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important in the food industry, where the presence of 
bacterial cells in food products may be indicative of spoil-
age or contamination [2].

Although the manual counting of plates using a point-
and-click approach is considered the gold standard for 
microbiological tasks, it is a tedious and labor-intensive 
process. Although commercially available products 
capable of automating the bacterial colony quantifica-
tion are available, they are quite expensive, limiting their 
availability.

Colony screening by color
Color-modifying reporter genes are frequently used in 
microbiology and genetics owing to their high sensitiv-
ity and ease of detection [3]. The majority of commonly 
employed reporter genes that induce visually discernible 
traits usually involve the introduction of fluorescence 
or a modification of the bacterial color. The best-known 
and most widely used of these is the lacZ gene of E. coli, 
which turns the bacteria into a blue color when grown 

Introduction
Colony counting
Bacterial colony enumeration is useful in microbiology 
because of the prevalence of bacteria in the environment 
and their importance in human and animal sciences. 
Counting colony forming units (CFUs) provide quanti-
tative information regarding the health of a specific bac-
terial species in a particular sample. Not only does this 
information hold broad relevance in fields ranging from 
antibiotic discovery to genomics, there is also a demon-
strated need for rapid and accurate counts in the medi-
cal field, where a certain bacterial density threshold may 
aid in treatment decision-making [1]. In addition, the 
ability to rapidly and accurately count bacterial cells is 
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in a medium containing an X-gal substrate. Other com-
monly used reporter genes include the green fluorescent 
protein from jellyfish, i.e., Aequorea victoria, red fluo-
rescent protein from Discosoma sp., and luciferase from 
Photinus pyralis. [4]. Color changes induced by reporter 
proteins have been used to monitor a variety of cellular 
processes and interactions, including a promoter analy-
sis, gene delivery, drug discovery screening, receptor/
ligand characterization, and signaling pathway analysis 
[5–8].

Blue/white colony screens are frequently used during 
plasmid cloning, which is critical for understanding the 
structure, function, and evolution of genes [9] as well 
as for genetic, protein, and metabolic engineering [10]. 
However, achieving an effective transformation is a non-
trivial task and is influenced by external factors such as 
the plasmid size, degree of DNA compactness, and meth-
ods of transformation [11]. As such, an optimization 
of the transformation protocols is frequently required 
before further study can proceed. Therefore, the ability to 
classify colonies by color may facilitate the optimization 
of the transformation conditions.

Reporter gene assays are also frequently used to pro-
vide quantitative data on the underlying biological pro-
cesses. The CFU counts derived from blue/white screens 
represent key sources of information for mutation and 
phenotype analyses. For instance, the supF shuttle vec-
tor-based mutagenesis assay is a frequently used tech-
nique for assessing the frequency of damage-induced 
mutagenesis in human and bacterial cells, where distinct 
blue and white counts indicate the mutation frequency 
[12]. Similarly, CFU counts from blue/white assays have 
also been used to monitor horizontal gene transfer rates 
[13].

Current approaches
Traditionally, CFUs have been manually counted. Over 
the past few years, this process has been streamlined 
using software such as ImageJ, which enables point-and-
click colony counts. Although this method is more effi-
cient and less error-prone, it still requires significant time 
and labor, which greatly limits the number of different 
samples that can be processed in a given study.

A variety of software solutions based on computer 
vision and machine learning technologies have recently 
surfaced. Various scripts have been developed using the 
ImageJ framework, which combines thresholding, bina-
rization, and watershed segmentation. However, they 
require familiarity with basic image-processing concepts 
and the ImageJ user interface [14]. Current standalone 
approaches such as NIST’s Integrated Colony Enumerato 
employ an imaging station for image capture and a col-
ony segmentation algorithm based on extended minima 
and thresholding [15]. ClonoCounter, another popular 

application, requires the user to input three indepen-
dent parameters: the gray level, maximum colony size, 
and colony grayscale distribution. Although finding the 
appropriate parameters requires some experience, tips 
are provided to help speed up the process [16]. Open-
source methods, such as OpenCFU, employ a score map 
to increment morphologically valid spaces over a range of 
global thresholds [17]. Other approaches implement top-
hat filtering, Otsu thresholding, or a Bayesian classifier 
to probabilistically estimate overlapping colonies [18]. 
Image enhancement based techniques have utilized the 
high correlation between colonies and the local maxima 
within the Mellin spectra used in colony counting [19]. 
Colonies are counted in ScanCount, which utilizes the 
circular Hough image transform technique, requiring 
users to specify the minimum colony size and the shape 
of the plate [20]. Recent methods, such as AutoCellSeg, 
require users to select both small and large colonies as a 
priori ground-truth information. The algorithm then iter-
atively segments watersheds into colonies [21].

However, modern approaches are hindered by three 
issues: an inability to count plates with a high colony den-
sity, a failure to segment colonies along the plate bound-
ary, and blindness to color in classifying the CFUs. These 
three issues are further exemplified in the following:

OpenCFU, a popular open-source cell-counting solu-
tion, uses a traditional computer vision approach by 
iteratively thresholding a plate image and incrementing 
morphologically valid blobs according to a strict set of 
predetermined parameters [17]. Although this allows for 
a high sample throughput, the strict reliance on predeter-
mined morphology parameters often reduces the applica-
bility of this approach because it is often restricted to an 
overly specific analysis of a given plate image with a ten-
dency to miss colonies. Furthermore, OpenCFU requires 
extremely high-quality images (3024 × 4032) to accurately 
segment images with high CFU densities (> 2000 CFU/
plate), which is a hidden constraint that reduces the util-
ity of this approach.

In addition, many colony counting programs are 
unable to count colonies next to the plate border, opt-
ing to ignore the entire border region in their analysis 
[18, 21]. This limitation can diminish the precision of the 
generated analysis and systemically skew the generated 
counts to a value lower than expected. Although certain 
solutions, such as AutoCellSeg, offer users the ability to 
mitigate this loss by manually selecting missed colonies, 
doing so requires significant user input.

The current automated CFU software does not include 
the ability to classify CFU by color, making it only use-
ful when users want to determine the total colony counts 
for plates containing homogenous colonies. Therefore, 
there are currently no viable automation methods for 
many biological assays that may require the counting of 
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colonies when grouped by color. This limitation is likely 
due to the difficulty in extracting information from multi-
ple differently colored colonies because it requires rough 
knowledge of the number of clusters and their respective 
attributes to avoid rejecting differently colored colonies 
as outliers. Although OpenCFU offers a similar color 
grouping functionality, based on the testing conducted in 
this study, it is unable to detect colonies of different col-
ors residing in the same plate.

Hypothesis
Given the aforementioned limitations of existing CFU 
segmentation and counting software packages, an effi-
cient and accurate application assisting in the enumera-
tion of bacterial colonies was developed in this study. 
Three key features were prioritized during the devel-
opment of this solution: (1) the general ability to count 
bacterial colonies using equipment commonly used in 
laboratories, such as a backlight and a smartphone, (2) an 
algorithmic innovation to improve the fidelity of the seg-
mentation; and (3) a dedicated function to segment colo-
nies based on plate-specific colony properties.

Methods
A detailed flowchart depicting the algorithm is provided 
in Fig. 1.

Bacterial culture preparation
E. coli cells were electroporated with plasmids and grown 
at 37 °C for 3 h. Half of the cells were plated on LB agar 
plates containing 50 µg/mL ampicillin, 24 mg/mL IPTG, 
and 20 mg/mL X-gal, whereas the other half were plated 
without X-gal. The plates were then incubated overnight 
at 37 °C and imaged.

Hardware components
An iPhone 13 Pro was used to capture all petri dish 
images against a white light transilluminator.

Image processing and segmentation
Image preprocessing methods
A preliminary mask of the plate edge was first generated, 
eliminating false-positive detections beyond the ROI. The 
resulting image was denoised using a median filter.

A priori colony identification
The user was prompted to click on a representative col-
ony. From the clicked point, the colony was extracted 
through flood filling. All relevant attributes were calcu-
lated from the selected colonies and referenced as the 
ground truth.

Image preproccessing
Iterative adaptive thresholding
A well-binarized image should clearly distinguish 
between the foreground and background. However, ade-
quate binarization is a nontrivial task that must be suf-
ficiently robust to function regardless of the grayscale 
value of the colony and variations in lighting. As a result, 
it is hypothesized that the grayscale histogram of a well-
binarized image should meet three criteria: It should be 
unimodal and contain a large area under the peak, and 
the unimodal peak should include the previously deter-
mined grayscale value.

Because smartphone-captured images are highly sus-
ceptible to variable lighting, adaptive thresholding is 
applied. The image is initially divided into multiple sub-
regions of user-defined size (s), with each subregion bina-
rized independently using the following formula:

	
dst (x, y) =

{
0ifsrc (x, y) > T (x, y)

255ifsrc (x, y) < T (x, y)

The threshold value T(x,  y) is calculated as the differ-
ence between the Gaussian mean of each subregion and 
the user-defined value (C). Therefore, an effective bina-
rization depends on the determination of these two 
parameters.

The grayscale histogram for each threshold iteration 
is calculated to determine the parameter combination 
that satisfies all three requirements. Owing to the noise 
inherent in grayscale histograms, each signal is smoothed 
using a Savitzky–Golay filter  [22, 23]. The peak range is 
defined as the final value that continuously decreases 
from the maximum. To reduce the processing time, the 
area under the peak is calculated only if the mean a priori 
grayscale value is within the histogram peak range. When 
all three histogram conditions are satisfied, the combina-
tion of parameters that produces the largest area under 
the peak is chosen for further image processing.

The iteration ranges of s and C significantly affect the 
processing time. Therefore, the range is estimated using 
information derived from a priori colony selection. 

Fig. 1  Flowchart of colony segmentation algorithm
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Because s must be larger than the size of the colony to 
avoid producing donut-shaped segments, the initial 
value is set to the argmax (width, height) of the enclosing 
bounding box of the a priori colony.

For images containing multiple colored colonies, dis-
tinct binary masks are generated in accord with the attri-
butes of each user-selected colony and combined using a 
logical OR.

Colony segmentation and clustering
The generated segments contain a mixture of single accu-
rately segmented colonies, clusters of colonies, and arti-
facts. DBSCAN clustering and parameter filtering are 
used to identify individual colonies. The contour area, 
circularity, inertia, mean hue, and area ratio are evalu-
ated. The eps parameter for DBSCAN is estimated using 
the kth nearest neighbor method, whereas the min_dist 
parameter is estimated as 1/5th of the total number of 
detected contours.

	
Circularity =

4π ∗ area

Perimeter2

	
Inertia =

Minoraxislength

Majoraxislength

Among the various generated clusters, those contain-
ing the a priori colony/colonies are then further filtered 
through morphology cut-offs determined by an a pri-
ori selection to increase the strictness of the algorithm 
and minimize the likelihood of false-positive colonies. 
Because the detected single colonies are not further pro-
cessed and serve as a guideline for further processing, 
post-DBSCAN filtering is required.

Segments that do not pass the strict single-colony test 
are considered to contain a mixture of irregular single 
colonies, overlapping colonies, and noise, which are then 
analyzed through local minima detection and a water-
shed transformation.

Separation and verification of colony clusters
Watershed algorithm
The watershed algorithm is a classic approach in the 
computer vision field, which finds the largest connected 
subregions that are contained within a larger region. 
However, the watershed algorithm is susceptible to an 
oversegmentation owing to noise, and as a result, many 
computer vision packages, such as OpenCV, implement 
a marker-based watershed technique. Typically, these 
markers are generated through morphological erosion 
or distance transformations. However, because both 
techniques expect roughly uniform sizes of the subseg-
ments, they have limitations that restrict their func-
tionality for colony counting. To address this problem, a 

local minima detection algorithm was adopted that more 
closely resembles how a human will distinguish between 
adjacent colonies.

Local minima detector
Because circular bacterial colonies frequently have con-
vex elevations, the centers of the bacterial colonies are 
typically darker than the surrounding regions. Capitaliz-
ing on this characteristic allows for a more robust sure-
foreground capture through the detection of the local 
minima. The local minima are detected using the find-
maxima2d package [23].

Secondary pruning of contours
As illustrated in Fig.  2, the sure foreground produced 
by the local minima detector contains both accurately 
detected colony centers and a significant number of 
artifacts. To differentiate between the two groups, the 
resulting contours generated from the watershed are fil-
tered based on their mean HSV hue, circularity, inertia, 
and area, using values derived from the previously deter-
mined single colony cluster(s).

Results
Accuracy
To assess the accuracy of CFUCounter, its results were 
compared to those obtained manually using a point and 
click tool in ImageJ (the gold standard) and two leading 
CFU segmentation software solutions (OpenCFU and 
AutoCellSeg).

All three methods were tested on 11 plate images con-
taining either blue or white E. coli or Staphylococcus 
aureus, with a mean CFU count of 408.2 and a median of 
228. The photographs were captured using a wide range 
of resolutions, from 1280 × 720 to 4032 × 3024. Four of the 
plate images contained blue E. coli cell colonies grown in 
media containing X-gal, three contained white colonies 
grown in standard media, and four contained S. aureus 
colonies obtained from the OpenCFUs plate image data-
set. Among the three methods, CFUCounter produced 
the most accurate count relative to manual counting, 
with a slope of 0.996 (SD 0.013; 95%CI: 0.97–1.02; p 
value < 1e-11; r = 0.999) (Fig. 3a). AutoCellSeg performed 
the second best with a slope of 0.638 (SD 0.042; 95%CI: 
0.555–0.721; p value < 1e-6; r = 0.983) (Fig. 3b). OpenCFU 
performed the worst with a slope of 0.515 (SD 0.101; 
95%CI: 0.316–0.713; p value < 0.001; r = 0.874) (Fig.  3c). 
The slope of CFUCounter was also significantly different 
from that of OpenCFU (t value 4.70; p value 0.0001) and 
AutoCellSeg (t value 8.11; p value < 0.00001).

Plate border analysis
Among the three methods tested, CFUCounter accu-
rately segmented the cell colonies along the plate border. 
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As illustrated in Fig.  4, CFUCounter correctly detected 
all colonies apart from the one along the edge, and 
OpenCFU was unable to detect any cells that touched 
the plate border. However, AutoCellSeg had the oppo-
site issue of detecting a wide range of erroneous colonies 
(Fig. 4).

Robustness
To assess the robustness of the three methods to the 
image resolution, a qualitative study was conducted 
to examine the colony counts produced through a 
4032 × 3024 sized image when scaled by a factor of 0.75, 
0.50, and 0.25. Although all three methods perform 
similarly for full-sized images, the counts produced by 
OpenCFU and AutoCellSeg decrease precipitously as the 
image resolution declines (Fig. 5a).

Multiple color detection
Because AutoCellSeg does not include the color grouping 
functionality, the functionality of CFUCounter was com-
pared to that of OpenCFU. However, OpenCFU could 
not detect white colonies on the plate. The results are dis-
played in Fig. 6 below.

Discussion
The enumeration of CFUs on a plate is a crucial yet 
tedious and error-prone procedure. However, current 
solutions applied to automate this process are neither 
convenient nor sufficiently reliable to meet the needs of 
microbiologists. In this paper, an application is described 
that easily and conveniently segments and enumer-
ates the cell colonies present on a given plate using only 
tools commonly found in microbiology laboratories. This 
application is also capable of grouping colonies by color, 
opening new avenues for use in various microbiological 
assays.

As a smartphone-based application, CFUCounter per-
forms adequately in counting colonies and offers high-
fidelity segmentation of plate images captured using 
modern smartphones. Notably, a local minima detector 

Fig. 3  Linear regression of CFU counts using each method compared 
to the true number of CFU. a Accuracy of cell counter compared to the 
ground truth (slope 0.996; SD 0.013; 95%CI: 0.97–1.02; p value < 1e-11); 
b Accuracy of OpenCFU compared to the ground truth (slope 0.515; SD 
0.101; 95%CI: 0.316–0.713; p value < 0.001) c Accuracy of AutoCellSeg 
compared to the ground truth (slope 0.638; SD 0.042; 95%CI: 0.555–0.721; 
p value < 1e-6)

 

Fig. 2  Overview of local minima detector. a A binarized inverted mask of a grayscale plate image containing only those regions that have been deemed 
as noise/colony clusters; b The local extrema detected. Note the high amount of noise from the plate borders that will need to be pruned through a 
comparison with the ground truth
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used to generate marker points for watershed segmenta-
tion performs reliably well in capturing cell colonies that 
are affected by the plate edges. This finding represents a 
progression in the development of CFU counting soft-
ware because many other solutions opt to reject colonies 
touching the plate border [18].

CFUCounter also exhibits greater scale invariance than 
its competitors, as illustrated in Fig.  5a. This is largely 
attributable to the combination of a priori selection and 
iterative adaptive thresholding, which allow the program 

to dynamically scale the threshold aperture relative to the 
selected colony size. In this manner, CFUCounter can 
consistently produce similar binarized images regardless 
of the original image size.

Furthermore, CFUCounter demonstrates a high resis-
tance to noise. As presented in Fig.  5b, CFUCounter is 
still capable of delivering consistent CFU counts despite 
the colonies being slightly distorted from compression 
noise. This is attributable to the use of internal standards 
by CFUCounter rather than hard-coded parameters 

Fig. 5  Impact of image resolution on colony segmentation. a Effect of image resolution on CFU count produced through each method. CFUCounter, 
OpenCFU, and AutoCellSeg were run on a plate image scaled by a factor of 1, 0.75, 0.5, and 0.25; b Zoomed-in view of the 0.25-scaled plate. Note the 
high amount of compression noise distorting the colonies; c Segmentation results of the 0.25x-scaled image. From left to right: CFUCounter, OpenCFU, 
and AutoCellSeg.

 

Fig. 4  Comparison of plate border colony detection. a Segmentation results of plate border captured using CFUCounter; b Segmentation results of plate 
border captured using AutoCellSeg; c Segmentation results of plate border captured using OpenCFU.
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when conducting parameter tuning. Because the segmen-
tation is affected by every upstream step of the image-
processing pipeline, having built-in filters only functions 
as intended when the conditions match those decided by 
the programmer. This is not the case for CFUCounter, 
which can tune its parameters to match the conditions of 
the image being processed.

CFUCounter also introduces a color grouping func-
tionality, allowing microbiologists to distinguish between 
the counts of two or more differently colored colonies 
within a single plate. This is accomplished by integrating 
multiple color selections from the beginning of the image 
processing pipeline to the end. Based on the initial num-
ber of user selections, CFUCounter generates unique 
binary masks for each color, which are then used to cre-
ate a composite mask, allowing for the eventual segmen-
tation and classification of all colonies of interest. The 
a priori selection also informs the number of expected 
clusters, thereby obviating the necessity for the coarse-
ness slider of OpenCFU.

Prior to this study, local minima detection was used 
to count colonies; however, it lacked the ability to seg-
ment the colonies and distinguish between true and false 
detections. As such, this approach is extremely noise-
sensitive, necessitating the development of a camera and 
lighting apparatus capable of uniformly capturing the 
images. Although this simplified approach reduces the 
time required to analyze a given image, the construction 
of an imaging device and its inability to reject false detec-
tions limit its feasibility and effectiveness.

The adoption of an unsupervised machine learning 
algorithm to distinguish single-colony detections from 
multiple colonies and noise also has certain benefits over 

pure algorithmic and supervised approaches because it 
should allow for the segmentation of colonies based on 
the plate-specific colony characteristics. This increases 
the robustness of the application by allowing the charac-
terization of cells that do not conform to rigid morpho-
logical parameters or training data.

Finally, the addition of color grouping functionality 
allows CFUCounter to be applied to plates containing 
two or more differently colored colonies. Although this 
feature is present in OpenCFU, its functionality requires 
manual parameter tuning and it does not work properly 
when tested.

However, this approach is limited by its inability to 
accurately count plates with a high cell density (> 2000 
CFU/plate) and by a manual threshold tuning. Although 
the accurate counting of dense plates is a common chal-
lenge for colony counting software, this is also an area 
where automation is most beneficial. In addition, high-
density plates tend to have colonies almost directly on 
top of one another, making it difficult to detect the local 
minima for watershed segmentation.

Conclusions
In conclusion, an efficient and effective CFU counting 
software with the color differentiation and border colony 
detection was presented. In its current state, the devel-
oped offers a performance on par with, if not better than, 
leading CFU enumeration programs.

List of abbreviations
CFU	� Colony forming unit.
C	� Constant that is subtracted from the weighted sum of the 

neighborhood pixels.
s	� Size of neighborhood area.
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