
In Vitro Folliculogenesis in Mammalian
Models: A Computational Biology
Study
Nicola Bernabò1,2†, Chiara Di Berardino1†, Giulia Capacchietti 1, Alessia Peserico1*,
Giorgia Buoncuore1, Umberto Tosi1, Martina Crociati 3,4, Maurizio Monaci3,4 and
Barbara Barboni1

1Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy, 2National Research Council, Institute of Biochemistry
and Cell Biology, Rome, Italy, 3Department of Veterinary Medicine, University of Perugia, Perugia, Italy, 4Centre for Perinatal and
Reproductive Medicine, University of Perugia, Perugia, Italy

In vitro folliculogenesis (ivF) has been proposed as an emerging technology to support
follicle growth and oocyte development. It holds a great deal of attraction from preserving
human fertility to improving animal reproductive biotechnology. Despite the mice model,
where live offspring have been achieved,in medium-sized mammals, ivF has not been
validated yet. Thus, the employment of a network theory approach has been proposed for
interpreting the large amount of ivF information collected to date in different mammalian
models in order to identify the controllers of the in vitro system. The WoS-derived data
generated a scale-free network, easily navigable including 641 nodes and 2089 links. A
limited number of controllers (7.2%) are responsible for network robustness by preserving
it against random damage. The network nodes were stratified in a coherent biological
manner on three layers: the input was composed of systemic hormones and somatic-
oocyte paracrine factors; the intermediate one recognized mainly key signaling molecules
such as PI3K, KL, JAK-STAT, SMAD4, and cAMP; and the output layer molecules were
related to functional ivF endpoints such as the FSH receptor and steroidogenesis. Notably,
the phenotypes of knock-out mice previously developed for hub.BN indirectly corroborate
their biological relevance in early folliculogenesis. Finally, taking advantage of the STRING
analysis approach, further controllers belonging to the metabolic axis backbone were
identified, such as mTOR/FOXO, FOXO3/SIRT1, and VEGF, which have been poorly
considered in ivF to date. Overall, this in silico study identifies new metabolic sensor
molecules controlling ivF serving as a basis for designing innovative diagnostic and
treatment methods to preserve female fertility.
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INTRODUCTION

Assisted reproductive technologies (ARTs) represent a consolidated clinical practice, which have
resulted in several million births since 1978 (Adamson et al., 2018) (International Federation of
Fertility Societies’ Surveillance, 2019). However, the current ART protocols allow to use only a
limited number of oocytes derived from antral follicles, while the large ovarian reserve, represented
by the pool of early-stage follicles, remains a genetic patrimony that can be preserved by
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cryopreservation procedures but not managed (Martinez et al.,
2017). In this context, the development of protocols aiming to
obtain and fertilize mature oocytes from immature follicles grown
outside the body could represent a useful strategy to recover the
largest pool of ovarian gametes by promoting their in vitro
growth and differentiation.

This follicle rescue approach could be applied as a possible
future clinical strategy to preserve the ovarian reserve, as in the
case of adult and prepubertal patients with cancer, where ovarian
transplantation may expose to the risk of reintroducing
malignant cells (Herta et al., 2018) (De Vos et al., 2014).
Besides, it would benefit the veterinary medicine, providing a
way to improve reproductive performance of species of
zootechnical interest as well as to conserve the genetic
inheritance of endangered animals.

Since the first attempt in the field of in vitro folliculogenesis
(ivF) in 1996 (Eppig, 1996) (O’Brien et al., 2003), many efforts are
made to set up new culture systems able to support in vitro
growth of early-stage follicles toward competent oocytes
(Laronda et al., 2017) (Xiao et al., 2015) (Xiao et al., 2017)
(McLaughlin et al., 2018). The use of animal models to
recapitulate ivF steps, driving to the production of fertilizable
oocytes, has proven to be decisive for providing a knowledge basis
and for developing validated methods with high translational
potential for humans. Based on similarities in physiology and
anatomy of the ovaries, folliculogenesis timing, and the follicle
size (Barboni et al., 2011) (Bähr and Wolf, 2012) (Telfer and
Zelinski, 2013), medium-sized mono-ovulatory mammals are
commonly accepted as a translational model, and they are
increasingly considered as being very relevant for human
preimplantation reproductive research.

However, apart from the murine model where in vitro
production of fertilizable oocytes has reached high levels of
efficiency in terms of embryo development (Xu et al., 2006)
(Hornick et al., 2013) (Hikabe et al., 2016), in medium-sized
mammals, ivF remains still experimental. Indeed, a very low
number of embryos produced from in vitro grown preantral
follicles were reported in these models (de Figueiredo et al.,
2018) even if several groups are working on bovine (Gupta
et al., 2008) (Gupta and Nandi, 2012) (Antonino et al., 2019),
porcine (Wu et al., 2001), caprine (Magalhães et al., 2011),
ovine (Barboni et al., 2011) (Luz et al., 2012) (Arunakumari
et al., 2010), and non-human primates (Xu et al., 2009) (Xu
et al., 2011).

The difficulty to recapitulate in vitro the process of
folliculogenesis in non-rodent animal models appeared to be
related to the longer period required for follicle/oocyte growth,
the greater dimension of antral follicles with competent oocytes,
and the difficulty to mimic the environmentally favorable
conditions to guarantee a synergic oocyte and somatic
compartment development by preserving the tissue
architecture (Rossetto et al., 2016).

Considering the large amount of data collected in vitro on
the molecular mechanisms involved in the folliculogenesis
among different species and the advances in in vitro follicle
culture models, involving in vitro 2D and 3D culture

approaches (Jones and Shikanov, 2019), the adoption of
mathematical models might represent a valuable tool to
organize the evidence collected to date by offering
predictive models.

This study supports the use of a computational method
based on network theory to identify the molecular events and
the main factors sustaining ivF steps in mammals and to
discover new molecular players in the ivF process to be
targeted and/or exploited for therapeutic purposes,
improving female fertility.

MATERIALS AND METHODS

Data Collection: Web of
Science-Mammals-Made ivF Database
(WoS_MMivF)
Scientific literature published in the peer-reviewed international
indexes such as the Advanced Search of Web of Science (v.5.35)
“Core collection” archive (https://apps.webofknowledge.com/
WOS_AdvancedSearch) of the past 30 years was considered
(Bernabò et al., 2010) (Bernabò et al., 2014) using the
following key words: “in vitro culture”, “Follicle culture”,
“in vitro folliculogenesis”, “Oocyte”, and “Ovary”. “AND” and
“NOT” were used as Boolean operators, and “TS” was used as a
field tag.

Each list obtained from manual data mining was matched to
create a unique database “WoS_MMivF”, including exclusively
mammalian-related manuscripts, which accounts totally for
1,111 papers. The quality control of manually collected data
was carried out according to Bernabò et al., (Bernabò et al., 2016).

The final WoS_MMivF database contains 513 selected
ivF-related manuscripts classified as original primary research
articles (444/513; 87%) and reviews (69/;513; 13%), according to
Taraschi et al. (Taraschi et al., 2020). The WoS_MMivF database
was enriched in Microsoft Excel 365 with the following fields
(Supplementary File 1):

a) Source molecule: The molecule working as the source of
interaction.

b) Interaction: The interaction the molecules carry out.

c) Target molecule: Molecules or molecular events that are the
target of interaction.

d) Species: Different species of mammals in which molecular
interactions occur.

e) Reference: PubMed IDentifiers (PMID).

Additional details related to the database set up can be found
below:

The freely available and diffusible molecules such as H2O,
CO2, Pi, and H+O2 were mainly omitted. In case the target
where a single molecular determinant of the phenomenon is
unknown as a target, the related ovarian function was
indicated (i.e., “preantral follicle growth” and “follicle
activation”).
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ivF Network Creation, Visualization, and
Analysis
The data, extracted from the database, were used to build the ivF
network using the Cytoscape 3.6.0 software (http://www.
cytoscape.org) (Paul et al., 1971). The network was analyzed
with the specific plug-in Network Analyzer by computing the
topological parameters described in Supplementary Data Sheet
S2. The hubs, defined as hyperconnected nods, were identified as
previously described (Bernabò et al., 2015b) (Bernabò et al.,
2015a) by using the following equation: y> μ + σ ,

where
γ � number of links per node (connectivity).
μ � mean node degree
σ � node degree standard deviation.

Closeness Centrality
Closeness centrality is a measure of how fast information spreads
from one node to another reachable node (https://med.bioinf.
mpi-inf.mpg.de/netanalyzer/help/2.7/index.
html#refNewman2003).

This parameter is defined as the reciprocal of the average
shortest path length and is computed as follows: Cc(n) � 1 /
avg(L(n,m).

Here, L(n,m) is the length of the shortest path between two
nodes n and m. The closeness centrality of each node is a number
between 0 and 1. Network Analyzer computes the closeness
centrality of all nodes and plots it against the number of
neighbors. The closeness centrality of isolated nodes is equal to 0.

Betweenness Centrality
Cb(n) of a node n is computed as follows: Cb(n) �∑s≠n≠t (σst (n) /
σst), where s and t are nodes in the network different from n, σst
denotes the number of shortest paths from s to t, and σst (n) is the
number of shortest paths from s to t that n lies on. The
betweenness centrality is computed only for networks that do
not contain multiple edges. The betweenness value for each node
n is normalized by dividing by the number of node pairs
excluding n: (N-1) (N-2)/2, where N is the total number of
nodes in the connected component that n belongs to. Thus,
the betweenness centrality of each node is a number between 0
and 1 (https://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.7/
index.html#nodeBetween).

Identification of Bottlenecks (CytoHubba)
Bottlenecks (BN) were identified as follows: let Ts be a shortest
path tree rooted at node s, BN(v) � Σs∈V ps(v). In detail, e ps(v) �
1 if more than |V(Ts)|/ 4 paths from node s to other nodes in Ts
meet at the vertex v; otherwise ps(v) � 0 (Chin et al., 2014)
(Taraschi et al., 2020) (Ordinelli et al., 2018).

In/Out Degree Ratio
In/out degree ratio (DRIO) was computed as follows:

DRio � c IN

cOUT
p100

It expresses the ratio between the number of links in the input
and in the output for each node; consequently, it has been used to
layer the nodes in input, processing, and output strata of the
network.

Network Topology Transition
To assess the relevance of network controllers in the maintenance
of network stability, the removal of the most connected nodes on
the network topology (targeted attack theory) was performed by
means of two cycles of attacks, removing 2.5% of hubs each time.
At the end of each attack, the network topology was examined.

Enrichment Analysis
A Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING, http://string-db.org/newstring_cgi/show_input_page.
pl?UserId�eNOo92_OQ_LS&sessionId�Cfz4mDP5ayne)
(Szklarczyk et al., 2015) was used in order to enrich the database
by including known and predicted protein interactions. They
could be either direct (physical) or indirect (functional)
associations and are derived from different sources: genomic
context, high-throughput experiments, conserved coexpression,
and previous knowledge. A new network was obtained (STRING_
MMivF) by adopting a medium confidence score (0.400). For the
enrichment procedures, the false discovery rate (FDR) value was
set to be <0.05, and 4 cycles of enrichment were performed.

Gene Ontology
Gene Ontology (GO; https://www.geneontology.org) was carried
out to identify the main functions, processes, and cellular
compartments of the hub.BN and interactors according to
their GO terms. The FRD value was set for p < 0.05.

RESULTS

The ivf process is described by a scale-free, non-clustered, and
non-hierarchical system network.

TABLE 1 | WoS_MMivF database incidence of different mammal models.

Mammal models Interactions (%)

Rodent 39.17
Human 8.76
Non-human primate 1.26
Porcine 7.14
Caprine 3.9
Ovine 17.2
Bovine 13.7
Canine 0.16
Feline 1.7
Leporid 0.2
Mammal* 6.85

The percentage of article related to each mammal model was calculated through the
interaction count of the database WoS_MMivF made using the manuscripts regarding
the ivF protocols. *Asterisk refers to papers that did not discriminate among mammalian
models.
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Up to half of the links within the network are referred to
rodents (39%) and ruminants (ovine 17.2, caprine 3.9, and bovine
13.7%), whereas less than 9% comes from humans (Table 1).

Based on data collected in the WoS_MMivF database, it was
possible to generate a biological network whose topological
parameters were computed as reported in Supplementary File 3.

The network displayed a scale-free topology, according to the
Barabási-Albert (BA) model. The statistical analysis of its
topology (Table 2) demonstrated that it recognizes 641 nodes
and 2089 links, with a very low clustering coefficient (0.076).

The main controllers of the network were identified: hub,
bottleneck, and hub-bottleneck nodes.

The ivF network recognized as hyperconnected nodes (hubs)
5.9% of nodes (38 out of a total of 641) (Supplementary File 4),
which were ranked based on node degree (Supplementary File
4). They include activating systemic hormones and ovarian
activating factors (8 and 11 out of 38, respectively; overall
50% of hubs) more than transduction terminal events (4, 10,
and 5%).

A Kernel density estimation (KDE) based on their clustering
coefficient was then performed (see Supplementary File 4 for
clustering coefficient value) in order to explore their distribution,
showing that no node subpopulation is present (as reported in
Supplementary File 5).

Furthermore, to assess the hub role in the ivF network stability
control, a computational experiment was performed, carrying out
subsequent cycles of hub removal (Supplementary File 6). The
network topology was deeply affected by hub removal and
collapsed upon two cycles of network attack. As comparison,
the removal of the same number of nodes randomly identified
[�random.between(min;max)] did not have detectable effects on
network stability (data not shown).

In addition, seeking for controllers of the information flow
within the network, 38 bottleneck nodes were identified (BN:
Supplementary File 4) (Ordinelli et al., 2018) (Taraschi et al.,
2020).

Finally, by intersecting the two subsets of nodes categorized as
hubs and BN, 30 main nodes were identified and named hub.BN
(Supplementary File 7).

Role of hub.BN Nodes in the Scale-free ivf
Network
More in detail, the hub.BN enclosed 10 functional events and 20
molecules.

Among the events, four stages of follicle development
(primordial follicle activation, primordial to primary follicle
transition, preantral follicle growth, and preantral to antral
follicle transition), three key outcomes of the early stage of
follicle development (antrum differentiation, steroidogenesis,
and meiotic competence), and three cell functions controlling
tissue homeostasis (cell survival, proliferation, and apoptosis)
were identified.

The 20 molecules belonging to hub.BN summarized in
Supplementary File 7 based on their role in the ovarian
folliculogenesis (hormone or paracrine/autocrine factors and
driven follicular events) were classified for their biological
function, process, and cellular localization (Figure 1) by using
Gene Ontology (GO) (http://geneontology.org/) and setting the
selection on the FDR value <0.05 (Supplementary File 8). The
top 10 most abundant categories in terms of GO for hub.BN
recognized hormone/paracrine binding (5 out of 10) and
activities (4 out of 10) as key biological functions addressed to
regulate the key cellular outcome processes of signaling (4 out of
top 10 GO biological processes category) and cell to cell
communication (1 out of top 10) inside the reproductive
systems (4 out of 10). The main extracellular (3 out of 10)
and secretory vesicle (3 out of 10) localization of hub.BN
molecule actions was also highly consistent with the
component GO category results.

Interestingly, knock-out mouse model data retrieved from the
Mouse Genome International database (MGI, http://www.
informatics.jax.org/) and WoS database (https://apps.
webofknowledge.com) for the identified hub.BN genes showed
altered phenotypes in the reproductive system (Supplementary
File 9), supporting their key role as controllers of the network.

A 2D KDE analysis was then carried out to identify eventual
subpopulation in the hub.BN population based on node degree
and BN scores. Four isolated nodes and three subpopulations
were identified (Figure 2). Four isolated hub.BN were
characterized by higher values of node degree and BN score.
Among them, it was possible to distinguish the main target of
oogenesis related to the early stage of follicle development
(acquisition of oocyte meiotic competence) and two follicular
stages reproducible in vitro (primordial to primary follicle
transition and preantral follicle growth). In addition, the 2D
shape KDE computed analysis was assigned to this main
subpopulation of hub.BN and also to the pituitary hormone FSH.

Subpopulations 3 and 2 recognized seven key endocrine/
paracrine controllers of folliculogenesis (activin A and LH,
GDF9, EGF, E2, Insulin, and IGF1) as well as the event of
follicle specialization that occurs in vitro by applying the

TABLE 2 | Topological parameter of biological networks made from the
WoS_MMivF database.

Parameters Value

Number of nodes 641
Number of links 2086
Number of connected components 1
Clustering coefficient 0.076
Char. path length 5.656
Avg. number of neighbors 5.042
In degree —

Γ −1.072
R 0.892
R2 0.701
Out degree —

Γ −1.252
R 0.995
R2 0.844

Table showing the results of topological analyses of the network obtained from the
WOS_MMivF database.
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current protocols (antrum differentiation). The remaining
hub.BN belongs to subpopulation 1.

To organize the network depending on in/out connectivity, the
in/out degree ratio of each node was computed (Figure 3A). This
analysis allowed to stratify nodes in three layers (input,
processing, and output layers) by classifying the network
nodes on the basis of the in/out degree (Figure 3B):

DRio 0–35 � input layer.
DRio 36–67 � processing layer.
DRio 68–100 � output layer.
The analysis displayed that the hub.BN was mostly abundant

in the input layer (15 out of 30). BN mainly operated as
processing (4 out of 8), whereas hubs were distributed in
either input or output layers (3 out of 8, respectively).

The analysis of the ivF signaling network designed a coherent
stratification of nodes by positioning in the input layer 16 out of
22 nodes belonging to the systemic endocrine controller released
by pituitary (FSH and LH), chorion (hCG), and enteric-related
endocrine glands (insulin, DHT, and IGF1) as well as
reproductive controlling hormone/factors secreted either from
follicles (FST, activin A, AMH, EGF, bFGF, TGFbeta, BMP4, and
BMP15) or from oocytes (GDF9 and cumulin).

Analogously, the processing layer recognized among the eight
nodes the intracellular second messenger cAMP and components of
four signaling pathways: PI3K/AKT, JAK/STAT, TGFbeta (SMAD4),

and KL (Figure 3B). Finally, 14 out of 17 nodes of the output layer
were follicular events, and further three nodeswere key components of
steroidogenesis starting from the FSH receptor, the endpoint enzyme,
and the hormone of follicular steroidogenesis (CYP19A1 and P4).

Identification of New Molecular Players in
the ivf Network Flow
To identify and predict newmolecules involved in the ivF process,
a functional protein association network (STRING_MMivF) was
created by STRING using as input hub.BN genes, where possible
(Figure 4A). Totally, 30 new predicted interactor molecules were
identified and summarized in Supplementary File 10.

Functional enrichment analysis was then performed
(Supplementary File 11). The 10 most significantly enriched
terms (p < 0.05) in each category are presented in Figure 4B. In
the molecular function category, GO recognized the growth
factor and intracellular signaling protein binding (7 out of 10)
as the most abundant biological function regulating cellular
processes such as metabolism control (2 out of 10), signal
transduction (6 out of 10), and cell to cell communication (2
out of 10), sustaining angiogenesis. For the cellular component
category, intracellular (3 out of 10), extracellular (2 out of 10), and
mTOR complex (3 out of 10) localizations were reported
accordingly.

FIGURE 1 | GO enrichment analysis. Representative scheme of the top 10 most abundant GO terms identified for the hub.BN molecules in the three GO
categories: biological function (red), cellular localization (green), and biological processes (blue). The x-axis indicates the hub.BN molecules in a specific category, while
the y-axis indicates different GO terms.
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Interestingly, involvement in follicular functions was found
for most of the newly identified interactors, as reported in
Supplementary File 10. Conversely, for four of them (KRAS,
MLST8, MAPKAP1, and FGFR1), a specific role in the ovarian
folliculogenesis has not been described to date. Of note, an
abnormal female reproductive phenotype has been reported
for KRAS and FGFR1 knock-in and knock-out mouse models,
respectively (Table 3). Moreover, in the context of the STRING-
MMivF network, KRAS was predicted to interact with a high
confidence score (score >0.9) with hub.BN AKT1, FGF2, and
EGF but FGFR1 with hub.BN FGF2 (Table 3).

DISCUSSION

The ivF network (Albert and Barabási, 2002) is characterized by
a power-law distribution of node degree and by the absence of
correlation between the node degree itself and the clustering
coefficient in keeping with the Barabasi-Albert model,
conferring to the network the following biologically relevant
properties:

1) Robustness against random damage: when a random
perturbation affects the network, it is very likely that only a
scarcely linked node (i.e., a node belonging to the most frequent
class of nodes) will be affected. Thus, the probability that a hub of

the graph is affected remains very low, and in this model, it can be
estimated to be about 5.9%.

2) Controllability: the small number of highly linked nodes
implies that the whole system can be modulated with high
efficiency by acting just on a few molecules, thus reducing the
energetic cost and facilitating/accelerating the cell response.

3) Easy navigability: the virtual absence of clustering, together
with the low values of the characteristic path length and of the
average number of neighbors, confers to the network a typical
structure of signaling networks. Interestingly, this low value of
clustering coefficient also implies a little redundancy.

After having defined the topology, the computational analysis
allowed to dissect the network to identify the ivF network flow
(hub.BN). Indeed, the 2D KDE approach allowed to select those
with a major modulatory role on the network information flow by
identifying either cultural functional endpoints or in vitro follicle
controllers such as systemic hormones and local factors (Matzuk
et al., 2002).

More in detail, the priority of hub.BNwas assigned by 2DKDE
analysis to four events related to both follicle (primordial to
primary follicle transition and preantral follicle growth) and
oocyte development (oocyte meiotic competence).
Furthermore, the analysis identified FSH as a key hub.BN;
thus, reinforcing the idea of its central role as a controller of
either the gonadotropin-dependent or independent phase of

FIGURE 2 | KDE 2D analysis of the network hubs. Centrality parameters of BN and node degree parameters of the hub.BN were considered for the 2D KDE
analysis.
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folliculogenesis (Holesh and Lord, 2018) (Casarini and Crépieux,
2019). Several pieces of scientific evidence collected mainly using
in vitro studies, indeed, suggest the need to supplement FSH to
also stimulate the early stage phases (from primary to later stages)
(Hsueh et al., 2015) of folliculogenesis by stimulating either
follicle growth or differentiation (Cecconi et al., 1999)
(Barboni et al., 2011) (Cadoret et al., 2017) (Candelaria et al.,
2020) (Cortvrindt et al., 1997) (Kreeger et al., 2005) (Wright et al.,
1999). In addition, 7 hub.BN have been identified as main
controllers of the network (activin A and LH, GDF-9, EGF,
E2, Insulin, and IGF-1) (Orisaka et al., 2006) (Dong et al.,
1996) (Edson et al., 2009).

The results of the network stratification analysis are in
agreement with current knowledge on the physiological
cross-talk between molecules regulating the inter- and intra-
follicular communication. Indeed, in the input layer were
identified hub.BN recapitulating the main modulatory
factors, either hormones exerting a remote control on the
ovary (LH, FSH, hCG, IGF1, and EGF) or molecules involved
in intra-ovarian control of both somatic and germinal
compartments (TGF-beta superfamily members and growth
factors).

The processing layer is composed of hub.BN molecules
belonging to PI3K/AKT, JAK/STAT, TGFbeta, and KL
signaling pathways and the second messenger cAMP which

transduce and amplify the actions of the previous endocrine
and paracrine controllers (Li et al., 2008) (Fujihara et al., 2014)
(John et al., 2009) (Imai et al., 2014).

Finally, the output layer recognized steroidogenic molecules
(P4 and CYP19A1) which may be considered as endpoints of the
pathways controlling ivF. The emerging picture defined by the
computational stratification analysis thus supports the biological
strength of the network recapitulating and organizing in three
layers the physiological feedback orchestrating ovarian follicle
development.

The biological strength of the network has been further
confirmed by analyzing the reproductive phenotype of the
available knock-out mice generated by using some ivF selected
hub.BN. The analysis of the scientific evidence collected to date
not only confirmed that the in vivo silencing of these controllers
always promoted a negative impact on female fertility but also
confirmed the interference specifically on pathways controlling
the early phase of in vivo folliculogenesis, despite the different
underlying mechanisms. STRING analysis was then performed to
find new molecules and define their functional connections.
Taking advantage of such an approach, molecules belonging to
three effector categories have been identified as potential
controllers of the early stage of the in vitro follicle
development. Metabolic controllers involved in the signaling
leading to follicle recruitment, apoptosis, and differentiation

FIGURE 3 | Nodes with Hub, bottleneck, and hub.BN role stratification into the ivF network. (A) Diagram showing the signal stratification of the ivF network. The
color gradient varies depending on the direction of links characterizing each node, computed as in/out degree ratio, from purple (higher) to yellow (lower). The spatial
network arrangement was obtained by using the Cytoscape prefuse force-directed layout. (B)Node classification depending on their role in the signal propagation in the
input layer (green scale color), processing layer (yellow scale color), and output layer (red scale color).
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were identified. Indeed, STRING enriched the ivF network with
mTOR and IGF1 signaling pathway molecules.

mTOR represents a molecular sensor for diverse
environmental inputs including nutrients and growth factors
and regulates various fundamental processes including cell

growth, the metabolism, differentiation, and autophagy (Long
et al., 2003). In folliculogenesis, some lines of evidence have
shown that the IGF1-dependent activation (hub.BN role in the
ivF network) of the PI3K/AKT signaling (hub role in the ivF
network) and its downstream cognate mTOR complex sustains

FIGURE 4 | STRING-MMivF as the interaction network tuning the ivF process. (A) Known and predicted protein–protein interactions related to the hub.BN
molecules of the network. The interactions include direct (physical) and indirect (functional) associations; they stem from computational prediction, from knowledge
transfer between organisms, and from interactions aggregated from other (primary) databases. (B) Representative scheme of the top 10 most abundant GO terms
identified for the new interactor molecules in the three GO categories: biological function (red), cellular localization (green), and biological processes (blue). The
x-axis indicates the number of new interactor molecules in a specific category, while the y-axis indicates different GO terms.

TABLE 3 | Potential regulators of the ivF network.

Gene name hub.BN
interaction

STRING
score

Defects in early folliculogenesis

MAPKAP1 AKT1 0.985 —

IGF1 0.456
KRAS AKT1 0.949 Mice constitutively expressing KRASG12D in GC show impaired cell differentiation at the early stage of

folliculogenesis, leading to the formation of abnormal follicle-like structures containing non-mitotic, non-apoptotic,
and non-differentiated cells Fan et al. (2008)

EGF 0.983
CYP19A1 0.465
VEGFA 0.820
FGF2 0.966
IGF1 0.703
TGFB1 0.497

FGFR1 VEGFA 0.856 Hypomorphic mice show a short follicular phase with difficult entry into and termination of the luteal phase Tata et al.
(2012)EGF 0.854

AKT1 0.448
FGF2 0.998
IGF1 0.801
INS 0.684

MLST8 AKT1 0.973 —

IGF1 0.471

List of edges whose functions in the ovarian folliculogenesis have to be unveiled with annotations related to predicted links with hub.BN, STRING interaction score, and mouse phenotype
related to defects in early phases of folliculogenesis.
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ovarian primordial follicle dormancy and activation, oocyte
maintenance and activation, and GC proliferation and
differentiation (Makker et al., 2014) (Guo and Yu, 2019)
(Herta et al., 2018).

More in detail, mTORC1 plays a documented role in
primordial follicle-oocyte bidirectional signaling. It was shown
to activate the KIT receptor in oocytes through the KIT ligand
(hub role in the ivF network), which triggers a PI3K/PTEN/AKT/
forkhead box 3 (FOXO3) cascade and awakens the dormant
oocytes (Zhao et al., 2018) (Liu et al., 2014). In the awakened
oocyte, secretion of oocyte-specific growth factors such as BMP15
(hub.BN role in the ivF network) and GDF9 (hub.BN in the ivF
network) further activates receptor serine kinases and
downstream SMAD (mothers against DPP homolog 1
Drosophila) proteins including SMAD4 (BN role in the ivF
network) in surrounding GC, leading to their growth and
proliferation (Sanfins et al., 2018). A targeted deletion of the
mTORC1 negative regulator TSC2 (STRING-enriched partner)
in mouse oocytes results in prematurely follicular activation due
to elevated mTORC1 activity in oocytes which in turn cause
depletion of follicles in the early adulthood (Adhikari and Liu,
2009). Of note, a compensatory elevation of PI3K signaling was
proposed to the reason for the unaffected follicular development
observed in RPTOR (STRING-enriched partner) conditional KO
in primordial and all subsequent oocyte stages (Gorre et al.,
2014). Conversely, conditional KO mice for RPTOR in
primordial follicle GC prevent the cell differentiation, and this
arrests the dormant oocytes in their quiescent states, leading to
the oocyte death age (Liu et al., 2014), indicating that the KIT/
PI3K cascade in oocytes is indispensable for primordial follicle
survival.

The key role of mTOR signaling was also supported by the
computational identification of the downstream target of mTOR,
such as FOXO1, FOXO3, and SIRT1 (STRING-enriched
partners). Furthermore, transgenic mice for these molecules
have provided evidence on their cross-talk in regulating the
dynamics of the primordial follicle pool (Adhikari and Liu,
2009) (Adhikari et al., 2013) (Chen et al., 2015).

FOXO3 functions at the earliest stages of follicular growth as a
suppressor of follicular overactivation, increasing the follicle
reserves in the ovary in order to extend the reproductive
period of females (Castrillon et al., 2003) (Shah et al., 2018)
(Lee and Chang, 2019). Accordingly, FOXO3 has been found to
be highly expressed in the nuclei of oocytes of primordial follicles,
and its expression is downregulated in oocytes of primary and
later-growing follicles, indicating that its downregulation in
oocytes could be a prerequisite for the initiation of oocyte
growth during follicular activation (Liu et al., 2007).

Furthermore, FOXO3−/− female mice exhibit a distinctive
ovarian phenotype of global follicular activation, leading to
oocyte death, early depletion of functional ovarian follicles,
and secondary infertility (Castrillon et al., 2003) (Hosaka
et al., 2004) (Lin et al., 2004).

Of note, selective depletion of FOXO1 and FOXO3 in mouse
GC leads to an infertile phenotype characterized by metabolic
changes and the production of factors that exerts potent negative
feedback to prevent gene expression of pituitary FSH (hub.BN

role in the ivF network). Decreased levels of serum FSH further
restrict follicle growth and development, ultimately preventing
ovulation. Besides, FOXO1/3 depletion alters the expression of
genes involved in follicle growth and apoptosis, disrupting cell
regulatory signals associated with the granulosa cell metabolism
and follicle growth. These results reveal a novel ovarian-pituitary
endocrine feedback loop preventing uncontrolled proliferation
and/or premature differentiation of GC in follicles where
apoptosis is impaired (Liu Z. et al., 2013).

Accordingly, the STRING-enriched molecule FOXO1 was
shown to act as a silent guardian of follicle development.
Indeed, it is a critical factor in promoting GC apoptosis to
counteract the stimulatory FSH role, one of the selected ivF
network hub.BN (Liu et al., 2009) (Fan et al., 2010) (Shen
et al., 2014). More in detail, FSH was found to promote the
expression of GC genes required for proliferation, survival, and
estrogen synthesis by decreasing FOXO1, which negatively
regulates proliferation and steroidogenesis (Liu et al., 2009)
(Fan et al., 2010) (Shen et al., 2014) (Rosairo et al., 2008).

Moreover, the identification of SIRT1 as a potential partner of
STRING enhances the role of the mTOR pathway in the control
of in vitro early mammalian folliculogenesis. Indeed, it has been
proposed as the molecular mediator of the calorie restriction-
dependent prevention of follicular activation, leading to ovarian
reserve preservation (Bordone et al., 2007) (Long et al., 2019). At a
molecular level, the effect of SIRT1 on the ovary occurs through
the deacetylation dependent-activation of FOXO3 and the
suppression of the mTOR signaling (Long et al., 2019). The
latter could be mediated by TSC2-SIRT1 interactions (Ghosh
et al., 2010). These results are in good agreement with data
showing that the SIRT1 activator (SRT1720) improves the
follicle reserve and prolongs the ovarian lifespan of diet-
induced obesity in female mice via activating SIRT1 and
suppressing mTOR signaling (Zhou et al., 2014). Conversely, a
recent work shows how SIRT1 can sustain the activation of mouse
primordial follicles independent of its deacetylase activity.
Specifically, SIRT1 was shown to trigger primordial follicle
awakening by activating the PI3K/AKT-AKT and TSC1/2-
mTOR signaling pathways. Indeed, its pharmacologically
(resveratrol) and/or genetic-induced activation in mouse ovary
cultures leads to SIRT1 to work as a transcription cofactor which
modulates the expression levels of AKT, mTOR, and genes
related to classic primordial follicle activation (Zhang et al.,
2019). Interestingly, SIRT1 overactivation was shown to inhibit
FOXO3 activity by promoting its exclusion form the nucleus
through the AKT-dependent phosphorylation (Zhang et al.,
2019), suggesting that SIRT1 activators might be used to
efficiently activate the primordial follicles to be applied in
in vitro activation protocols and/or to avoid uncontrolled
follicular atresia characterizing POF.

The evidence of mTOR and SIRT1 pathways on follicular fate
has been achieved by taking advantage of their in vivo and in vitro
pharmacological modulation.

In vivo, the SIRT1 activation has been achieved by caloric
restriction or the application of specific sirtuin activators or
mTOR blockers. Caloric restriction was shown to induce the
accumulation of SIRT1 in murine ovaries, which is associated
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with inhibition of primordial follicle activation and impairment
of ovarian follicle development (Tatone et al., 2015) (Liu et al.,
2015) (Long et al., 2019) mechanisms probably involved in mice
delay of puberty, prolongation of reproductive lifespan, and
prevention of age-associated infertility (Liu M. et al., 2013).

Various effects on folliculogenesis have been observed in vitro
by using the SIRT1 activator, mTOR inhibitor, and resveratrol.

More in detail, it promoted growth in human ovarian follicles
(Hao et al., 2018) and in ovine primordial follicles (Bezerra et al.,
2018). The resveratrol action is addressed to regulate GC cell
proliferation and survival (Han et al., 2017) (Ortega et al., 2012)
(Schube et al., 2014) (Wong et al., 2010) as well as steroidogenesis
(Qasem, 2020) (Morita et al., 2012) even if with contradictory
results.

In late folliculogenesis, mTOR signaling is dependent on
gonadotropin FSH modulation to manage processes such as
oocyte maturation (Guo et al., 2018), ovarian somatic cell
proliferation, and steroidogenesis (Palaniappan and Menon,
2012) and to intensify EGFR/RAS signaling (Fan et al., 2009)
(Gloaguen et al., 2011) (Fan et al., 2012) (Wayne et al., 2007).

Interestingly, the STRING network enrichment identified the
isoform KRAS as a potential interactor of the AKT1 and EGF
hub.BNmolecules with a high confidence score, suggesting its key
role as a metabolic effector of gonadotropin stimulation. Its
contribution in follicular development is corroborated using
conditional knock-in mouse models in which the GC
expresses a constitutively active form of KRAS (KrasG12D).
These models show alterations in GC differentiation,
proliferation, and apoptosis at early stage of folliculogenesis,
thus impairing cell responses to gonadotropins and leading to
premature ovarian failure (Fan et al., 2008) (Fan and Richards,
2010) (Bulun et al., 2019). This phenotype is similar to that of the
mutant mouse model with EGFR signaling defects (Hsieh et al.,
2007). The altered response of KRASG12D-expressing GC to
gonadotropins appears to be related to low levels of FSHR and the
inability of FSH to induce expression of LHCGR mRNA and
therefore to the loss of the crucial LH-MAPK3/1 signaling
pathways. This conclusion is supported by the reduced
expression of specific genes known to be essential for COC
expansion and ovulation (Richards, 2005). Moreover,
mutations causing KRAS overactivity have been reported as
markers of epithelial and endometrioid ovarian cancer
(Ramalingam, 2016) (Dinulescu et al., 2005).

Although the effect of these energy sensors in folliculogenesis
remains to be investigated in depth, some data have been reported
in the literature.

The third category of molecules enriched from the STRING
network was represented by several angiogenetic factors. Indeed,
it must be considered that as the follicle growth, the mTOR-
dependent metabolic signaling needs to be implemented with
components of the vascular system that guarantees the correct
trophic supply and spreading of precursors to properly complete
folliculogenesis (Martelli et al., 2017).

The angiogenesis process assumes a key role in the contest of
the reproductive function (Robinson et al., 2009) (Wulff et al.,
2002). Accordingly, angiogenesis inhibition leads to the reduction
of follicular growth, ovulation disruption, and drastic effects on

the corpus luteum activity and development (Robinson et al.,
2009). The large amount of factors is able to control angiogenesis
and their spatio-temporal regulatory activities, suggesting that
more than one factor might be useful for angiogenesis well-
functioning associated with ovulation.

Specifically, functional interactions from STRING were
unveiled for VEGF members (VEGFA, VEGFB, VEGFC, and
VEGFD), VEGF receptors (NRP1, KDR, and FLT), and
angiogenic factors (FGF1, FGF9, PGF, and FGFR).

Several pieces of evidence confirmed that both somatic and
germinal compartments contribute to modulate the expression of
VEGFA by modulating the blood vessel network during preantral
follicle development. More in detail, small and middle pig
preantral follicles seem to behave as autonomous recruited
units, where the growth of the somatic compartment is always
accompanied by the simultaneous activation of the endothelial
cells (Martelli et al., 2017).

Differently, once the preantral follicles reach the late stage
enclosing an almost fully growth oocyte, it starts to express high
and stable levels of VEGFA, essential to maintain follicle
angiogenesis in a steady status of activation (Martelli et al.,
2017). Furthermore, high levels of VEGFA also characterize
the preantral follicular structures at the stage of antrum
formation. In this context, VEGFA has been supposed to
increase microvessel permeability by stimulating plasma
extravasations, thus allowing the accumulation of fluids within
the differentiating follicular cavity (Isobe et al., 2005).

The strict correlation between somatic and vascular
parameters may represent an indirect biological validation of
the key role of VEGFmembers identified by ivF network STRING
analysis depicting a synergic action between follicle
compartments and blood vessel system components as a key
event driving preantral follicle activation first and then sustaining
the process of transition from preantral to early antral follicles
(Martelli et al., 2017) (Danforth et al., 2003) (Abramovich et al.,
2006).

These molecules exert their function through their receptors
(Stouffer et al., 2001) and are tightly regulated by paracrine
factors such as nitric oxide. Nitric oxide has been reported to
mediate positive effects on follicle development and selection
related to angiogenic events and play a modulatory role in the
ovarian steroidogenesis (Basini and Grasselli, 2015).

Nevertheless, proangiogenetic factors such as FGF1, FGF9,
and PGF have also been described as they can potentiate the effect
of VEGF signaling by increasing the VEGF expression in theca
cells of cattle (Gray et al., 1987) (Gospodarowicz et al., 1987)
(Berisha et al., 2004).

In conclusion, the computational analysis of the ivF network
has enabled us to select among several molecules adopted to date
those that are the main spatio-temporal controllers of the early
stage of follicle development. Taking advantage of the biological
robustness of such a network, new molecules slightly deepened or
unexplored for ivF purposes were identified by taking advantage
of the STRING approach. Altogether, this evidence suggests the
ivF network as a sounded system biology tool to be exploited for
research, technological, and innovation aims with the final goal of
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designing new diagnostic and therapeutic strategies for female
fertility.
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