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Abstract: An automatic, fast, and accurate switching method between Global Positioning System
and indoor positioning systems is crucial to achieve current user positioning, which is essential
information for a variety of services installed on smart devices, e.g., location-based services (LBS),
healthcare monitoring components, and seamless indoor/outdoor navigation and localization
(SNAL). In this study, we proposed an approach to accurately detect the indoor/outdoor environment
according to six different daily activities of users including walk, skip, jog, stay, climbing stairs up and
down. We select a number of features for each activity and then apply ensemble learning methods
such as Random Forest, and AdaBoost to classify the environment types. Extensive model evaluations
and feature analysis indicate that the system can achieve a high detection rate with good adaptation
for environment recognition. Empirical evaluation of the proposed method has been verified on the
HASC-2016 public dataset, and results show 99% accuracy to detect environment types. The proposed
method relies only on the daily life activities data and does not need any external facilities such as
the signal cell tower or Wi-Fi access points. This implies the applicability of the proposed method for
the upper layer applications.

Keywords: sensor-based indoor-outdoor detection; location-based services; human daily activity;
smartphone motion sensors; machine learning; context awareness

1. Introduction

One of the most significant technology trends in the current decade is an enormous proliferation
of smart mobile devices in daily life. As reported in [1], the number of current smartphone users is
2.53 billion, with growth expected to 2.87 billion by 2020. The extensive usage of smartphones in
society makes them an important platform that serves the ubiquitous sensing and communication
needs of people [2]. The influence of smart mobile devices and increasing the ability to access
the internet anywhere represent a high motivation for producing mobile applications based on
location-based systems (LBSs). The LBS field plays a crucial role in many domains, including
tracking, navigation, safety-related services, location-sensitive billing, advertising, tourism, healthcare
monitoring, intelligent transportation, etc. [3–5]. Therefore, the LBS sector is receiving significant
research attention from academia and industry. However, all mobile applications based on LBS have a
common requirement: the current user positioning. Since mobile users can be in many places such as
open sky outdoors, crowded avenues, indoor environments, etc., the next generation of positioning
systems has to perform well both indoors and outdoors. The Global Positioning System (GPS) is good
enough for outdoor environment positioning and recently some accurate indoor positioning systems
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(IPSs) have been developed using wireless networks [6], RFID [7], Wi-Fi [8,9], Bluetooth [10,11], and
geomagnetism intensity [12]. If the IPS is successfully built and commercialized, then someday the
integration of GPS and IPS will be a solution for the indoor-outdoor integrated positioning system.
However, switching between GPS and IPS is still a challenge, where for the convenience of users the
switching should occur automatically, fast, precisely and with efficient power consumption.

Generally, there are two categories of techniques for indoor-outdoor (IO) sensing methods:
GPS-based and smartphone sensor-based. The GPS-based techniques use the degradation of the GPS
signal when going from the outdoor to the indoor environment as the primary parameter to distinguish
the user IO status. This degradation of the GPS signal happens when GPS satellite signals are absorbed
or attenuated due to blocking walls or ceilings. The two potential issues of GPS-based IO detectors
limit their capacity to determine the environment. First, in many cases there is not enough signal
degradation that can help indicate the change in user status. For example, in [13,14] we are reminded
that GPS signals are still able to demonstrate the user position in buildings with large windows, like in
the outdoor environment, and it is not possible to conclude the user IO state confidently. In such cases,
GPS signal cannot serve as a user IO state detector, but it can aid in user positioning. The second flaw
is that GPS sensor is the most power-hungry sensor compared to other smartphone sensors, and it has
been shown in [15,16] that utilizing GPS consumes seven-times more energy than the accelerometer
and gyroscope sensors accessible on a smartphone. Furthermore, the GPS signal needs a period of 10
to 35 s to fix its state after moving between the outdoor and indoor environment [17].

The sensor-based methods utilize the other built-in sensors of the smartphone to detect the user
IO state to overcome the GPS limitations and they can be used opportunistically to save power. These
sensors are Wi-Fi, Bluetooth, ambient light, GSM, microphone, cell, accelerometer, magnetometer, and
proximity. Since the intensity level of a user’s surrounding environment properties (i.e., light [18],
magnetic field [19], temperature [20], sound [21], GSM signals [22], and Wi-Fi [23]) can be different
when the user has a transition from indoors to outdoors or vice versa, these intensity differences are
measured as the main parameters of the sensor-based methods to detect the user IO state. However,
the light-based methods may not be able to obtain enough light intensity variance under some
conditions, such as specific times of the day (e.g., at dawn and dusk) [24], or the way of the user
interacting with a smartphone (e.g., placing the smartphone in a bag or pocket). The proximity sensor
is utilized to assist the decision of light sensors when the light intensity change is due to an object
blocking the light sensor or a changing environment. Since the intensity of the Bluetooth signal is
scattered randomly and is reduced over distance [25,26], they are installed at the specific points of
indoor environment entrances that measure the changing values of received signal strength (RSS)
to indicate the user IO state. Considering the geomagnetic field has smooth attributes outdoors
and can be disturbed by ferromagnetic materials such as iron, steel, and other similar structures
indoors, a thresholding value of the geomagnetic field can be used for indoor-outdoor detection.
The thresholding value is determined based on the calculated variance of the geomagnetic field for
a number of frames. Cellular signals are another potential signal surrounding mobile users, which
is provided by cell towers. The cellular signal strength suffers a substantial drop similar GPS signal
conditions when the user moves from outdoors to indoors and vice versa, that the signal drop difference
is used to identify the environment type. However, sometimes the prolonged transition between
indoors and outdoors or the reverse can lead to a longer time for collecting data from the tower, which
can increase the battery consumption. The same principle is used by Wi-Fi approaches to detect the
user IO state, as the Wi-Fi access points (APs) must be scanned, which requires more time and energy
consumption than other smartphone sensors.

Later on, multi-model approaches such as IODetector [18] and SenseIO [24] were introduced to
overcome the above sensor issues by using different sensors as subdetectors to cover the weaknesses of
single-approach methods. Despite their excellent accuracy, the multi-model approaches suffer power
consumption drawbacks and from erroneous decisions because of their use of different sensors and
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connections between the previous and current state of the user to decide when to switch between
two sensors.

These shortcomings of the abovementioned approaches are our motivation is for this work.
Since daily human activities can be measured by the accelerometer and gyroscope sensors of the
smartphone, we propose an accurate single-modal approach based on a user’s daily physical activities.
The proposed method is independent of all other environmental facilities such as APs and cell towers
or environmental conditions such as intensity of light, sound, and the magnetic field. In this study,
only the primary daily activities collected by accelerometer and gyroscope sensor data are used as
input to determine the user IO status. Furthermore, a comprehensive empirical model evaluation on
the smartphone users’ daily activities to understand the effects of each activity on recognition accuracy
rates and their robustness is performed. The performance of the model has been verified under several
various changing factors such as the data fusion of motion sensors, the degree of imbalanced data and
sensitivity to the size of the features’ dataset. In addition, we propose a comprehensive sensor-feature
database of different operational properties including time-, frequency-, wavelet-domain, and physical
structural features. The summarized contributions of this research study are as follows:

(1) An empirical study was performed to introduce a universal availability method to utilizes the
built-in inertial measurement sensors (IMU) of a smartphone without any additional facilities to
detect the user IO state in the wild.

(2) Since people use the smartphone in their own style and the number of activities done by a person
during a day can be different for different ages and genders [27], so the effect of imbalanced data
is analyzed for user IO state recognition.

(3) The sensitivity and discriminability of features were measured to provide an in-depth
understanding of the dimensionality reduction effects on recognition rates of the detectors
in each activity dataset.

The rest of the paper are divided as follows: the related works are described in Section 2. Then,
the critical points of the proposed approach are defined in Section 3. After that, the general details of
our approach methodology are explained in Section 4, followed by a description of the dataset and
experimental setups in separate sections. The brief description of classification methods was prepared
in Section 5. Finally, in Sections 6 and 7, we discuss the results and offer some suggestions on the
possible extensions of this work in the future in Section 8. In addition, a comparison with previous
work is provided in the Discussion section.

2. Related Work

The indoor/outdoor detection issue has been considered by many researchers and can be
categorized into two main approaches: vision-based and sensor-based. Vision-based methods
depend on the hardware used and conditional parameters and cannot be an optimal design solution
for detecting the environment using a smart mobile device platform. Therefore, the focus has
moved towards sensor-based approaches to find a desirable solution for mobile device platforms.
Walter et al. [28] introduced a new method including gravity, ambient light, and magnetic fields,
for detecting the environment. Grove [29] distinguished the environment context by measuring
the number of GSM Neighbor Signal Station (GNSS) and Wi-fi access points. The results of their
study showed GNSS/no measurements could be used to distinguish indoor from outdoor places.
Ravindranath et al. [30] introduced the ability of GPS lock status to infer the ambient environment
indirectly. However, despite the accuracy of GPS in many applications, it can drain the battery
completely after approximately 6 hours of continuous usage, and it is only accurate in open space
outdoors environments [22]. Due to the above GPS-based solution drawbacks, considering the
low-cost integrated sensors on smart mobile devices provides some solutions for the indoor/outdoor
detection problem based on these sensors including light, magnetometer, microphone, accelerometer,
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and gyroscope. Table 1 shows the summary of recent methods for detecting the environment. The
limitations of these approaches are as follows:

• Light and sound approaches: The intensity of sound or light may differ over time, and it can be
affected by various factors such as the position of the phone (e.g., due to users’ carrying behavior
when placed in a bag or clothes pocket).

• The strength of cell tower approaches: the absolute signal strength of the cell tower may be
significantly different at various places according to the mobile devices’ models, which makes it
difficult to define a unique rule/model for indoor/outdoor classification problems.

• Magnetic variance approach: The magnetometer’s readings are error-prone without accurate
calibration. Furthermore, the magnetic detection is only available when the user moves around.

• Wi-Fi Signal: The Wi-Fi signal length can be influenced by the shielding effects of surrounding
objects or even the human body. This attribute can bring lots of noise into the detection system
and it poorly available in many outdoor areas. Therefore, Wi-Fi signals cannot be used as a
general approach in user IO state detection problems.

Table 1. The state-of-art for sensor-based indoor/outdoor detection approaches.

References Sensor Types Proposed Method Overall Accuracy

Tempio [20],
UPCASE [31] Temperature

Environmental temperature
measurements are classified using a

threshold based on the user’s
comfort zone and weather forecasts

—-

IO Detector [18] Light, cell, and
magnetometer

The system performance was
checked based on sub-detectors

including light-, cell-, magnetism-
and a hybrid detector

Around 85%.

Semi-supervised [15] light, cell, and Sound

Individual modules on diverse
phones are used in unfamiliar

environments in three different
scenarios, including

cluster-then-label, self-training, and
co-training

92% for unfamiliar
places

Door Events [32] Barometer

At the moment the door of a
building sis opened or closed, the
indoor pressure increases, and a

smartphone’s barometer can
measure the pressure increment.

99% for door event
detection

Sound [21] Microphone

A special chirp sound probe is
propagated by a mobile device
speaker and then collected back

through device microphone to use
as input dataset.

Roughly 95% accuracy at
46 different known

places

GSM signal [22] GSM signal of cell tower

The different GSM signal intensities
of four environment types (deep

indoors, semi-indoors,
semi-outdoors, outdoors) are

classified.

95.3%

WIFI Boost [23] Wi-Fi

The intensity variations of Wi-Fi
signals are classified into

inside/outside environments or the
number of access points around the

devices is measured.

Around 2.5% mean error
rate for familiar places.

SenseIO [24],
Accelerometer,

gyroscope, light,
cell, Wi-Fi

A multi-modal approach with a
framework including four modules

(activity recognition, light, Wi-Fi
and GSM) is created.

92%
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There are a few indoor/outdoor detection studies based on user motion activity detection using
smart mobile devices. For instance, SenseIO [24] was designed based on the connection between
the previous state of the user with the current state to call the proper sensor. The Google human
activity recognition API which is available in Android-based devices was used as a module of their
multi-modal detection approach. Furthermore, the activity recognition model was used only as a
filter for ambient environments rather than outdoor places. The experiments showed an 85% overall
detection accuracy based on only a user’s activity while the performance of the framework was
improved by using Wi-Fi and light modules. The approach suffers from propagation errors, and any
fault in the current state can lead to an increase in the number of erroneous decisions.

Here our primary motivation is developing the practical approach with high accuracy based on
limited numbers of sensors which are widely available in most current smartphones. Our proposed
method uses mobile users’ basic activities as the main source of data to determine the environment
type considering the power consumption, universal sensor availability, and potential low-quality
of data.

3. Design Criteria

The primary purpose of the proposed system is to develop a model to utilize the conventional
and inexpensive sensors such as the accelerometers and gyroscopes embedded on user-accessible
portable smart devices. In the proposed algorithm, user behavior analysis is targeted rather than using
conventional external and internal detection systems such as GPS receivers, cell towers, and Wi-Fi
access points. One of the main motivations of the proposed approach is designing a system that can
easily be used by any application platform on different smart devices. Considering the complexity and
reliability of the system, the proposed method covers the following critical design concerns:

(1) Simple, functional and inclusive coverage: the environment detection process should have fast,
easy-to-use, and stand-alone capabilities. It should not depend heavily on the hardware. This
method can be extended to other smart devices such as smartwatches and tablets with different
operating systems without requiring the installation of new facilities.

(2) Trusted: the method should be able to determine the type of environment with high
accuracy, and the system performance should not be decreased and dependent on different
environmental conditions.

(3) Energy consumption: Since the method runs on a mobile platform, it should be able to manage
the resources of the mobile device (such as batteries, memory, and processor) optimally during
the workday, as the energy of smart mobile devices can be rapidly depleted.

(4) Instantaneous: The method should be provided as an integrated service component for
higher-level applications. Therefore, the method should respond as fast as the changing of the
environment. Any latency in the detection phase can reduce the mobile application’s performance.

(5) Comprehensive usability (general usability): The methodology should perform a detection task
independently, i.e., without prior knowledge of the environment, additional hardware or specific
user feedback to ensure the comprehensiveness of the proposed method in a wide range of
high-level applications.

In this paper, we have assumed indoor and outdoor environments only and
semi-indoors/outdoors are excluded due to the limitations of the public dataset. It should
be considered that our works can be treated as a multi-classification problem which can be investigated
is proper datasets are available.

4. Methodology

The proposed methodology for the identification of indoor/outdoor detection environments
consists of four steps including: (1) data pre-processing; (2) feature extraction; (3) feature selection
and (4) classification. The data pre-processing step consists of parsing metafiles, resampling, noise
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reduction, and data segmentation tasks. The different temporal, frequency and wavelet domains
features are extracted in the second step. In step 3, selection of the essential features is considered.
Finally, in the classification step, the designing the training and testing procedures tasks and running
them were examined for both Random forest and AdaBoost classifiers under different scenarios and
evaluation factors. Figure 1 shows the general schema including all the steps which are described in
details in the following sections:
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4.1. Dataset

For performing trials and validation of the proposed approach, a public physical activity
recognition dataset [33] has been used. The data were collected for six different activities, e.g.,
staying still (no activity), skip, jog, walk, climbing stairs, and going down stairs. The HASC2016
dataset [33] was collected from 320 males (23.5 ± 4.7 years; 1.76 ± 0.08 m; 76.9 ± 10.0 kg) and 120
females (22.5 ± 0.5 years; 1.58 ± 0.51 m; 59.8 ± 4.3 kg) healthy subjects during five years between
2010 to 2015 and it is available online at http://hub.hasc.jp. The data was collected separately using
various smartphone brands and models, including Samsung (58%), Apple (16%), LG (9%), Sharp, Sony,
HTC and other brands (1%). Moreover, the position of the smartphone on the body of the subjects is
highly diverse. Figure 2 shows the distribution of phone positions during the data gathering process.
Since the dataset was collected in different years, it has a wide diversity regarding floor surface types,
shoe types, mounted states (free or fixed), operating systems (Android and IOS), and different types
of smart devices (phones or iPads). Also, the data was collected in different sampling rates between
20 Hz and 252 Hz. In this study, all samples are resampled into 100 Hz as mentioned in [33]. Also,
it was collected using different types of sensors including accelerometers, gyroscopes, magnetometers,
light sensors, etc. However, in this paper, we only used the accelerometer and gyroscope data; since
there were not an adequate number of other sensor samples. The raw data of each smartphone sensor
is collected in a simple CVS file that is accompanied with a metafile that contains the subjects’ detailed
information. Each metafile consists of the subject’s ID, gender, age group, height (cm), weight (kg),
terminal position, terminal type, terminal ID, terminal mounting status (fixed or free), operating
system type, sampling rate, location (indoor or outdoor), floor surface type, and footwear type.

http://hub.hasc.jp
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4.2. Data Pre-Processing

Since a considerable amount of data was collected in the HASC2016 dataset [33], we developed an
object-oriented software to convert all text data files into the database format which is more appropriate
for processing a large-scale dataset. Figure 3 shows a general overview of the preprocessing steps.
All files are processed and parsed in a batch process. During the preprocessing procedure, the instance
features are extracted and saved in the database. Data preprocessing is divided into two steps,
described below.
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4.2.1. Noise Removal

In general, there are different types of noise in the sensor measurements which may cause different
types of uncertainty for the outputs. As a result, these noises must be removed before feeding the
data as input into the model. Filtering and smoothing techniques are commonly employed to mitigate
the effect of noise in obtained data. The common filtering methods for motion data include low-pass
filters, high-pass filters, Kalman filters, weighted moving average (WMA), moving average filters, and
smoothing algorithms [34,35]. Since the input dataset for the proposed approach is the smartphone
users’ daily activities detected through their motion sensors, the 3rd order low-pass Butterworth filter
with a cutoff frequency equal to 20 Hz and a median filter (N = 3) were used on each accelerometer
and gyroscope axis, in way described in [36]. The cutoff frequency is set to 20 Hz because this rate
is sufficient to capture human body motion since only one percent of its energy is above 15 Hz [37].
Furthermore, to increase the accuracy and reduce the uncertainty, the first two seconds and last five
seconds for each sensor data file have been deleted to skip the initialization and termination behavior
of data [33].

4.2.2. Data Segmentation

Long-term data streams cannot be used directly in the form of training or testing data for
most machine learning methods, so this continuous data needs to be divided into many short ones.
The time-window slide segmentation method is an ordinary way of converting long-term signals
into short-term ones. One possible reason can be the low-cost computational nature of this method
compared with the other segmentation methods. Since our filtered data from the denoising step is still
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long, we segment is into many short pieces by applying an overlapped time window. In our study,
each time window is 2 s, while the overlap rate is 50%.

4.3. Feature Extraction

Feature extraction is a complex and critical process to find and extract proper features for desirable
recognition performance. Six most common daily physical activities of users were considered in this
study. According to Figure 2, the smart mobile device can be at the different positions including on
the subject’s body or inside a bag which is carried by users. To cover this diversity, 216 different
features have been proposed which are extracted from the time, frequency, and wavelet domains.
These domains generally have been used for human activity recognition systems based on smartphone
motion sensors [33,38,39]. Tables 2 and 3 show the details of the proposed feature set, including feature
labels, equations and a brief description of them. The average value of each raw data on three axes (x, y,
and z) is added as the fourth dimension as the norm value of three axes [33]. Then, the segmented-base
features (related to each time window slice) have been extracted including all mentioned domains and
physical structures of the motion behavior. These features can be considered for further analysis. In
the literature, Human Activity Recognition (HAR) systems usually use time domain features because
of the low computational overhead of such features [39]. The most extracted features from motion
sensor data are mean, variance, maximum, minimum, median, standard deviation, correlation, and
fast Fourier transform (FFT) spectral energy of the magnitude vector (MV) [34]. Both frequency and
wavelet domains are too complex and require highly intensive computational processes [39–41] which
make them hard to use for low-end devices such as smartphone platforms. Furthermore, it is critical to
identify the key features in each activity dataset to compare with the other ones. In the next session,
we will explain our approaches for selecting the best features of each activity dataset.

Table 2. The list of features extracted separately from accelerometers and gyroscopes [33,39].

Label Description Equation Size

Avg_ Average of samples in
each axis separately

x = 1
m ∑m

i=1 xi,

where x =
{

ax, ay, az, an, gx, gy, gz, gn

} 1 × 8

SD_
The standard deviation
of samples in each axis

separately

σ =
√

1
m ∑m

i=1(x− xi)
2,

where x =
{

ax, ay, az, an, gx, gy, gz, gn

} 1 × 8

MinMax_

The difference between
“Maximum Value and
“Minimum Value” of
samples in each axis

MinMax = Max(xi)1≤i≤N −Min(xi)1≤i≤N,

here x =
{

ax, ay, az, an, gx, gy, gz, gn

} 1 × 8

Var_
Moving variance of

samples on the x-, y-,
and z-axes

var = 1
N(N−1)

(
N

N
∑

i=1
x2

i −
(

N
∑

i=1
xi

)2)
where x =

{
ax, ay, az, gx, gy, gz

} 1 × 6

SMA_ The simple moving
average of data

SMAi =
1
N

(
N
∑

i=1
|ix|+

N
∑

i=1

∣∣iy∣∣+ N
∑

i=1
|iz|
)

,

where i = {a, g}
1 × 2

E_
First eigenvalue of
moving covariance
between samples

Ei = eig1
(
cov
(
ix(1 : N), iy(1 : N), iz(1 : N)

))
,

where i = {a, g} 1 × 2

ME_
Moving energy of

sensor’s signal on each
axis

ME = 1
N

N
∑

i=1
x2

i ,

where x =
{

ax, ay, az, an, gx, gy, gz, gn

} 1 × 8
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Table 2. Cont.

Label Description Equation Size

MC_
Moving correlation of

sensor data between two
axes

MCxy
P = corr

(
Px, Py

)
, MCxz

p = corr(Px, Pz),
MCXZ

p = corr
(
Py, Pz

)
, where p = {a, g}

1 × 6

MMA_
The moving mean of
orientation vector of

sensor’s data

MMA = 1
N

N
∑

i=1
ϕi, where,

ϕ =
arccos

(
px,py

)
|px|.

∣∣∣py

∣∣∣ , p = {a, g}
1 × 2

MVA_
Moving variance of
orientation vector of

sensor’s data

MVA = 1
N(N−1)

((
N
∑

i=1
ϕi

)2

−
N
∑

i=1
ϕ2

i

)
,

where ϕ =
arccos

(
px,py

)
|px|.

∣∣∣py

∣∣∣ , p = {a, g}
1 × 2

MEA_
Moving energy of

orientation vector of
sensor’s data

MMA = 1
N

N
∑

i=1
ϕ2

i , where ϕ =
arccos

(
px,py

)
|px|.

∣∣∣py

∣∣∣ ,

p = {a, g}
1 × 2

Spec.No_

The power spectrum is computed from the FFT
result. From 0.5 Hz to 5 Hz (in 0.5 Hz intervals)

for x, y, z, and n for both accelerometer and
gyroscope

1 × 80

Wavelet_STD_index.D.No._

The standard deviation of the acceleration
signal at level 2 to 5 corresponding to
0.78–18.75 Hz in three directions (i.e.,

AP/ML/VL) for x-, y- and z-axes

1 × 36

Wavelet_RMS_index.D.No._ Root mean square values of AP and VT
acceleration signals for the x-, y-, and z-axes 1 × 24

Table 3. The list of features that are extracted from both accelerometer and gyroscope samples [35].

Label Description Equation Size

MI_
Acc_Gyro_

The difference between
the movement intensity
of the accelerometer and

gyroscope

MIag

=

√
(gx − ax)

2 +
(

gy − ay

)2
+ (gz − az)

2 1 × 1

Var_MI_ The moving variance of
sample intensity data

VarMI =
1

N(N−1) ×
(

N
N
∑

i=1
x2

i −
(

N
∑

i=1
xi

)2)
,

where x = MIa, MIg, MIag

1 × 3

SMA_
Acc_Gyro_

The simple moving
average of the variance

between acceleration and
gyroscope data

SMAag =

1
N

(
N
∑

i=1
|ax − gx|+

N
∑

i=1

∣∣∣ay − gy

∣∣∣+ N
∑

i=1
|az − gz|

)
1 × 1

E_
Acc_Gyro_

First eigenvalue of
moving covariance of

difference between
acceleration and
gyroscope data

Eag = eig1

(
cov
(

ax − gx , ay − gy , az − gz

))
1 × 1

ME_
Acc_Gyro_

Moving energy of
acceleration and
gyroscope data

MEag = 1
N

N
∑

i=1
(xi − yi)

2,

where
x = ax, ay, az, an , y = gx, gy, gz, gn

1 × 4
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Table 3. Cont.

Label Description Equation Size

MMA_
Acc_Gyro_

The moving mean of the
orientation vector of the

variation between
acceleration and
gyroscope data

MMAag = 1
N ∑N

i=1ϕi , where

ϕ =
arccos(ax×ay)
|ax|×|ay| −

arccos
(

gx×gy

)
|gx|×

∣∣∣gy

∣∣∣
1×1

MVA_
Acc_Gyro_

Moving variance of the
orientation vector of the

variance between
acceleration and
gyroscope data

MVAag

= 1
N(N−1) ×

((
N
∑

i=1
ϕi

)2

−
N
∑

i=1
ϕ2

i

)
,

where

ϕ =
arccos(ax×ay)
|ax|×|ay| −

arccos
(

gx×gy

)
|gx|×

∣∣∣gy

∣∣∣
1 × 1

MEA_
Acc_Gyro_

Moving energy of the
orientation vector of the

variance between
acceleration and
gyroscope data

MEAag = 1
N

N
∑

i=1
ϕ2

i , where

ϕ =
arccos(ax×ay)
|ax|×|ay| −

arccos
(

gx×gy

)
|gx|×

∣∣∣gy

∣∣∣
1 × 1

SMAMCS_
Acc_Gyro_

Moving energy of
orientation vector of

sensor data

SMAMCSag = 1
N

N
∑

i=1

(
MCSa,i −MCSg,i

)
,

where a =
{

ax, ay, az
}

and g =
{

gx, gy, gz

} 1 × 3

4.4. Feature Selection

Since many pattern recognition methods cannot cope with high-dimensional data, feature
selection techniques have become an essential requirement in many applications [42]. Feature selection
aims to select well-designed features, by searching for a small subset of relevant features among the
original feature vectors to have better model interpretability, including higher accuracy and lower
computational cost. Due to the different searching strategies, generally feature selection methods can
be divided into three methods: i.e., filter, wrapper, and embedded methods. In general, filter methods
select general attributes of the data to choose features subsets without including any classifier. Besides,
wrapper methods need a predefined learning algorithm and use its accuracy as the evaluation measure.
For example, in [43] the support vector machine (SVM) is applied on recursive feature elimination
(RFE) to find the genes most related to cancers. The embedded models run feature selection during the
model construction process.

In this work, the feature extraction step results in a 216-dimensionality vector. We used the
recursive feature elimination method [43] with Random Forest (RF) classifier to find the optimal
ranking of the extracted features from the user’s motion data. Roughly speaking, the recursive
feature elimination is a wrapper method which can select features by recursively considering smaller
sets of features by training the learner model on the initial set of features, and weights. Then, the
features with the absolute minimum weights are removed from the present set features. The optimum
number of features with the highest accuracy would be found by running the procedure iteratively.
It should be noted that 10-fold cross-validation is used for dealing with the over-fitting problem of
the classification task. Also, the Feature selection process is performed by using the “scikit-learn”
feature of Python. We utilize these features as optimal features for AdaBoost classifier to have a fair
comparison with another classifiers’ performance. Table 4 lists the names and an optimal number of
features for stay activity under various scenarios which have significantly reduced dimensions by
Recursive Feature Elimination and Cross-Validated (REFCV) algorithms. Furthermore, the number of
features for different scenarios due to each activity data set are shown in Table 5. The details of all
scenarios and data sources are given in Tables A1–A6 in the Appendix A to avoid excessive details
and elaboration of the extensive information.
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Table 4. The list of essential features for stay activity due to different scenarios.

Scenario List of Features Size

Only accelerometer Avga(x, y, z, n), SMAa, Ea, MEa(y), MEa(xy) 8

Only gyroscope

Avgg(x, y, z, n), SDg(z, n), Minmaxg(x, y, z, n),
Spec2g(z), Spec5g(z, n), Spec9g(n), varg(y),
varMIg , SMAg, Eg, MCg(xy, xz), MEg(x, z),

SMAMCSg(x, y, z)

25

Accelerometer and gyroscope Avga(x, y, n), Ea, MEa(xy), SMAMCSg(x, z) 7

Balanced dataset
Avga(x, y, n), Ea, MEa(xy), Avgg(z),

SMAMCSg(x, z)
8

Unbalanced dataset Avga(y, n), SMAa, Ea, MEa(xy) 5

Selected-features Avga(x, y, n), Ea, MEa(xy), MEg(x, z) 7

Table 5. The number of selected features according to different activity datasets and scenarios.

Activity Only
Gyro 1

Only
Acc 2

Acc 2 and
Gyro 1

Balanced
Data

Unbalanced
Data

Selected
Features

Walk 19 25 54 43 39 42
Jog 17 36 61 40 44 59

Skip 12 34 53 36 51 51
Stay 25 8 7 8 5 7

Stairs Up 12 31 32 36 40 34
Stairs Down 18 32 48 38 24 46

1 Gyroscope, 2 Accelerometer

5. Classification

Most of the commonly used classifiers are fundamentally binary classifiers (e.g., linear support
vector machines, linear discriminate analysis, nearest neighbor, random forest (RF), AdaBoost, etc.).
Since the indoor-outdoor detection problem is defined as a two-class classifier problem in this study, the
experimental study was performed using several binary classifiers. Based on our performance analysis,
the performance of RF and AdaBoost were better than the other alternatives. RF and AdaBoost are two
well-known ensemble classification methods. Their performance is robust against overfitting issues,
and they have a low hyperparameters to adjust, and less-parameter tuning and robustness against
noise are important practical aspects. A brief description of the selected classifiers with their parameter
setting is presented as the following subsections.

5.1. Random Forest (RF)

The random forest (RF) [44] classifier uses a tree-type classifier method for its classification, which
contains several trees expanded from a bootstrapped set of the primary training dataset. RF methods
are robust against of noise or overfitting problems because their resampling does not use weighting [45].
Moreover, RF can handle high dimensionality data by increasing the number of trees, which is suitable
for our feature vectors given in the previous section. RF algorithms start with several bootstrapped sets
created from the original training samples in the training step, and search only through a randomly
chosen subset of input samples to decide a split for each node. For classification, RF has performed
a vote based on the most common class in input data for each tree, and then the classifier output is
determined by a majority vote of the trees. Since the number of trees is the only elastic parameter in RF,
it is adjusted to 30 in our study, to achieve lower computational overload while gaining high accuracy.
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5.2. AdaBoost (ADA)

AdaBoost (ADA) is known to be one of the best out-of-the-box classification algorithms and has
been applied to numberless machine learning problems [46]. AdaBoost initializes by choosing a series
of a weak learner (e.g., decision trees) and improves learners’ accuracy iteratively by changing the
weights of misclassified instances in the training dataset [47]. For example, the misclassified dataset
generated by the previous learner is chosen more often than a correct one, so that new classifier’s
performance can be better in the new dataset. In each iteration, AdaBoost assigns an equal weight to
the dataset so that the next integration focuses on reweighting the previously misclassified dataset.
The final model is obtained from the weighted sum of all weak learners. In this study, we applied
Python programming to implement the AdaBoost model. Based on the experimental study on optimal
parameters of AdaBoost model, the number of estimators and learning rates are set to 600 and
0.1, respectively.

6. Model Evaluation and Results

In general, lots of data is required to achieve high accuracy in a multi-class classification problem,
especially in the feature vectors are of a high dimensionality nature. In addition, collecting data is a
difficult task in multi-class classification problems, which is also seen in indoor/outdoor detection
problems. On the other hand, in most circumstances, one subject’s data is not sufficient to build a
robust general model. Thus, the other subjects’ data may have to be added in the set, which can
increase the possibility of abnormal interference issues that can be reduced by constructing a robust
general model. To overcome the mentioned problems (data collection and abnormal interference
issues), we were motivated to construct a general model to investigate whether the general model
can determine the environment characteristics such as indoor/outdoor decisions with an acceptable
accuracy or not. The model can use an internal pre-trained classifier based on a current mobile user’s
daily activities data to classify the environment type.

6.1. Training and Testing Procedure

To evaluate our detection approach performance, we built training and testing datasets by using
all the extracted features from the raw data which are stored in the database as explained in Section 4.2.
A query based on our detection problem set is executed on the database and constructs a matrix of data
with their labels. The shuffled matrix is split into two subsets with 67% and 33% data share which are
used for the training and testing steps, respectively. We note that the class-ratio of the whole dataset
may have a small difference after this division. For each trait, we compute the confusion matrix and
obtain the ROC and precision-recall graphs. Furthermore, the F-score of all classes and average F-score
of each class have been computed too.

6.2. The Experimental Results

6.2.1. Stability shift by sensors data fusion

Most of the smartphones have two integrated essential motion sensors: and accelerometer
and a gyroscope. The accelerometer measures three-dimensional acceleration force data while the
gyroscope measures the rate of rotation data in three dimensions. Also, human activities consist of
different rotation and transition movements that need to be captured for inner/outer environment
detection. Therefore, selection and identification and utilization of sensors that can provide sufficient
data for the aim of improving indoor/outdoor detection accuracy are crucial. In this paper, the
performance of single-sensor motion data scenarios (only an accelerometer or only a gyroscope) versus
a combined-sensors (accelerometer and gyroscope) scenario to detect the environment type has been
described. Table 6 shows the overall F-scores of indoor/outdoor detection rate regarding a six different
activity type dataset. In this table, we can compare all the observed results after running the proposed
model on different input sensory datasets.
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Table 6. The Overall F-score rates of user IO status due to different types of daily activity.

Random Forest

Activities
Only Accelerometer Only Gyroscope Accelerometer & Gyroscope

Outdoor Indoor Outdoor Indoor Outdoor Indoor

Walk 98.75% 92.33% 97.71% 84.95% 99.06% 94.32%
Jog 98.90% 92.86% 97.52% 83.03% 99.29% 95.55%

Skip 98.90% 92.35% 96.96% 76.01% 99.03% 93.38%
Stay 97.61% 99.07% 79.73% 92.66% 97.23% 98.92%

Stairs Up 81.56% 97.89% 61.39% 96.43% 88.79% 98.69%
Stairs Down 82.95% 97.95% 59.52% 96.17% 87.40% 98.48%

AdaBoost

Activities
Only Accelerometer Only Gyroscope Accelerometer & Gyroscope

Outdoor Indoor Outdoor Indoor Outdoor Indoor

Walk 99.38% 96.32% 98.26% 88.94% 99.51% 97.10%
Jog 99.59% 97.43% 98.37% 89.15% 99.76% 98.49%

Skip 99.36% 95.72% 97.69% 82.44% 99.72% 98.15%
Stay 98.18% 99.29% 80.51% 92.89% 98.18% 99.29%

Stairs Up 88.64% 98.67% 72.09% 97.21% 95.81% 99.49%
Stairs Down 89.06% 98.66% 69.75% 96.92% 94.86% 99.34%

In the first scenario, we apply information resulting from an accelerator sensor (acc data) while
in the second scenario, it is replaced by a gyroscope (gyro data). For the last one, we combine both
datasets gathered from both sensors (acc & gyro data). Both RF and AdaBoost approaches have been
applied to the three scenarios to separately expand and compare the results. The obtained results
indicate that the third scenario based on data fusion of two sensors gets much better results compared
to the cases where just one sensor is involved in the feature learning and classification process. Also,
the results show more improvement for indoor detection accuracy compared to the outdoor detection
results. For example, for RF and the stairs down activity, the outdoor performance detection rate for
the three scenarios are 82.9%, 59.5%, and 87.4%, respectively compared to 97.9%, 96.2% and 98.5%
for the indoor detection rates. Furthermore, a comparison between the RF and AdaBoost classifiers
points out that AdaBoost has better performance than the RF one and it can achieve more than 98%
accuracy for most of the activities in both indoor and outdoor detections. Besides, the performance
of the AdaBoost classifier for different activities is more robust. Furthermore, the results yielded by
accelerometer data show better performance than the gyroscope data for both classifiers. However,
the performance of AdaBoost is acceptable enough to compare with the performance of RF for the
climbing stairs and steps down activities. Figure 4a,b show the overall F-score of detectors based on
the different activities. As a result, the performance of classifiers was reduced 4 % in the climbing and
going down stairs activities compared with the other activities such as skip and walk. Figure 5a,b
show the precision-recall and ROC graphs of walking activity under a combed accelerometer and
gyroscope data scenario for both learner models. The rest of the other precision-recall and ROC graphs
for different scenarios and datasets are available in the Supplementary Material section.
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6.2.2. Impact of Unbalanced Data

Data imbalance issues are common phenomena in various fields such as medical diagnosis,
anomaly detection, economics, speaker recognition [48] and environmental concerns. They occur
when the quantities of samples in datasets are not roughly equal. Most of the time, the learning
process of a classifier leads to a proper fitting for dominant classes while it might be weak for minority
classes, so one has to face imbalanced datasets. Oversampling the minority class and undersampling
the majority class are two common solutions to deal with misbalanced datasets. Indeed, the public
dataset HASC2016 is highly imbalanced so we must face this issue. In this work, instead of applying
conventional methods such as a smoothing method, we manually balanced the dataset by carefully
selecting subjects according to the following conditions:

(1) The subject must have participated in all activities.
(2) The subject must have both accelerometer and gyroscope motion sensor data.
(3) The number of subjects in each class must be equal to the number of subjects in the minority class.

Figure 6a,b illustrate the comparison of the F-score of both balanced and imbalanced datasets in
our model evaluation scenarios to investigate its impact on the classification performance. The results
indicate that the performance is improved by considering balance issues which are well observable for
the stairs up and stairs down activities. Table 7 presents the impact of a balanced dataset versus an
unbalanced dataset on the proposed model.
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Table 7. The impact of the unbalanced dataset on the user IO status detection.

Random Forest AdaBoost

Activities
Balanced Data Unbalanced Data Balanced Data Unbalanced Data

Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor

Walk 99.03% 94.15% 99.19% 96.10% 99.48% 96.94% 99.63% 98.25%
Jog 99.40% 96.18% 99.09% 95.11% 99.77% 98.57% 99.70% 98.41%

Skip 99.15% 94.26% 98.99% 94.78% 99.76% 98.40% 99.62% 98.12%
Stay 98.11% 99.26% 96.28% 99.35% 98.79% 99.53% 97.55% 99.57%

Stairs up 88.04% 98.59% 83.18% 99.03% 94.27% 99.30% 93.13% 99.58%
Stairs down 87.33% 98.47% 81.00% 98.87% 94.96% 99.35% 91.85% 99.48%

The improvement is more noticeable in particular when the RF approach is deployed. Although,
AdaBoost is an accuracy-oriented approach in which some dominant classes may bias its learning
strategy with more contributions, the obtained results show that AdaBoost is more robust to unbalanced
data compared to the RF method. Figure 7a,b illustrate the ROC and precision-recall graphs of the
RF model for the balanced going stairs down dataset, respectively. The performance of both learners
under different scenarios and activities dataset are provided in the Supplementary Material section.
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6.2.3. Sensitivity to the Feature Selection

To find out the impact of selected features versus all features, some tests were performed in this
study. This not only can help reduce the dimensionality of features vectors but also potentially reduce
the power consumption of smartphones. For this propose, we applied different feature selection
methods in our simulation, and finally, we achieved the best consistency results by the Recursive
Feature Elimination with Cross-Validation (RFECV) method. The detectors ran for both “selected
features” and “all features” datasets to evaluate the performance of classifiers and their behavior under
various features of the dataset. The overall F-scores are then computed for both scenarios and results
show AdaBoost has less sensitivity than the RF method as depicted in Figure 8a,b. The results in
both feature selection and balanced dataset verify that AdaBoost can be a suitable choice for detecting
the environment based on user daily activities through smartphone sensor data. Table 8 shows the
evaluation results of the models in details. It can be observed that the performance of the learner model
was little improved which means the selected features are strong enough to be implemented in the
proposed model. In addition, the details of essential features for each activity dataset is shown from
Tables A1 and A6 in the Appendix A. Furthermore, as an example, Figure 9a,b show the precision-recall
and ROC graphs of the RF model for the climbing stairs dataset under the selected-features scenario,
respectively. The rest of the ROC and precision-recall graphs for different scenarios and datasets are
provided in the Supplementary Material section.
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Table 8. The sensitivity of detectors to the size of features and activity.

Random Forest AdaBoost

Activities
Selected Features All Features Selected Features All Features

Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor

Walk 99.05% 94.24% 98.79% 92.61% 99.55% 97.34% 99.43% 96.62%
Jog 99.32% 95.69% 99.08% 94.05% 99.76% 98.49% 99.74% 98.40%

Skip 99.05% 93.46% 98.89% 92.40% 99.77% 98.49% 99.55% 97.02%
Stay 97.87% 99.17% 94.62% 97.96% 98.68% 99.48% 98.07% 99.25%

Stairs up 88.12% 98.59% 82.98% 98.09% 95.17% 99.41% 92.17% 99.07%
Stairs down 88.03% 98.52% 83.02% 98.01% 95.30% 99.39% 93.55% 99.19%
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7. Discussion

With regards to the successful outcomes of previous studies and our experimental results,
we provide some perspectives to increase the smartphone indoor/outdoor detection performance
through the daily activities data. Since people always reveal various movement pattern even in
similar activities, we can notice that each person has his/her natural fingerprint, so without any
prior knowledge about the environment, we can detect their indoor/outdoor environment completely
and accurately. The fact that we got the best performance during all our experimental scenarios can
verify our interpretation. Our results imply that increasing the level of sensor fusion can improve the
accuracy. Furthermore, the analysis shows that accelerometer data can provide acceptable performance
accuracy for environment recognition through users’ motion data.

Due to the different distribution of smartphone users and the variation in the frequency rates of
smartphone’s motion sensors, a data resampling algorithm needs to be considered for indoor/outdoor
detection. By utilizing a proper upsampling method, we able to increase the classifier’s accuracy.
Nevertheless, the results show that the proposed model is robust enough against unbalanced data.

In contrast with other approaches, the obtained results (overall F-score) of the proposed model
are shown in Table 9. The proposed model reveals better overall performance accuracy compared to
other methods, for instance [18] and [24], for the indoor and outdoor detection issue. The obtained
results also indicate that improvement in outdoor detection accuracy is more noticeable than with
the previous approaches. Also, the proposed model can distinguish the environment type just by
using the smartphone motion sensors to capture the user’s mobility trace as input data without any
extra information of the situation. It should be noted that Table 9 only shows the comparison of other
approaches with the proposed method in general due to the use of different sensors and experiments.

Table 9. The overall accuracy comparison.

IODetector [18] SenseIO [24]
Proposed

(Random Forest)
Proposed

(AdaBoost)

Acc & Gyro Acc & Gyro

Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor

Overall
Accuracy 88% 90% 91.9% 94.4% 92.94% 98.27% 99.03% 99.23%

8. Conclusions and Future Works

Detecting the current user’s environment type and switching between them automatically is
critical for many high-layer applications such as location-based services (LBS), SNAL, and healthcare
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monitoring. Several approaches have been developed recently to identify the inner/outer environment.
Our approach is built on using the natural daily life motion of users which is recorded through
smartphone motion sensors to detect the environment type without any need for extra information
from other additional equipment such as mobile cell towers or Wi-Fi access points. Since the power
consumption of motion sensors is seven-times less than the GPS sensor’s power consumption on
the smartphone [15,16], the proposed model may address the power-hunger problem of GPS-based
models. The proposed model utilizes ensemble algorithms (AdaBoost and Random Forest) on a
smartphone user motion sensory dataset to recognize the different patterns of the environment profiles.
Our large-scale model evaluations show that the proposed approach is capable of detecting the inner
and outer environment patterns with 99% accuracy. Also, the experimental results reveal that the
performance accuracy can be affected slightly by an unbalance factor. With extensive features’ analysis,
the compatibility of essential selected features has been proved for each activity in the dataset. Despite
the acceptable performance accuracy on the accelerometer dataset in most of the activities, the fusion of
accelerometer and gyroscope data can improve the performance of the proposed model in all activities
in term of F-scores. Building a comprehensive model that can cover all aspects of the problem is a
challenging task. Complimentary metainformation should be merged with the current public dataset
for possible improvement. For example, in real-world conditions human activity has a sequential
nature. Therefore, transitional activities such as “sit to stand" or “stand to sit” can be considered as an
invalid activity in our systems. The effect of transitional or other complex activities on the performance
of the proposed approach can be investigated as further work. Furthermore, the stability of the patterns
may be affected by slight smartphone orientation modifications, even in the same position setting,
which might affect the recognition accuracy. In the future we plan to analyze a dataset of sequential
human activities to improve the system stability by considering both the effects of the smartphone
position and orientation.

Supplementary Materials: The results of ROC and precision-recall graphs were provided under different
scenarios and activities dataset for both the Random Forest and AdaBoost classification models, which are
available online at https://1drv.ms/u/s!Ajs0rvRrvk_vkyTAapXO3-6w9sUk.
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Appendix A

Tables A1–A6 list the essential features for each activity dataset when running the different
scenarios to find the more accurate performance in the indoor/outdoor detection problem.

Table A1. The list of selected features due to the different activity datasets in the only
gyroscope scenario.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

E_ Gyro
√ √

SMA_ Gyro
√ √ √ √ √ √

Avg_ Gyro _X
√

Avg_ Gyro _Y
√ √ √

Avg_ Gyro _Z
√ √

Avg_ Gyro _N
√ √ √ √ √

MinMax_ Gyro _X
√ √ √ √ √ √

MinMax_ Gyro _Y
√ √ √ √ √

https://1drv.ms/u/s!Ajs0rvRrvk_vkyTAapXO3-6w9sUk
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Table A1. Cont.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

MinMax_ Gyro _Z
√ √ √

MinMax_ Gyro _N
√ √ √

SD_ Gyro _X
√

SD_ Gyro _Y
√

SD_ Gyro _Z
√ √ √ √ √

SD_ Gyro _N
√

ME_ Gyro _X
√ √ √ √ √

ME_ Gyro _Y
√ √

ME_ Gyro _Z
√ √ √ √ √

Var_ Gyro _X
√ √

Var_ Gyro _Y
√ √ √

Var_ Gyro _Z
√

MC_ Gyro _XY
√ √ √ √ √

MC_ Gyro _XZ
√ √ √ √ √ √

MC_ Gyro _YZ
√ √ √ √

Var_MI_Gyro
√

SMAMCS_ Gyro _X
√ √ √ √ √

SMAMCS_ Gyro _Y
√ √ √ √ √ √

SMAMCS_ Gyro _Z
√ √ √ √ √ √

Spec2_ Gyro _Z
√

Spec3_ Gyro _Y
√

Spec3_ Gyro _X
√

Spec3_ Gyro _Z
√

Spec5_ Gyro _Z
√

Spec5_ Gyro _N
√

Spec9_ Gyro _N
√

Table A2. List of selected features due to the different activity datasets in the accelerometer
only scenario.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

Avg_Acc_X
√ √ √ √ √ √

Avg_Acc_Y
√ √ √ √ √ √

Avg_Acc_Z
√ √ √ √ √ √

Avg_Acc_N
√ √ √ √ √ √

SD_Acc_X
√ √ √ √

SD_Acc_Y
√ √

SD_Acc_Z
√ √

SD_Acc_N
√ √ √ √

MinMax_Acc_X
√ √

MinMax_Acc_Y
√ √ √ √

MinMax_Acc_Z
√ √

MinMax_Acc_N
√ √ √ √

Var_Acc_X
√ √ √ √

Var_Acc_Y
√

Var_Acc_Z
√ √ √

Var_MI_Acc
√ √ √

SMA_Acc
√ √ √ √ √

E_Acc
√ √ √ √

MC_Acc_XY
√ √

MC_Acc_XZ
√

MC_Acc_YZ
√ √ √

ME_Acc_X
√ √ √ √ √
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Table A2. Cont.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

ME_Acc_Y
√ √ √ √ √

ME_Acc_Z
√ √ √

MMA_Acc
√ √ √ √ √

MVA_Acc
√ √ √

MEA_Acc
√ √ √

ME_Acc_XY
√ √ √ √ √

ME_Acc_XZ
√ √ √

ME_Acc_YZ
√ √ √ √ √

SMAMCS_Acc_X
√ √ √ √ √

SMAMCS_Acc_Y
√ √ √ √ √

SMAMCS_Acc_Z
√ √ √ √ √

Spec9_Acc_N
√

Spec5_Acc_N
√

Spec6_Acc_N
√

Wavelet_STD_aD2_Acc_X
√ √ √ √

Wavelet_STD_aD2_Acc_Y
√

Wavelet_STD_aD2_Acc_Z
√ √

Wavelet_STD_aD3_Acc_Y
√

Wavelet_STD_dA3_Acc_X
√ √ √

Wavelet_STD_dA3_Acc_Y
√ √ √

Wavelet_STD_dA3_Acc_Z
√ √ √

Wavelet_STD_dD3_Acc_X
√ √ √

Wavelet_STD_dD3_Acc_Y
√ √

Wavelet_STD_dD3_Acc_Z
√ √ √

Wavelet_RMS_aD2_Acc_X
√ √ √

Wavelet_RMS_aD2_Acc_Z
√

Wavelet_RMS_dA3_Acc_X
√

Wavelet_RMS_dA3_Acc_Z
√ √ √

Wavelet_RMS_dD3_Acc_X
√ √ √

Wavelet_RMS_dD3_Acc_Z
√

Table A3. List of selected features due to the different activity datasets in the accelerometer and
gyroscope scenario.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

Avg_Acc_X
√ √ √ √ √ √

Avg_Acc_Y
√ √ √ √ √ √

Avg_Acc_Z
√ √ √ √ √ √

Avg_Acc_N
√ √ √ √ √ √

SD_Acc_X
√ √ √ √

SD_Acc_Y
√ √

SD_Acc_Z
√ √

SD_Acc_N
√ √ √ √

MinMax_Acc_X
√ √

MinMax_Acc_Y
√ √ √ √

MinMax_Acc_Z
√ √

MinMax_Acc_N
√ √ √ √

Var_Acc_X
√ √ √ √

Var_Acc_Y
√

Var_Acc_Z
√ √ √

Var_MI_Acc
√ √ √

SMA_Acc
√ √ √ √ √

E_Acc
√ √ √ √

MC_Acc_XY
√ √



Sensors 2019, 19, 511 21 of 29

Table A3. Cont.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

MC_Acc_XZ
√

MC_Acc_YZ
√ √ √

ME_Acc_X
√ √ √ √ √

ME_Acc_Y
√ √ √ √ √

ME_Acc_Z
√ √ √

MMA_Acc
√ √ √ √ √

MVA_Acc
√ √ √

MEA_Acc
√ √ √

ME_Acc_XY
√ √ √ √ √

ME_Acc_XZ
√ √ √

ME_Acc_YZ
√ √ √ √ √

SMAMCS_Acc_X
√ √ √ √ √

SMAMCS_Acc_Y
√ √ √ √ √

SMAMCS_Acc_Z
√ √ √ √ √

Spec 6_ Acc _X
√

Spec7_ Acc _Y
√

Spec9_ Acc _N
√

Spec4_ Gyro _X
√

Spec6_ Gyro _X
√

Spec8_ Gyro _Z
√

Avg_ Gyro _X
Avg_ Gyro _Y

√

Avg_ Gyro _Z
Avg_ Gyro _N

√ √ √ √

SD_ Gyro _X
√ √ √ √

SD_ Gyro _Y
√ √

SD_ Gyro _Z
√ √ √

SD_ Gyro _N
MinMax_ Gyro _X

√ √

MinMax_ Gyro _Y
√ √

MinMax_ Gyro _Z
MinMax_ Gyro _N

√ √

Var_ Gyro _X
√ √ √

Var_ Gyro _Y
√ √

Var_ Gyro _Z
√ √ √

Var_MI_ Gyro
√ √

SMA_ Gyro
√ √ √ √

E_ Gyro
√ √ √

MC_ Gyro _XY
√ √ √ √

MC_ Gyro _XZ
√ √ √ √ √

MC_ Gyro _YZ
√ √

ME_ Gyro _X
√ √ √ √

ME_ Gyro _Y
√ √ √

ME_ Gyro _Z
√ √ √ √

SMAMCS_ Gyro _X
√

SMAMCS_ Gyro _Y
√

SMAMCS_ Gyro _Z
√ √ √ √ √ √

Var_MI_Acc_Gyro
√

SMA_Acc_Gyro
√

E_Acc_Gyro
√ √ √

ME_Acc_Gyro_X
√ √ √

ME_Acc_Gyro_Y
√ √ √

SMAMCS_Acc_Gyro_Z
√ √ √ √ √
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Table A3. Cont.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

Wavelet_STD_aD2_Acc_X
√

Wavelet_STD_aD2_Acc_Y
√ √

Wavelet_STD_aD2_Acc_Z
√ √

Wavelet_STD_aD3_Acc_Y
√

Wavelet_STD_aD4_Acc_Y
√

Wavelet_STD_aD4_Acc_Z
Wavelet_STD_dA3_Acc_X

√ √ √

Wavelet_STD_dA3_Acc_Y
√ √ √

Wavelet_STD_dA3_Acc_Z
√ √

Wavelet_STD_dD3_Acc_X
√ √ √

Wavelet_STD_dD3_Acc_Y
√ √

Wavelet_STD_dD3_Acc_Z
√ √

Wavelet_RMS_aD2_Acc_X
√ √

Wavelet_RMS_aD2_Acc_Z
√

Wavelet_RMS_dA3_Acc_X
√ √ √

Wavelet_RMS_dA3_Acc_Z
√ √

Wavelet_RMS_dD3_Acc_X
√ √ √ √

Wavelet_RMS_dD3_Acc_Z
√ √ √

Table A4. List of selected features due to the different activity datasets in the balanced dataset scenario.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

Avg_Acc_X
√ √ √ √ √ √

Avg_Acc_Y
√ √ √ √ √ √

Avg_Acc_Z
√ √ √ √ √

Avg_Acc_N
√ √ √ √ √

MinMax_Acc_X
√ √

MinMax_Acc_Y
√ √ √

MinMax_Acc_Z
√ √

MinMax_Acc_N
√ √ √

Var_Acc_X
√ √ √ √

Var_Acc_Y
Var_Acc_Z

√

Var_MI_Acc
√ √ √ √

SMA_Acc
√ √ √ √

E_Acc
√ √ √ √

MC_Acc_XY
MC_Acc_XZ
MC_Acc_YZ
ME_Acc_X

√ √ √ √ √

ME_Acc_Y
√ √ √ √

ME_Acc_Z
√ √ √

MEA_Acc
√ √

ME_Acc_XY
√ √ √ √ √

ME_Acc_XZ
√ √

ME_Acc_YZ
√ √ √ √

SMAMCS_Acc_X
√ √ √ √ √

SMAMCS_Acc_Y
√ √ √ √ √

SMAMCS_Acc_Z
√ √ √ √ √

Avg_Gyro _Y
√

Avg_Gyro _Z
√
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Table A4. Cont.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

ME_Acc_Gyro_X
√ √ √

ME_Acc_Gyro_Y
√ √

ME_Acc_Gyro_Z
√ √ √

SMAMCS_Acc_Gyro_Y
√ √ √ √

SMAMCS_Acc_Gyro_Z
√ √ √ √

Wavelet_STD_aD2_Acc_Y
√

Wavelet_STD_aD3_Acc_Y
√

Wavelet_STD_dA3_Acc_X
√ √ √

Wavelet_STD_dA3_Acc_Y
√ √ √

Wavelet_STD_dA3_Acc_Z
√

SD_Acc_X
√ √

SD_Acc_Y
√

SD_Acc_Z
√

SD_Acc_N
√ √ √ √

Avg_ Gyro _N
√ √ √ √

SD_ Gyro _X
√ √ √ √

SD_ Gyro _Y
√ √

SD_ Gyro _Z
√

SD_ Gyro _N
√

MinMax_ Gyro _X
√

MinMax_ Gyro _Y
√

MinMax_ Gyro _N
√

Var_ Gyro _X
√ √

Var_ Gyro _Y
Var_ Gyro _Z

√ √

Var_MI_ Gyro
√

SMA_ Gyro
√ √ √ √ √

E_ Gyro
√ √

MC_ Gyro _XY
√ √

MC_ Gyro _XZ
√ √ √ √ √

MC_ Gyro _YZ
√

ME_ Gyro _X
√ √ √ √

ME_ Gyro _Y
√ √ √

ME_ Gyro _Z
√ √ √

SMAMCS_ Gyro _X
√

SMAMCS_ Gyro _Y
√

SMAMCS_ Gyro _Z
√ √ √ √ √ √

SMA_Acc_Gyro
√

E_Acc_Gyro
√

Wavelet_STD_dD3_Acc_X
√ √ √ √

Wavelet_STD_dD3_Acc_Y
√ √

Wavelet_STD_dD3_Acc_Z
√ √

Wavelet_RMS_aD2_Acc_X
√ √

Wavelet_RMS_aD2_Acc_Z
√ √

Wavelet_RMS_aD4_Acc_Z
√

Wavelet_RMS_dA3_Acc_X
√ √ √ √

Wavelet_RMS_dA3_Acc_Z
√

Wavelet_RMS_dD3_Acc_X
√

Wavelet_RMS_dD3_Acc_Z
√
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Table A5. The list of selected features due to the different activity datasets in the unbalanced scenario.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

Avg_Acc_X
√ √ √ √

Avg_Acc_Y
√ √ √ √ √ √

Avg_Acc_Z
√ √ √ √ √

Avg_Acc_N
√ √ √ √ √

SD_Acc_X
√ √ √

SD_Acc_Y
√ √ √

SD_Acc_Z
√

SD_Acc_N
√ √

MinMax_Acc_X
√ √

MinMax_Acc_Y
√ √ √

MinMax_Acc_Z
√

MinMax_Acc_N
√ √ √

MEA_Acc
√ √ √

ME_Acc_XY
√ √ √

ME_Acc_XZ
√ √

ME_Acc_YZ
√ √ √ √ √

SMAMCS_Acc_X
√ √ √

SMAMCS_Acc_Y
√ √ √ √

SMAMCS_Acc_Z
√ √ √ √ √

Spec 3_ Acc _Y
√

Avg_ Gyro _X
√

Avg_ Gyro _Z
√

Avg_ Gyro _N
√ √ √ √

SD_ Gyro _X
√ √

SD_ Gyro _Y
√ √

SD_ Gyro _Z
√ √ √

MinMax_ Gyro _X
√ √ √

MinMax_ Gyro _Y
√

MinMax_ Gyro _Z
MinMax_ Gyro _N

√ √

Var_ Gyro _X
√ √

Var_ Gyro _Y
√

Var_ Gyro _Z
√ √

Var_MI_ Gyro
√ √

SMA_ Gyro
√ √ √

E_ Gyro
√ √ √

Wavelet_RMS_aD2_Acc_X
√ √ √

Wavelet_RMS_aD2_Acc_Z
√

Wavelet_RMS_dA3_Acc_X
√ √ √

Var_Acc_X
√ √ √ √

Var_Acc_Y
√ √

Var_Acc_Z
√

Var_MI_Acc
√ √ √

SMA_Acc
√ √ √ √ √

E_Acc
√ √ √

MC_Acc_XY
√

ME_Acc_X
√ √ √ √

ME_Acc_Y
√ √ √ √

ME_Acc_Z
√ √ √

MMA_Acc
√

MVA_Acc
√ √

MC_ Gyro _XY
√ √
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Table A5. Cont.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

MC_ Gyro _XZ
√ √ √ √ √

MC_ Gyro _YZ
√

ME_ Gyro _X
√ √ √ √

ME_ Gyro _Y
√ √ √

ME_ Gyro _Z
√ √ √

SMAMCS_ Gyro _X
√ √ √

SMAMCS_ Gyro _Y
√ √

SMAMCS_ Gyro _Z
√ √ √ √

SMA_Acc_Gyro
√

E_Acc_Gyro
√ √

ME_Acc_Gyro_X
√ √ √

ME_Acc_Gyro_Y
√ √

ME_Acc_Gyro_Z
√ √ √

SMAMCS_Acc_Gyro_X
√

SMAMCS_Acc_Gyro_Y
√ √

SMAMCS_Acc_Gyro_Z
√ √ √ √

Wavelet_STD_aD2_Acc_Y
√

Wavelet_STD_dA3_Acc_X
√ √

Wavelet_STD_dA3_Acc_Y
√ √ √

Wavelet_STD_dA3_Acc_Z
√ √

Wavelet_STD_dD3_Acc_X
√ √ √ √

Wavelet_STD_dD3_Acc_Y
√ √ √

Wavelet_STD_dD3_Acc_Z
√

Wavelet_RMS_dA3_Acc_Z
√

Wavelet_RMS_dD3_Acc_X
√ √ √ √

Wavelet_RMS_dD3_Acc_Z
√ √

Table A6. The list of selected features due to the different activity dataset in the
feature-selected scenario.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

Avg_Acc_X
√ √ √ √ √ √

Avg_Acc_Y
√ √ √ √ √ √

Avg_Acc_Z
√ √ √ √ √

Avg_Acc_N
√ √ √ √ √ √

SD_Acc_X
√ √ √ √

SD_Acc_Y
√

SD_Acc_Z
√ √

SD_Acc_N
√ √ √ √

MinMax_Acc_X
√ √

MinMax_Acc_Y
√ √ √

MinMax_Acc_Z
√ √

MinMax_Acc_N
√ √ √

Var_Acc_X
√ √ √

Var_Acc_Y
√ √

Var_Acc_Z
√

Var_MI_Acc
√ √ √

SMA_Acc
√ √ √ √

E_Acc
√ √ √ √ √

Avg_ Gyro _N
√ √ √ √

SD_ Gyro _X
√ √

SD_ Gyro _Y
√

SD_ Gyro _Z
√ √ √

SD_Gyro_N
√

MinMax_ Gyro _X
√

MinMax_ Gyro _Y
√
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Table A6. Cont.

Feature Name Walk Jog Skip Stay Stairs up Stairs down

MinMax_ Gyro _Z
√

MinMax_ Gyro _N
√ √

Var_ Gyro _X
√ √ √ √

Var_ Gyro _Y
√ √

Var_ Gyro _Z
√

Var_MI_ Gyro
√

SMA_ Gyro
√ √ √ √

E_ Gyro
√ √ √

MC_ Gyro _XY
√ √

MC_Acc_XY
√

MC_Acc_YZ
√ √

ME_Acc_X
√ √ √ √ √

ME_Acc_Y
√ √ √ √

ME_Acc_Z
√ √ √

MMA_Acc
√ √ √ √

MVA_Acc
√ √

MEA_Acc
√ √ √ √

ME_Acc_XY
√ √ √ √

ME_Acc_XZ
√ √ √ √

ME_Acc_YZ
√ √ √ √

SMAMCS_Acc_X
√ √ √ √ √

SMAMCS_Acc_Y
√ √ √ √

SMAMCS_Acc_Z
√ √ √ √ √

Spec3_Acc_N
√

Spec5_Acc_Y
√

Spec9_Gyro_Z
√

Avg_ Gyro _Y
√

SMA_Acc_Gyro
√ √

E_Acc_Gyro
√

ME_Acc_Gyro_X
√ √ √ √ √

ME_Acc_Gyro_Y
√ √ √

ME_Acc_Gyro_Z
√ √ √ √

SMAMCS_Acc_Gyro_Y
√ √ √ √ √

SMAMCS_Acc_Gyro_Z
√ √ √ √ √

Wavelet_E_Acc_Z
√

Wavelet_STD_aD2_Acc_X
√ √

Wavelet_STD_aD2_Acc_Y
√ √

Wavelet_STD_aD2_Acc_Z
√

Wavelet_STD_dA3_Acc_X
√ √

Wavelet_STD_dA3_Acc_Y
√ √ √

Wavelet_STD_dA3_Acc_Z
√ √ √

Wavelet_STD_dD3_Acc_X
√ √ √ √

Wavelet_STD_dD3_Acc_Y
√ √

MC_ Gyro _XZ
√ √ √ √ √

MC_ Gyro _YZ
√ √

ME_ Gyro _X
√ √ √ √

ME_ Gyro _Y
√ √ √ √ √

ME_ Gyro _Z
√ √ √ √ √

SMAMCS_ Gyro _X
√

SMAMCS_ Gyro _Y
√

SMAMCS_ Gyro _Z
√ √ √ √ √

Var_MI_Acc_Gyro
√ √

Wavelet_STD_dD3_Acc_Z
√ √

Wavelet_RMS_aD2_Acc_X
√ √

Wavelet_RMS_dA3_Acc_X
√

Wavelet_RMS_aD4_Acc_Z
√

Wavelet_RMS_dA3_Acc_X
√ √

Wavelet_RMS_dA3_Acc_Z
√ √

Wavelet_RMS_dD3_Acc_X
√ √

Wavelet_RMS_dD3_Acc_Y
Wavelet_RMS_dD3_Acc_Z

√ √
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