the human gut microbiome were utilized in this study. The
IBDMDB cohort consisted of CD, UC, and non-IBD samples. To
minimize potential confounders in the IBDMDB group, samples
from individuals that reported recent colonoscopy, antibiotic
or immunosuppressant use, IBS, or recent GI symptoms were
excluded from the control (non-IBD) group. For each dataset,
the sequence reads were quality trimmed and human reads were
identified and filtered. The remaining reads were mapped to
a comprehensive collection of 10,839 bacterial strain reference
genomes from NCBI RefSeq and genome relative abundances
were calculated using a probabilistic framework (Xia et al., 2011;
Loftus et al., 2021). The alpha-diversity was then calculated on
the relative abundances using Shannon entropy. To reduce the
dimensionality of our data, we focused our analysis on bacterial
species that were prevalent in at least 90% of the samples. Next,
the sample relative abundance vectors were CLR transformed and
used for all downstream analysis. An RFC framework (Breiman,
2001) was then used to classify the samples by their diagnosis
groups. The set of input features for the RFC consisted of
the CLR-transformed sample relative abundance vectors, the
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metadata available in all cohorts (sex, age), and the unique subject
ID (used to account for replicates). For the RFC analysis, the
Healthy-1 and Healthy-2 cohorts were grouped under one label
(Healthy) to create a single healthy control group to compare
to the IBD and non-IBD sample groups thus allowing us to
identify important features that distinguish between diagnosis
groups rather than cohort in a more robust manner (Pasolli
et al., 2016; Thomas et al., 2019). The RFC was then trained on
the taxonomic profiles as well as the metadata available for all
cohorts. While RFC’s provide feature importance’s based on the
features’ contribution to classification of the given label, there is
no statistical significance attached to these importance’s. To assess
statistical significance of the features a random noise column
was generated and added to the data (see section “Materials and
Methods”). The species that were ranked as significantly more
important than the random noise column were designated as
the ‘signature species’ and used for all downstream analyses.
A Mann–Whitney U test and Benjamini–Hochberg (BH) multi-
test correction was used to compare the differential abundance of
the signature species within IBD to all other groups individually.

Bacterial species that were significantly differentially abundant
in IBD, relative to every other sample group, were designated
as differentially abundant. Next, a GGM framework (see section
“Materials and Methods”) was used to construct the bacterial
association networks from the relative abundance information
of each sample group. Finally, the genomic functional capacity
within each sample group was determined by using the
TIGRFAM protein family database. The TIGRFAM counts for
each signature species were weighted by the relative abundance of
the species within each sample group and then CLR-transformed.
A Mann–Whitney U test and BH multi-test correction was then
used to compare the differential abundance of the TIGRFAM
functions within IBD to the other groups to determine differences
in functional capacity.

Alpha-Diversity Analysis
The non-IBD group displayed a similar alpha-diversity to
the UC and CD groups, however, the external healthy
cohorts displayed significantly higher alpha-diversities than
all other groups (Figure 1). When examining the effect of
cohort read-depth on alpha-diversity, we did not observe any
significant correlation between read-depth and alpha-diversity
(Supplementary Material 1). Notably, the Healthy-2 cohort
displayed lower read-depth on average, relative to the IBDMDB
cohort, but displayed significantly higher alpha-diversity.

Intrapersonal Dissimilarity
When examining intrapersonal dissimilarity, it was noted that
samples from the same subject were significantly more similar
to each other than they were to samples from other subjects
(Figure 2). This trend was constant for every diagnosis group
that could be tested (Healthy-1 cohort did not utilize replicates)
and was statistically significant every time. Furthermore, it was
observed that IBD samples demonstrated the highest levels of
intrapersonal dissimilarity and were significantly higher than
both non-IBD samples and Healthy-2 samples. Interestingly, the

FIGURE 1 | Alpha diversity for the different sample groups. Alpha diversity for
each sample group by was calculated using Shannon entropy. The
alpha-diversity for CD, UC, and non-IBD were not significantly different from
each other but all three were significantly lower than the healthy cohorts. ***
indicates a p-value < 0.0005 compared to CD, UC, and non-IBD, using a
Mann–Whitney U test.

intrapersonal dissimilarity of non-IBD samples fell between the
IBD and the Healthy-2 samples.

Interpersonal Dissimilarity
To quantify how different the gut microbiota of samples within
a specific diagnosis group are, we examined the interpersonal
dissimilarity. Once again, the IBD samples exhibited the
highest levels of dissimilarity when examining the interpersonal
dissimilarity (Figure 2). IBD sample interpersonal dissimilarities
were significantly higher than the Healthy-1 and Healthy-2
samples but were not significantly different than the non-IBD
samples. It was also noted that the non-IBD samples displayed
significantly higher interpersonal dissimilarity, relative to the
Healthy-1 and Healthy-2 cohorts.

Taxonomic Analysis
When attempting to classify all different diagnoses (CD, UC, non-
IBD, and healthy) using the RFC, it was noted that CD and UC
samples were often misclassified as one another (CD as UC or
vice versa) which contributed to the modest RFC classification
accuracy (weighted average F1-score: 0.79) (Supplementary
Material 2a). After combining the CD and UC diagnoses into the
IBD sample group, the RFC was able to distinguish between the
various cohorts with higher average accuracy (weighted average
F1-score: 0.87) (Figure 3). Notably, the non-IBD group was
difficult to distinguish, and these misclassifications were split
between IBD and healthy controls implying that the non-IBD
group had a heterogeneous composition in which some samples
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FIGURE 2 | Interpersonal and intrapersonal variation. Bray–Curtis dissimilarities between replicate samples from the same subject were used to quantify
intrapersonal variation while the Bray–Curtis dissimilarities between samples from different subjects were used to quantify interpersonal variation. IBD samples
demonstrated elevated intrapersonal variation relative to non-IBD and Healthy-2 samples and non-IBD samples demonstrate elevated intrapersonal variation relative
to Healthy-2 samples. IBD and non-IBD samples both demonstrated elevated interpersonal variation relative to the Healthy-1 and Healthy-2 samples. It was
observed that replicate samples from the same subject were significantly more similar to each other than to samples from other subjects indicating that all diagnosis
groups exhibited greater interpersonal variation than intrapersonal variation. *** Indicates p-value < 0.0005, relative to Healthy-1. +++ indicates p-value < 0.0005,
relative to Healthy-2. ˆˆˆ indicates a p-value < 0.0005, relative to non-IBD.

resembled healthy samples and others resembled IBD samples
(Supplementary Material 2b). The RFC model identified 122
important features with the ‘age’ feature demonstrating the
greatest feature importance. The ‘unique subject ID’ feature was
also an important feature but was ranked 99/122 according to
feature importance. The remaining 120 important features were
bacterial species. The CLR-transformed relative abundances of
these 120 species were then compared between IBD and non-
IBD (internal control) resulting in 55 significantly differentially
abundance species. Out of these 55 species, 42 were significantly
differentially abundant in IBD relative to all three control groups
(non-IBD, Healthy-1 Healthy-2) with a q-value < 0.05 and
greater than a twofold difference (Figure 4). Of those 42 species,
34 were elevated in IBD and 8 species were elevated in the internal
and external controls. All 42 of the above species were also found
to be differentially abundant when utilizing the union of the 90%
prevalent species for the differential abundance analysis.

Out of the 34 species elevated in IBD, only the Clostridium
(five species) and Blautia (four species) genera displayed more
than two species elevated (Supplementary Material 4).

Bacterial Association Networks
Bacterial species elevated in IBD had non-zero degree in all
bacterial association networks (Figure 5). While these nodes
were elevated in IBD, they still maintained a higher-than-average
number of associations within all networks (Supplementary
Material 5). It was observed that while the nodes elevated
in IBD display higher than average degree, most nodes
within each network were composed of species that were not
significantly different between IBD and the control groups
(IBD: 52.5%, non-IBD: 52.6%, Healthy-1: 65.6%, Healthy-2:

53.7%) (Supplementary Material 6). When examining the most
important species within the network, defined as the species with
the ten highest Eigenvector centralities, a measure of relative
importance or influence of nodes, within a network, all but

FIGURE 3 | RFC classification accuracy by sample group. A random forest
classifier was trained on taxonomic profiles and sample metadata using the
diagnoses as the sample labels. The Healthy-1 and Healthy-2 cohorts were
grouped together under one label (Healthy) as our goal was to classify
samples by diagnosis. The F1-score was then calculated for each label using
the precision and recall of the best-performing RFC model via threefold
cross-validation. The RFC was able to accurately classify healthy and IBD
samples using their taxonomic profiles but was not able to accurately classify
non-IBD samples.
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FIGURE 4 | Differential abundance of bacterial species when comparing IBD to non-IBD and healthy groups. Relative abundance values were CLR-transformed and
differential abundance was calculated for IBD compared to non-IBD, IBD compared to Healthy-1, and IBD compared to Healthy-2. The species that were
significantly differentially abundant in IBD relative to every single other group were considered to be significantly differentially abundant resulting in 42 significantly
differentially abundant bacterial species. Of these 42 species, 34 were found to be significantly more abundant in IBD relative to every other group and 8 bacterial
species were found to be significantly less abundant in IBD, relative to every other group. The transformed relative abundances were then averaged and displayed
under one label (non-IBD/Healthy) for ease of visualization. * Indicates a q-value < 0.05. ** Indicates a q-value < 0.01. *** Indicates a q-value < 0.001.

two of the ten species were found in the top-10 important
species non-IBD or healthy networks (Supplementary Material
7) (Newman, 2006). While there was a large amount of overlap,
there were also 56 associations that are unique to the IBD
network (Supplementary Material 8). The vast majority of these
associations (85.71%) involved species that were elevated in IBD.

Differences in Functional Capacity
Analysis of the genomic functional capacities of the different
cohorts demonstrated six significant differences with greater
than twofold fold change between the IBD cohort and all other
cohorts (Figure 6). IBD samples displayed elevated relative
abundance of protein families involved in sporulation and
germination, synthesis and degradation of polysaccharides, signal
transduction, regulatory protein interactions, and molybdopterin
biosynthesis. The IBD samples also displayed reduced relative
abundance of protein families involved in menaquinone and
ubiquinone synthesis. Out of the 34 bacterial species elevated in
IBD, 13 were previously found to be associated with IBD, CRC,
IBS, obesity, or rectal bleeding and 8 of the 13 species were found
to have multiple roles (Supplementary Material 9). A particular
interest within this group of 13 bacteria were the species that have
been studied in vitro or in vivo and found to potentially play a
role in IBD such as Ruminococcus gnavus, Flavonifractor plautii,
Clostridium symbiosum, and Clostridium scindens. Out of the 21
remaining species, 16 were novel potential markers for IBD, 1
was previously found to be reduced in UC, and 4 were previously
found to be elevated in healthy samples.

DISCUSSION

This study identified numerous differences in taxonomic
profiles, bacterial association networks, and genomic functional
capacity between the IBD gut microbiome and the control gut

microbiomes. Furthermore, our findings were corroborated by
multiple external cohorts, and were generated using techniques
and analyses that account for the compositionality of sequencing
data. To our knowledge, this is the first study to utilize
multiple external cohorts from a similar geographic region to
corroborate comparisons between the internal control group and
the diseased group in an analysis of the gut microbiome while also
utilizing a compositionally robust methodology. Additionally, we
demonstrated that bacterial species whose relative abundance
is elevated in IBD are also present in the healthy microbiomes
and maintain an important position in the healthy and IBD
bacterial association networks implying that these species play an
important role in the gut microbiome. However, these elevated
bacteria are also often implicated in mucin degradation, immune
system modulation, antibiotic resistance, and modulation of
inflammation and their over-abundance may dysregulate these
important processes possibly contributing to IBD pathogenesis
and IBD-related symptoms.

We found that the IBD samples had alpha-diversities similar
to internal controls (non-IBD), but significantly lower than
external healthy controls. While it has previously been noted
that IBD samples have lower alpha-diversity than healthy
controls, we believe this may be due to the convenience
selection of internal controls (Frank et al., 2011; Gevers
et al., 2014; Sheehan et al., 2015). As reported in Lloyd-
Price et al. (2019) the internal controls (non-IBD) consisted
of “patients [who] were approached for potential recruitment
upon presentation for routine age-related colorectal cancer
screening, work up of other gastrointestinal (GI) symptoms,
or suspected IBD, either with positive imaging (for example,
colonic wall thickening or ileal inflammation) or symptoms
of chronic diarrhea or rectal bleeding” However, due to
∼75% of internal control samples being derived from subjects
below the age of 45 (the earliest recommended age for
colorectal cancer screening without personal or family history
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FIGURE 5 | Gut microbiome bacterial species association networks. The
GGM framework was used to generate bacterial association networks from
CLR-transformed relative abundances. The bacterial species (nodes) were
colored based on the differential abundance analysis and the node sizes were
based degree of each node within the network. Bacterial species that were
elevated in IBD were still present, and in high degree, in the non-IBD and
healthy networks. It was also noted that the most common constituents of the
bacterial association networks were bacteria that were not significantly
differentially abundant in IBD, relative to the healthy and non-IBD groups.
Finally, the IBD networks demonstrated more negative edges when compared
to the non-IBD and healthy groups. (A) IBD network, (B) non-IBD network,
(C) Healthy-1 network, (D) Healthy-2 network.

of colon cancer), it is presumed that the majority of these
subjects presented with GI distress (Lloyd-Price et al., 2019;
Supplementary Material 10).

When examining the replicates present in the IBDMDB and
Healthy-2 cohorts, it was noted that subjects diagnosed with IBD
demonstrated increased temporal variability, as measured by the
intrapersonal dissimilarity, when compared to non-IBD samples
and Healthy-2 samples. This has been previously demonstrated
when comparing CD and UC to non-IBD controls and has
been posited to be caused by the inflammation and decreased
intestinal transit time experienced by IBD patients as well as
the medications and lifestyle changes employed to manage IBD
(Clooney et al., 2021). It was also noted that the IBD and non-IBD
samples displayed greater subject-to-subject variability relative
to Healthy-1 and Healthy-2 samples. The relatively elevated
temporal stability and subject-to-subject variability indicates that
the gut microbiota of our IBD samples displayed increased
heterogeneity, relative to healthy controls. This has also been
previously demonstrated in pediatric IBD patients and is believed
to be caused by a depletion of core microbes, possibly due to
inflammation and IBD therapies (Schirmer et al., 2018).

Much like the original publication utilizing the IBDMDB
cohort (Lloyd-Price et al., 2019), differentiating between the
taxonomic profiles of IBD from non-IBD samples was difficult.
In our study, using the RFC to classify IBD and non-IBD samples
yielded many misclassifications in which non-IBD samples were
consistently classified as IBD. The non-IBD samples were also
misclassified as healthy. This split of RFC misclassifications for
non-IBD samples indicates that the non-IBD group consists
of a heterogeneous group that resembles both the IBD group,
such as the subjects presenting with GI distress, and the
healthy groups, such as the subjects presenting for routine
screenings. It was also noted that the RFC utilizing the taxonomic
profiles misclassified CD samples as UC samples and vice
versa. This has also been previously demonstrated in other
studies utilizing shotgun sequence data and is indicative of the
high similarity demonstrated between the taxonomic profiles
of the CD and UC gut microbiomes (Moustafa et al., 2018;
Franzosa et al., 2019). This difficulty of distinguishing between
the CD and UC taxonomic profiles is possibly due to similar
biological processes involved in both diseases, especially when
comparing the inflammatory processes underlying both CD and
UC (Olsen et al., 2007).

The RFC was able to distinguish between the external healthy
cohorts and the IBD samples consistently and accurately, most
likely due to these cohorts being composed of samples with
no reported or overt disease. Our modified RFC framework
also allowed us to distinguish bacterial species that had a
higher ranking than the random feature, based on the RFC
feature importance’s. These species were then used for differential
abundance analysis, and network construction. While there was
difficulty distinguishing the non-IBD sample taxonomic profiles
from the IBD and healthy sample taxonomic profiles utilizing the
RFC, we were able to distinguish 55 bacterial species that were
significantly differentially abundant between the IBD and non-
IBD groups. Of these 55 species, 42 were differentially abundant
with a greater than twofold change in the external cohorts as well.

The bacterial association networks revealed that while some
bacteria were found to be elevated in IBD, they were still present
in non-zero degree in non-IBD and healthy networks. As a
matter of fact, the species elevated in IBD displayed higher than
average degree in all networks except for the Healthy-1 network.
Furthermore, when examining the most important nodes (top-
10 eigenvector centrality) within the IBD network, 8 out of the
10 species were also found in the top-10 eigenvector centrality
(EVC) nodes of the healthy networks but all 10 of the top EVC
species were found to have relative abundances that are elevated
in IBD samples. The presence and importance of species that are
elevated in IBD appears to be ubiquitous throughout all networks
implying that while these species have an increased relative
abundance in IBD, they still play integral roles within the non-
IBD and healthy microbiomes, and that it is their over-abundance
and not mere presence that plays an important role in IBD.
Interestingly, while bacteria with elevated relative abundances
in IBD were present and appeared to play an important role
in the non-IBD and healthy networks, they also demonstrated
many associations unique to the IBD network illustrating that
some bacterial species can associate with different bacteria due to
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FIGURE 6 | Differences in IBD gut microbiome functional capacity. Genomic functional capacity was determined by using the TIGRFAM protein family database. The
counts for each TIGRFAM within a bacterial species were weighted by the relative abundance of the bacterial species within each group. The CLR-transformed
relative abundance of the TIGRFAM’s within IBD were then compared to the non-IBD, Healthy-1 cohort, and Healthy-2 cohort individually. The differentially abundant
TIGRFAM’s were then summed based on their roles, according to the TIGRFAM database. There were no differences between the IBD and non-IBD gut microbiome
functional capacities. There were six significantly differentially abundant protein family roles when comparing IBD to the Healthy-1 cohort that were also found in the
Healthy-2 cohort. These differences are implicated in important processes that may contribute to IBD-related symptoms such as diarrhea, intestinal bleeding, and
increased intestinal permeability. The relative abundances of the Healthy-1 and Healthy-2 cohort TIGRFAM roles were averaged for ease of visualization. * Indicates a
p-value < 0.05. ** Indicates a p-value < 0.01.

factors other than just the presence of the bacteria. This implies
that other factors, such as host genetics, host diet, intestinal
environment, or medications may lead to the unique associations
(Pérez-Gutiérrez et al., 2013; Ohland and Jobin, 2015).

It was also noted that most species within each network
were not differentially abundant between IBD and the control
groups (IBD: 52.5%, non-IBD: 52.6%, Healthy-1: 65.6%, Healthy-
2: 53.8%). This is an interesting finding demonstrating that
most gut microbiome network constituents are similar in
relative abundance between healthy and IBD gut microbiomes.

Furthermore, we observed that these non-differentially abundant
bacteria accounted for greater than 60% of the relative
abundances in all groups (IBD: 62.6%, non-IBD: 70.5%, Healthy-
1: 74.6%, Healthy-2: 64%). Most bacterial association networks
and most of the gut microbiome were composed of bacteria
that are not significantly differentially abundant between the
IBD and control gut microbiota indicating that the differences
in the IBD gut microbiota are not wide-spread and appear to
be limited to a set of bacterial species with significantly higher
relative abundance. Interestingly, it was also observed that the
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majority of negative associations found in all networks were
associated with species displaying elevated relative abundance in
IBD samples (IBD network: 100%, non-IBD: 100%, Healthy-1:
no negative edges, Healthy-2: 81.6%). This finding indicates that
the bacterial species elevated in IBD may play an important role
in maintaining stability, possibly by preventing positive feedback
loops, but due to their overabundance in IBD they may contribute
to reducing the diversity of the gut microbiome in IBD samples
(Coyte et al., 2015).

When analyzing the protein family relative abundances in
each cohort, we were not able to identify any statistically
significant differences in functional roles between the IBD and
non-IBD group. However, we were able to find six significantly
different functional roles between the IBD group and each of
the external control cohorts. Notably, the protein family role
most elevated in IBD, relative to external healthy controls, was
associated with functions related to sporulation and germination.
While sporulation in the context of GI disease is most often
associated with Clostridium difficile, many members, especially
pathogens, of the Clostridia genus have been found to utilize
sporulation which is in-line with our data demonstrating that the
Clostridium genus is the most commonly elevated genus in IBD
(Hookman and Barkin, 2009; Shen et al., 2019). Our analysis also
demonstrated that protein families involved in polysaccharide
metabolism were elevated in IBD. This may be due to the
increase in relative abundance of some bacteria that inhabit the
intestinal mucosa and degrade mucin to derive glycans as an
energy source, such as Ruminococcus gnavus and Clostridium
symbiosum (Bernalier-Donadille, 2010; Desai et al., 2016; Hall
et al., 2017). It was also found that protein families involved
in molybdopterin synthesis were significantly elevated in IBD.
Molybdopterin is an important co-factor for nitrate reductase,
which reduces nitrate to nitrite (Moreno-Vivián et al., 1999).
Previous research has identified nitrite as an important molecule
in the regulation of mucosal blood flow, intestinal motility, and
mucus membrane thickness, however, it believed that an over-
abundance of nitrite can have deleterious effects on commensal
bacteria and has been shown to be associated with IBD as well as
with increased bleeding (Lidder and Webb, 2013; Park et al., 2013;
Tiso and Schechter, 2015). This may indicate that an increase in
nitrate reduction (leading to increased nitric oxide levels) can
contribute to negative selection against commensal bacteria as
well as contribute to increased propensity of intestinal bleeding in
IBD. Nitric oxide, the main metabolite of nitrite, is also believed
to be able to increase intestinal motility and lead to diarrhea
(Kukuruzovic et al., 2003).

We also observed that protein families involved in the
synthesis of quinones (menaquinone and ubiquinone) were
reduced in IBD. Quinones are believed to be important growth
factors for gut microbiota, especially for bacteria seen as
commensals (Fenn et al., 2017). Humans are also unable to
synthesize menaquinone (Vitamin K) and thus must ingest it
or have it produced by commensal bacteria indicating that a
reduction in vitamin K synthesis by the gut microbiota may
lead to a reduction of vitamin K levels in IBD (Walther et al.,
2013). In fact, IBD research has long noted that IBD patients
present with lower vitamin K levels (Krasinski et al., 1985;

Schoon et al., 2001). Due to the important role of vitamin
K in blood clotting and calcium binding, this reduction on
vitamin K has been used to explain common co-occurrences and
symptoms of IBD such as osteoporosis and bleeding (Schoon
et al., 2001; Agnello et al., 2014). Quinone synthesis appears
to play an important role in maintaining host health and its
reduction may contribute to the increased intestinal and rectal
bleeding common in IBD.

Finally, we were able to identify specific bacterial species
that are elevated in IBD and play important roles in fomenting
inflammation, degrading mucin, and antibiotic resistance.
R. gnavus and C. symbiosum are mucin-degrading bacteria that
are found in healthy gut microbiomes but are shown to be
elevated in IBD gut microbiomes (Crost et al., 2016). These
bacteria may play an important role in preventing the over-
secretion of mucus in healthy gut microbiomes, but their over-
abundance may cause the mucus layers in the intestine to
become too thin. We also identified Flavonifractor plautii as a
species that was elevated in IBD. F. plautii has been found to
degrade flavonoids, an important anti-inflammatory mediator in
humans and mice (Musumeci et al., 2020). The over-abundance
of F. plautii can lead to low levels of flavonoids which has been
shown to lead to increased inflammation, particularly in the gut
microbiome (Gupta et al., 2019). We also identified Clostridium
scindens as a novel association with IBD. It was previously noted
that C. scindens is associated with the generation of secondary bile
acids (SBAs) in the gut microbiome (Marion et al., 2019). While
SBAs play an important role in the healthy gut microbiome, an
over-abundance of SBAs may lead to cell-membrane disruption,
reactive oxygen species generation, cellular DNA damage, and
colorectal cancer (Payne, 2008; Perez and Britz, 2009; Ajouz
et al., 2014). R. gnavus, C. symbiosum, F. plautii, and C. scindens
are key examples of bacterial species that are present, and
potentially important, in healthy microbiomes but may exhibit
deleterious effects on host health when they become over-
abundant.

While we attempted to mitigate as many confounders under
our control as possible, there are still limitations to be cognizant
of within our study. One particularly important limitation stems
from the relatively low number of subjects present in the datasets
we utilized. We previously demonstrated that as the sample-to-
taxa ratio increases, our network inference framework generates
better predictions (Loftus et al., 2021), however, due to the low
number of unique individuals it was necessary to construct the
networks using the replicates as individual samples. While we
have demonstrated that the intrapersonal variation is lower than
the interpersonal variation, we do not believe that this has a
negative effect on the accuracy of the networks inferred. In
our analysis, we have assumed that all samples from a cohort
are generated using the same underlying covariance structure;
that is, for each cohort, there is a single multivariate Gaussian
distribution associated with it, and this distribution has an
unknown covariance matrix whose parameters we estimate using
the GGM framework. Under this (simplistic) assumption, it
is reasonable to include subject sample replicates for network
inference. Another limitation is that our analysis focused on
abundant species (present in > 90% of samples within a diagnosis
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group) to mitigate the high dimensionality present in gut
microbiome analysis, however, some species with low-prevalence
may still play important roles in the gut microbiome (Zhang et al.,
2016). Also, there appeared to be a bias toward samples from
younger subjects in the IBDMDB cohort. Approximately half
of (46.6%) IBDMDB samples were derived from subjects below
the age of 18 (Supplementary Material 10a) and the youngest
subject was 6 years of age. In contrast, no subjects in the Healthy-
2 cohort were below the age of 18 (Supplementary Material
11). While we did not have access to the metadata (other than
sex) of the Healthy-1 cohort, it was previously published that
all subjects fell between the ages of 18–40 (Methé et al., 2012).
The feature ‘age’ also displayed the greatest feature importance
during classification according to our RFC framework, indicating
that there was a non-trivial difference in the ages between
the diagnosis groups. It has been previously observed that
the taxonomic profiles of individuals begin to resemble adult
configurations by 3 years of age, indicating that the bias is
unlikely to contribute to major differences in the taxonomic
profiles and may just be indicative of the younger age of subjects
in the IBDMDB study (Yatsunenko et al., 2012). However, the
same study did note that while interpersonal variation greatly
decreased after 3 years of age, it was still significantly higher in
subjects between the ages of 3–17, relative to adults (18+ years of
age), which may explain some of the difference in interpersonal
variability observed between IBD and non-IBD samples, relative
to the Healthy-1 and Healthy-2 samples. Finally, it was noted
that there was a greater proportion of female subjects in the
Healthy-2 cohort relative to the Healthy-1 and IBDMDB cohorts
(Supplementary Material 12). This does not appear to impact
the classification results, however, as the RFC did not find the
features ‘sex’ to be more important than random noise.

By utilizing two external control cohorts, we were able to
identify and corroborate 34 bacterial species whose relative
abundance is significantly elevated in IBD. These species appear
to play important roles in all bacterial association networks
(IBD, non-IBD, and external healthy controls) implying that
while an elevation of their relative abundance is associated with
IBD, they are also important to the function of healthy gut
microbiomes. Furthermore, we identified important differences
in functional capacities between IBD and the healthy controls
that may contribute to the onset or exacerbation of IBD-
related symptoms such as diarrhea, intestinal bleeding, mucin

degradation, and intestinal inflammation. Finally, we were able to
corroborate many of the bacterial species we identified as elevated
in IBD using previously published research and identified 17
novel bacterial species that may play an important role in IBD.
To the best of our knowledge, we are the first to corroborate
our analysis of the IBD gut microbiome by using external
cohorts from the same geographic region (US) allowing us to
generalize our findings to the population rather than only our
study groups. Furthermore, we were able to illustrate important
potential mechanistic links between the bacterial species elevated
in the IBD gut microbiome and IBD-related symptoms. Finally,
we identified differences in the genomic functional capacity of
the IBD microbiome that bridges previous findings in IBD and
IBD-related symptoms with the gut microbiome.
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