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Abstract: With the increasing popularity of RGB-depth (RGB-D) sensor, research on the use of RGB-D
sensors to reconstruct three-dimensional (3D) indoor scenes has gained more and more attention.
In this paper, an automatic point cloud registration algorithm is proposed to efficiently handle the
task of 3D indoor scene reconstruction using pan-tilt platforms on a fixed position. The proposed
algorithm aims to align multiple point clouds using extrinsic parameters of the RGB-D camera
obtained from every preset pan-tilt control point. A computationally efficient global registration
method is proposed based on transformation matrices formed by the offline calibrated extrinsic
parameters. Then, a local registration method, which is an optional operation in the proposed
algorithm, is employed to refine the preliminary alignment result. Experimental results validate the
quality and computational efficiency of the proposed point cloud alignment algorithm by comparing
it with two state-of-the-art methods.

Keywords: point cloud registration; point cloud alignment; indoor scene reconstruction; multi-view
calibration; RGB-D mapping

1. Introduction

Three-dimensional (3D) scene reconstruction is an important issue for several applications of
robotic vision such as map construction [1], environment recognition [2], augmented reality [3,4], and
simultaneous localization and mapping (SLAM) [5,6]. Furthermore, 3D scene reconstruction usually
requires numerous types of sensors such as stereo cameras, RGB-depth cameras, time-of-flight (TOF)
cameras, lasers, and LIDAR. In this paper, we discuss how to employ RGB-D camera data for 3D
scene reconstruction applications. RGB-D cameras use the structured light technique [7] to re-project
the dispersed 3D data point set. The 3D colored point cloud information is obtained by using the
RGB-D feature of combining two-dimensional (2D) RGB and depth images. Each frame of the RGB-D
point cloud information has an independent coordinate system, which can be defined as the camera
coordinate system Ci at time i. When reconstructing a system, we expect to map each coordinate
system Ci to the same world coordinate system W, which serves as the same mapping target for each
coordinate system Ci. Therefore, in addition to defining a world coordinate system W, transformation
matrices that transform each coordinate system Ci to the world coordinate W are required. In our
method, extrinsic parameters obtained from camera calibration are used to derive the transformation
matrices which are then used to achieve a coarse reconstruction. Finally, some of the existing fine
registration methods are employed to conduct the optimal 3D scene reconstruction.

Until now, several multi-view camera calibration studies have been performed with the aim of
obtaining the transformation matrices for the transformation between different views. Transformation
matrices have been used in numerous applications, for example, in a previous report [8], the bundle
adjustment method was proposed to be employed to calibrate multi-view stereo cameras. In another
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report [9], the use of landmarks in a given scene as calibration references was proposed and the
existing feature-matching methods were employed in the study to conduct multi-view landmark
matching. Multi-view camera calibration was achieved in this manner, based on which a novel camera
sequence method was suggested for integrating the information in an entire system and promoting
the robustness of future applications. Li et al. [10] recommended using a feature description-based
method, instead of the traditional checkerboard methods for camera calibration, by employing a special
reference diagram as the camera calibration reference point in the feature description matching. In this
study, we use the most common checkerboard multi-view camera calibration method to obtain the
transformation relationships for different rotation angles, and apply them for point cloud registration.
Holz et al. [11] documented the basic implementation method of using a point cloud library (PCL) to
conduct registration. The method primarily involved capturing and aligning the feature descriptors to
conduct an initial registration of the point clouds, and using the classic iterative closest point (ICP) [12]
method to achieve fine registration. For all the operations, relevant application programming interfaces
were provided by the PCL.

Local registration methods have proven to be able to generate an accurate reconstruction model if
multiple point clouds are close enough to each other. Recently, several local registration methods with
a higher accuracy have been proposed. Some studies [13,14] provide an overview of the fine and coarse
registration methods. According to Reference [14], there are four types of local registration methods:
the ICP method, Chen’s method [15,16], signed distance fields [17], and genetic algorithms [18].
Here, we chose the ICP method for our research because it is the most commonly used method in
practice. The ICP method was proposed by Besl et al. [12] for the efficient registration of 3D shapes
including free-form curves and surfaces. Subsequently, various extensions of the ICP method have
emerged. Rusinkiewicz et al. [19] derived an ICP variant based on the uniform sampling of the space
of normals which could provide comparatively good convergence results for relatively small scenes
and sparse features. Low [20] suggested approximating the nonlinear least-squares optimization
problem with a linear least-squares problem to solve the point-to-plane ICP algorithm. The author
used an approximation method to increase the efficiency for determining the optimal solution. Serafin
and Grisetti [21] formulated a new optimized cost function that included not only the point-to-point
distance, but also surface normals or tangents; the new function was shown to not only increase
the convergence speed, but also be advantageous in regard to the function robustness. For example,
in a report [22] a system called KinectFusion was proposed; the system was based on a graphics
processing unit (GPU)-accelerated ICP method and used a handheld moving Kinect to reconstruct
indoor 3D scenes.

Feature descriptors are a technique that has been developed over a long time, evolving from the
original 2D image feature descriptors to the current several 3D feature descriptors. Compared with
2D descriptors, 3D descriptors are richer in geometric information. Regardless of the computational
efficiency decline owing to the increase in information, 3D descriptors can provide more accurate
information regarding 3D objects or scenes. Rusu et al. [23,24] recommended the point feature
histogram (PFH) descriptor, and further improved it to yield the fast point feature histogram
(FPFH) [25] that was applied to point registration problems. FPFH significantly reduced the
computational load of PFH by using some cache methods and modifying a few formulas; consequently,
PFH was able to immediately achieve 3D point registration. Tombari et al. [26] recommended the
signature of histograms of orientations (SHOT) descriptor, and reviewed some of the existing methods,
classifying them as signatures and histograms methods. Then, the two types of methods were
combined to generate a new 3D descriptor method, with the SHOT information lying between the
signatures and histograms, and exhibiting both their features. Nascimento et al. [27] suggested a
binary appearance and shape elements (BASE) descriptor that integrated both the intensity and shape
information of a point cloud, and it was established in binary, thereby significantly enhancing the
matching speed. Furthermore, the BASE descriptor could be applied to the scenes that were under
poor lighting conditions and had sparse textures. Schmiedel et al. [28] proposed the interest-robust
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normal distribution transforms (NDT)-map (IRON) descriptor and applied it to robot localization; this
descriptor was a feature descriptor used to reflect surface curvatures and object shapes, and it was
established via NDT mapping.

On the other hand, a different way to reconstruct 3D indoor scenes using multiple RGB-D cameras
can be interpreted as a fusion of depth maps obtained from different views, which is known as RGB-D
image stitching [29,30]. In Reference [29], Song et al. proposed a rotated top-bottom dual-Kinect
system to extend the field of view (FOV) of depth scanning based on the synchronized alignment of
two RGB-D sensors. In other words, they employed two Kinects to maximize the FOV by stitching two
depth images together to form a depth panorama; however, their system requires at least two RGB-D
cameras to accomplish the RGB-D image stitching task. Recently, Li et al. [30] proposed an image-based
RGB-D image stitching method that uses the registration data from color images to register depth
maps. In other words, a calibration process is firstly conducted to find the relationship between the
depth map and the color image, which is then used to align the depth map with the color image.
By doing so, the problem of registering depth maps can be transformed into the problem of color
image stitching, which usually requires significant computation and is difficult to run in real time.

From the above literature review, it can be seen that most of the modern point cloud alignment
algorithms require a lot of computing power. With a greater amount of valid data in the point cloud,
the required amount of computing will grow in a non-linear fashion. To improve the processing speed
of point cloud alignment, this paper presents a novel calibration-based method which employs camera
calibration techniques to find out the transformation matrices between some prefixed motor control
points in the offline state, and then uses these transformation matrices directly in the online state.
However, current camera calibration approaches usually induce calibration errors in the extrinsic
transformation matrices, which may cause large errors in the registration result. To overcome this issue,
an alignment calibration method is proposed to refine the calibrated transformation matrices. Unlike
the FOV extension approaches in [29,30], the proposed method uses a single RGB-D sensor combined
with a sequential panning-tilting capturing process to produce an accurate global registration result.
Moreover, the computational load of the proposed method is very low because it only needs a simple
coordinate transformation computation for each input point cloud data.

The following content describes the indoor scene reconstruction system that is proposed in this
study. First, we introduce the related work in Section 2, including a simple description and classification
of the current registration methods. Second, Section 3 systematically presents the processing steps of the
proposed offline and online operations. Next, Section 4 provides the implementation details, including
the offline mathematical models for system calibration and the coordinate system transformation
methods for online operations. Last, we compare the details of several different point cloud alignment
methods and present the results in Section 5. The conclusion is given in Section 6.

2. Related Work

Point registration has been a very actively researched topic. It is the process of performing a
transformation to determine the mapping relationship between two point clouds in the 3D space.
A transformation relationship can be expressed in terms of rotation and translation, using camera
calibration models to describe how cameras project 3D scenes to 2D images. In the following expression
for a camera calibration model
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we see that 2D-3D projection is determined by an extrinsic parameter matrix
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w is a rotation matrix and tc

w is a translation vector from the
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world frame to the camera frame. Then,
[

u v 1
]T

is a homogenous coordinate of a 2D pixel on

the image plane, whereas
[

x y z 1
]T

is a homogenous coordinate of a 3D point in the world
frame. s is a size ratio related to the depth of field, and it can be obtained from the depth images of a
RGB-D camera.

Assume that there are two point data pi ∈ P and qj ∈ Q, where pi = [xi, yi, zi]
T is the ith point

of the point cloud P and qj = [xj, yj, zj]
T is the jth point of the point cloud Q. If there is a mapping

relationship between pi and qj, the Euclidean distance can be expressed as ‖pi − qj‖. To reduce the
distance, we must define a cost function in terms of the rotation matrix Rq

p and translation vector tq
p

between two point clouds P and Q. According to Reference [31], there are three different types of
point cloud registrations—namely global, local, and local descriptors registration—to provide the
3D coordinate rotation matrix Rq

p and translation vector tq
p. In the following section, we describe the

difference between these three types of registrations and introduce their representative methods.

2.1. Local Registration

In this method, the distance between two point clouds should be short enough. Given a distance
that is sufficiently short, a more accurate and rigid transformation may be obtained with the local
registration of point clouds. Recently, the most dominant method has been the ICP method which
determines the adjacent points in the two close point clouds P and Q, and defines a cost function Eq

p
as follows:
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where pl
k and ql

k are the point correspondences that are sufficiently close to each other. Elocal is the
sum of the errors of all the N point correspondences and k is the corresponding index. Then, an
optimization method can be employed to determine the optimal Elocal. The advantage of this process is
that it can evaluate the corresponding data points that are sufficiently close enough to each other, and
thereby achieve a more accurate registration; however, this method has a prerequisite that the initial
point clouds should be close enough to each other.

To minimize the cost function (Equation (2)), the random sample consensus (RANSAC) method
can be implemented to iteratively obtain the optimal rotation matrix Rq

p and translation vector tq
p.

This process is advantageous in that it is able to determine the corresponding point clouds, which are
sufficiently close to each other and generate a registration that is more accurate. In addition to the
requirement of a short enough distance between the two initial point clouds, this process also involves
significant computation. Segal et al. [32] proposed a new plane-to-plane ICP method incorporating the
original and point-to-plane ICP methods, and demonstrated that the new method could provide better
experimental results than the previous two methods.

2.2. Global Registration

Global registration can be initiated with two point clouds in any status, without requiring them to
be close enough to each other, and is able to obtain a result similar to local registration. Several methods
belong to the category of methods globally searching the point correspondences between two sets
of point clouds or image features. Alternatively, a few methods employ some geometric approaches
to determine the local point correspondences, i.e., the four-point congruent sets (4PCS) method [33].
When the point correspondences in the point clouds P and Q are obtained, the cost function can be
defined as Eq

p(R
q
p, tq

p)
∣∣∣
pg

k∈P,qg
k∈Q

, where pg
k and qg

k are the detected point correspondences. Next, the

cost function Eq
p can be obtained using an optimization method. The advantage of this process is that

the point cloud registration can be conducted at a random position, but this process usually has a
higher degree of computation complexity as compared with local registration. In Reference [33], the
4PCS method is proposed for global registration. Figure 1 illustrates a schematic of the four-point
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algorithm in the 4PCS method. This method randomly three points in a point cloud, referred to as
p1, p2, and p3, and then uses a three-point plane to determine a fourth point p4. Subsequently, this
method employs the cross-connected lines to obtain a cross point e, and calculates the ratio of the
cross point distance r1 = ‖p1 − e‖/‖p1 − p2‖ and r2 = ‖p3 − e‖/‖p3 − p4‖. Given r1 and r2, all the
points in the point cloud Q can now be connected, and the online candidates e1 = qi + r1(qj − qi)

and e2 = qi + r2(qj − qi) can be calculated according to r1 and r2. When the candidates e1 and e2

overlap with each other, the four points that correspond to P can be evaluated. With the four points, it
is possible to obtain the rotation matrix Rq

p and translation vector tq
p in the 3D space. The advantage of

global registration is that this method can conduct point cloud registration at a random position, but
this method usually leads to larger registration errors as compared with local registration.
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2.3. Local Descriptors Registration

Local descriptor registration requires a feature descriptors matching process to search for point
correspondences in two point clouds, with the data of the two point clouds not required to be close to
each other initially. By contrast, local and global registration methods search for point correspondences
locally or globally under certain conditions without using feature descriptors, leading to an inefficient
point correspondence determination process.

The feature descriptors usually contain information about point features in a local region such
as surface, normal, signature, and texture. In this method, the feature descriptors may be extracted
by different approaches to have the search capability for the point correspondences. By using feature
descriptors to search for similar points that are the most close to one another in terms of the Euclidean
distance, we can determine the point correspondences pd

k ∈ P and qd
k ∈ Q in two point clouds, with

k as the corresponding index. Furthermore, we can use the point correspondences to define the cost
function as Eq

p(R
q
p, tq

p)
∣∣∣
pd

k∈P,qd
k∈Q

.

A relatively classic descriptor is the PFH descriptor which extracts the translation invariance
feature from a key point. This feature descriptor is a 3D data that is related to the angles between
the key point and an adjacent point. In a study [26], further developments have been made to
this feature descriptor to obtain the FPFH descriptor that was used in point registration problems.
It was shown that the computation could be significantly reduced by using some cache methods
and modifying formulas, and, therefore, the 3D point registration could be conducted instantly.
Zhou et al. [34] recommended a fast global registration method based on FPFH which allowed rapid
registration convergence; compared with some of the existing methods, this method was a more
real-time computation while having a certain registration accuracy.

3. System Architecture

In this section, we introduce the system architecture proposed in this study. Figure 2 illustrates
the system architecture of the 3D scene reconstruction. First, the point cloud information for the scene
reconstruction has to be obtained via device sensing. In an indoor scene, we can use a pan-tilt-driven
RGB-D camera to record parts of the scene. It can be seen from Figure 3 that a camera driven by
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the pan-tilt records continuous frames F1, F2, and F3. Here, T2
1 is the view transformation matrix to

transform F1 to F2, whereas T3
2 is the view transformation matrix to transform F2 to F3. Fi contains the

information of the RGB and depth images, which are transformed—with tools—to yield the color point
cloud information Pi = {{p1, c1}, {p2, c2}, ...}. Here, pj = [xj, yj, zj]T is the position of point j in a point
cloud (in the Fi coordinate) and cj = [rj, gj, bj]T is the color of point j in the point cloud. Given that each
Fi has its own coordinate system, it is necessary to use the transformation matrix T0

i to combine those
coordinates into one. Note that the proposed system does not include processes of feature matching,
outlier removal, and motion estimation, because the required transformation matrices are obtained
from the offline calibration. This design greatly reduces the processing time of 3D scene reconstruction
and is also the main difference between the proposed method and the existing ICP-based methods.
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3.1. Forward Kinematics Approach

Because the RGB-D camera is driven by a pan-tilt device, the transformation matrix can be directly
obtained from a forward kinematics analysis of the motion platform [35]. Figure 4 illustrates the motion
model of a pan-tilt device considered in the proposed system. Because the coordinate transformation
of the camera frame is determined by connection links of the pan-tilt unit, it is mandatory that the
transformation between each connection should be taken into consideration. Given that the pan, tilt,
RGB-D camera, and camera frames are all on different coordinate axes, the corresponding forward
kinematics Equation can be derived from the conventional Denavit-Hartenberg (D-H) link parameter
method [36], which defines four D-H link parameters: the link length ak, the link twist αk, the link
offset dk, and the joint angle θk. Table 1 shows the D-H link parameters of the pan-tilt device used in
the experiment (see Section 5). According to Table 1, the transformation matrix between k−1 and k
joint frames can be computed by

Ak−1
k = Rz(θk)Tz(dk)Tx(ak)Rx(αk

)

=


cθk −sθk 0 0
sθk cθk 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 dk
0 0 0 1




1 0 0 ak
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cαk −sαk 0
0 sαk cαk 0
0 0 0 1



=


cθk −sθk cαk sθk sαk akcθk

sθk cθk cαk −cθk sαk aksθk

0 sαk cαk dk
0 0 0 1


(3)

where cθ ≡ cos θ and sθ ≡ sin θ. Based on the joint coordinate transformation in Equation (3), the
forward kinematics Equation of the pan-tilt device can be obtained by chain multiplying four link
transformation matrices such that

T0
i =

4

∏
k=1

Ak−1
k =


sθp −cθp cθt+90 cθp sθt+90 a3sθp + a2cθp cθt+90

−cθp −sθp cθt+90 sθp sθt+90 a2sθp cθt+90 − a3cθp

0 −sθt+90 −cθt+90 d1 + a2sθt+90
0 0 0 1

 (4)

where θp and θt denote the pan angle and the tilt angle of the device, respectively. Therefore, the
transformation matrix in Equation (4) can be used to align the point cloud at the frame Fi to F0 directly.
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Table 1. D-H link parameters of the pan-tilt device used in the experiment.

k αk (deg) ak (mm) dk (mm) θk (deg)

1 90 0 45 θp
2 90 74.466 0 θt + 90
3 0 23 0 −90
4 0 0 0 180

3.2. Camera Calibration Approach

Another way to obtain the transformation matrix information of each Fi coordinate frame pertains
to the offline calibration of the device. In this approach, the motor must be rotated to generate different
camera views, and the rotation control is achieved via offline decision-makers. The following are the
steps for the offline calibration operations:

1. Start to capture the initial frame F0, and define its coordinate as a world coordinate W.
2. Conduct multi-view calibration to obtain the extrinsic parameter matrix for the initial

world coordinate.
3. Control the motor and allow it to rotate to the next point.
4. Capture the frame Fi, and conduct multi-view calibration to obtain the extrinsic parameter matrix.
5. Generate point cloud Pi, and conduct point cloud alignment calibration to obtain the

transformation matrix.
6. If completed, store all the transformation matrices; otherwise, go back to Step 3 to make a decision.

Therefore, prior to a scene reconstruction, we require conducting offline calibration to obtain
multi-view transformation matrices. The implementation of offline calibration will be discussed in
detail in Section 3.

With respect to online operation, we first develop a model for the 3D scene reconstruction.
Because this system consists of a motor-controlled and point cloud-registered part, the online
decision-makers are entirely responsible for the allocation and processing. Subsequently, 3D scene
reconstruction is conducted according to the following steps:

1. Start to capture the initial frame F0 and generate point cloud P0, and define the coordinate of the
point cloud P0 as the world coordinate W.

2. Control the motor and allow it to rotate to the next point, wait until the motor rotates to the fixed
point, and then haul back the motor to complete the command.

3. Capture the frame Fi and generate a point cloud Pi.
4. Transform the point cloud Pi to Pi

0 using the corresponding transformation matrix Ti
0 estimated

in the offline calibration.
5. If completed, generate the initial 3D scene reconstruction model; otherwise, go back to Step 3 to

make a decision of aligning the next point cloud.
6. If the fine registration step is enabled, then use one of the existing ICP methods to refine the

initial 3D scene reconstruction model; otherwise, use the initial 3D scene reconstruction model as
the final result.

7. Generate the final 3D scene reconstruction model.

When the 3D scene reconstruction is complete, the outlier points can be removed using some of
the existing outlier removal methods [37,38]. The detailed operations of the point cloud registration
will be presented in Section 4.

4. The Proposed Method

This study primarily proposes a 3D scene construction method that integrates motor control and
camera calibration. The camera calibration is conducted via a camera to first detect and identify a key
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point in the checkerboard. With offline calibration, a relative transformation matrix for the camera in a
fixed position can be obtained and used for global registration. In the following content, we present
the offline calibration and global registration methods proposed by us, and also introduce how to
integrate them with local registration.

4.1. Offline Calibration

This subsection primarily introduces the proposed offline calibration method of generating
multi-view transformation matrices based on multi-view camera calibration. Suppose that the intrinsic
parameter matrix K can be obtained by fixing the extrinsic parameter matrix as [ I 03×1 ] (do not
move the view) and using camera calibration [10]. Our method aims to obtain the extrinsic parameter
matrix between the initial frame F0 and the ith frame Fi. Figure 5 illustrates the different images in
which the object (checkerboard) exists in each image captured from a different view. In this approach,
the intrinsic parameters are fixed, whereas the extrinsic parameter matrices are obtained via camera
calibration. Based on the extrinsic parameters, the following formula is obtained:[

Pi
1

]
=

[
Ri

r ti
r

01×3 1

][
Pr

1

]
= Ti

r

[
Pr

1

]
(5)

where Pr is the coordinate of the key point on the checkerboard that is used as the coordinate system. Ti
r

is the transformation matrix to map Pr to Pi. With camera calibration, we can obtain the transformation
matrices at different views. Next, we want to obtain the relative transformation matrix between two
views. Provided that F0 is defined as the world coordinate W, we can assume that all Pi should be
transformed to F0, and we thereby obtain the following formula:

(Ri
r)

T
Pi − (Ri

r)
T

ti
r = (R0

r )
T

P0 − (R0
r )

T
t0
r (6)

Then we expand and reorganize Equation (6) to form a complete transformation formula of Pi to
F0 such that

R0
i Pi + t0

i = R0
r (R

i
r)

T
Pi −R0

r (R
i
r)

T
ti
r + t0

r (7)

where we define the rotation matrix R0
i = R0

r (Ri
r)

T for the transformation of Pi to the F0 coordinate

system and the translation vector t0
i = −R0

r (Ri
r)

Tti
r + t0

r . Finally, we calculate a transformation matrix
of each view according to Equation (7), and thereby obtain all the transformation matrices as follows:

T0
i =

[
R0

i t0
i

01×3 1

]
(8)

These are the initial transformation matrices that are obtained by applying linear methods to
the 2D point correspondences. However, these transformation matrices encounter calibration errors,
which may deteriorate the registration result. To deal with this issue, we include fine registration in
the offline calibration, a step that needs the identifiable geometric features of a scene. We can place
some simple geometric objects in the scene as shown in Figure 6, in which each scene contains some
geometric objects in addition to the board. The next step is to conduct 3D point alignment calibration,
and this step requires local registration for conducting calibration. Here, we choose to use ICP. Because
we can choose the way that the objects are placed in a scene to obtain good results, we do not need
to select a complex method as long as the geometric objects are separated enough from one another
and are representative. This part must be conducted using two adjacent point clouds. Suppose that
point cloud P0

i which consists of each point Pi and P0 can be obtained after the transformation matrix
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in Equation (8), and, therefore, two adjacent point clouds can be denoted as P0
i−1 and P0

i . Next, with
alignment calibration, we can obtain a refinement transformation between P0

i−1 and P0
i as follows:

P0
i−1 = R(i)

0 P0
i + t(i)0 (9)

where R(i)
0 and t(i)0 are the ith refinement rotation matrix aligning P0

i to P0
i−1 in the F0 coordinate

system and the ith refinement translation vector, respectively. Given that P0
i and P0

i−1 are all in the
F0 coordinate system, we can substitute Equation (7) into Equation (9) to form a new transformation
relationship as follows:

P0
i−1 = R(i)

0 R0
i Pi + R(i)

0 t0
i + t(i)0 (10)

According to Equation (10), we can obtain the aligned transformation matrix against the
calibration errors such that

T̂0
i =

[
R(i)

0 R0
i R(i)

0 t0
i + t(i)0

01×3 1

]
(11)

Finally, the information of these transformation matrices is stored for use in the online operation.
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Figure 5. Illustration of recording images of a fixed reference diagram from different views. The images
from left to right indicate the camera views that are rotated from left to right.
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Figure 6. Illustration of the scene of point alignment calibration that is used in offline calibration.
These scenes contain the same geometric objects.

4.2. Online Operation

This subsection primarily introduces how to use the multi-view transformation matrices to
achieve initial and fine registration. Given that we have stored the transformation matrices in offline
calibration, it will be easy for us to rapidly achieve initial registration. In Section 3, we introduced the
initial world coordinate W and defined it as the coordinate of F0, while all the transformation matrices
that we have obtained map to F0. First, we take F1 as an example. Provided that we want to let point
cloud P1 of F1 be transformed to F0, we can use the following formula:

P0
1 = T̂0

1P1 (12)
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Here, P0
1 is the transformed point cloud P1 in the F0 coordinate system. When the point clouds at

all the views are processed by Equation (12), we can obtain an initial reconstructed 3D scene model
Pw =

{
P0, P0

1, P0
2, . . . , P0

N
}

, where N represents the number of multiple views.
Furthermore, an optional fine registration can be used to reduce the convergence error between

the cloud point of P0 and that of P1. In other words, we conduct fine registration by using some
existing local registration methods, such as ICP. After refining the transformation matrix, the new
point cloud will be generated as shown below,

P̂0
1 = T̃(1)

0 P0
1 (13)

where P̂0
1 is the point cloud P1 transformed to the F0 coordinate after local registration. T̃(1)

0 is a refined
transformation matrix that is generated with the fine registration of point cloud P0

1 which has already
been subjected to the initial registration. If the point clouds at all the views are treated according to
Equations (12) and (13) and then combined into the same coordinate of F0, we can finally obtain a
better reconstructed 3D scene model P̂w =

{
P0, P̂0

1, P̂0
2, . . . , P̂0

N
}

.

5. Experimental Results

Because the proposed algorithm is based on the combination of pan-tilt camera control and
coordinate transformation to perform point cloud alignment, we did not use the existing public
database in the experiment due to the requirement of offline calibration. A RGB-D camera and a
pan-tilt platform were used in the experiment. We used the ASUS Xtion Pro RGB-D camera (ASUSTek
Computer Inc., Taipei, Taiwan) [39] and mounted the RGB-D camera on the FLIR E46-17 pan-tilt
platform (FLIR Motion Control System Inc., Goleta, CA, USA) [40], as shown in Figure 7. Table 2 shows
the specifications of the FLIR E46-17 pan-tilt platform, which was used to drive the RGB-D camera for
capturing indoor scene point clouds. Two state-of-the-art methods were employed in the experiment
to compare with the proposed method. The first one is the fast global registration (FGR) method
proposed in Reference [34], and the second one is the Super4PCS method proposed in Reference [31].
These two methods do not require offline calibration and usually can provide robust and accurate
registration results. Moreover, we also employed the ICP algorithm as the refinement process for all
methods used in the experiment. All experiments were carried out on an Ubuntu 14.04 notebook
computer equipped with Intel Core i7-3530M CPU and 8 GB memory.
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camera [39] mounted on an E46-17 pan-tilt platform [40].
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Table 2. Specifications of the E46-17 pan-tilt platform [40].

Rated Payload Maximum Speed Position Resolution Tilt Range Pan Range

2.72 Kg 300◦/s 0.013◦ −47◦ to +31◦ −159◦ to +159◦

5.1. Point Cloud Registration Results

Figure 8 presents the comparison results between the proposed method (Equation (11)) and
the forward kinematics method (Equation (4)). Visually observing Figure 8 finds that both methods
provide similar point cloud registration results. Therefore, the correctness of the forward kinematics
Equation (4) is verified. Figure 9 shows the experimental results of point cloud registration obtained
from the proposed and the state-of-the-art methods. In this experiment, the minimum distance between
the scene and the camera is about 1 m. In Figure 8, the pictures listed in the left column are two original
point clouds captured from different viewers in the same scene. We can see from Figure 9 that all
methods succeed in aligning the two point clouds. The pictures listed in the second column are the
results of the proposed method, which illustrate that an initial registration result (the upper second
column) can be obtained efficiently. The third column of the pictures presents the registration results
of the Super4PCS method. Only using Super4PCS also can obtain an initial alignment result (the upper
third column), which can be further coupled with the ICP method to make a refinement result (the
lower third column). The right column of the pictures presents the registration results of the FGR
method. The initial alignment result of the FGR method is shown in the upper right column, and it
also can be improved by the ICP method to make the registration result better (the lower right column).
Figures 10–12 show the experimental results of three different rooms obtained from the proposed
and the compared methods. One can see that the proposed method still provides a competitive point
cloud registration performance in comparison to the Super4PCS and FGR methods. Figure 13 shows
the registration results of the Room 1, Room 2, and Room 3 datasets obtained from the proposed
method; each dataset contains 15 point clouds captured in different camera views that need to be
aligned. One can see that the initial registration results of the proposed method are very close to the
ICP refined ones. Therefore, the above experimental results validate the efficiency and robustness of
the proposed method.
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Figure 9. Experimental results of the 1 m dataset (a minimum of 1 m distance between the scene and 
the camera). The left column is the original point cloud data, the upper second column is the 
experimental result of the proposed method, and the lower second column is the result of the 
proposed method + ICP. The upper third column is the experimental result of Super4PCS, and the 
lower third column is the result of Super4PCS + ICP. The upper fourth column is the experimental 
result of FGR, and the lower fourth column is the result of FGR + ICP. 
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Figure 9. Experimental results of the 1 m dataset (a minimum of 1 m distance between the scene
and the camera). The left column is the original point cloud data, the upper second column is the
experimental result of the proposed method, and the lower second column is the result of the proposed
method + ICP. The upper third column is the experimental result of Super4PCS, and the lower third
column is the result of Super4PCS + ICP. The upper fourth column is the experimental result of FGR,
and the lower fourth column is the result of FGR + ICP.
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Figure 11. Experimental results of the Room 2 dataset.
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Figure 13. Registration results of the proposed method. (a) The initial registration result and (b) the 
refined registration result of the Room 1 dataset. (c) The initial registration result and (d) the refined 
registration result of the Room 2 dataset. (e) The initial registration result and (f) the refined 
registration result of the Room 3 dataset. 

5.2. Quantitative Evaluation 
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5.2. Quantitative Evaluation

To quantitatively evaluate the registration performance of the proposed and the compared
methods, we employed the root mean square (RMS) metric [41] in the experiment as follows:

RMS =

√
∑N

i=1 d2
min(i)

N
(14)

where dmin ∈ <N is a vector containing the minimum distance (in millimeters) of N closest points
between two aligned data scenes, and dmin(i) denotes the ith element of the vector dmin. To evaluate
the registration performance of the proposed aligned transformation matrix T̂0

i , Table 3 records
three online registration comparison results between the Equations (4), (8) and (11) solutions. It is
clear that the solutions of Equations (4) and (8) produce registration results with higher RMS errors
due to modeling uncertainties and camera calibration errors, respectively. In contrast, the solution
of Equation (11) produces better registration results against the calibration errors. Therefore, the
registration performance of the proposed formula in Equation (11) is validated.

Table 3. Average RMS comparison results between forward kinematics, camera calibration, and the
proposed methods.

Average RMS Online Registration Methods

Test Dataset Forward Kinematics
Equation (4)

Camera Calibration
Equation (8)

Proposed Method
Equation (11)

Room 1 18.7566 21.1770 18.4981
Room 2 26.6134 30.5964 26.3199
Room 3 19.5648 25.5299 18.3148

To investigate the effect of the minimum distance between the scene and the camera to the
registration performance, we considered three cases, 1 m, 3 m and 5 m, in the experiment. Table 4
shows the average RMS errors of the registration results in these three cases. One can observe that the
proposed method provides the best initial registration result for all three cases, followed by the FGR
method and the Super4PCS method. After the fine registration process, the FGR method yields the best
result, which is also very close to the refinement result of the proposed method. Furthermore, when the
minimum distance between the scene and the camera increases from 1 m to 3 m, the RMS error of the
proposed method just slightly increases about 0.2374 in average. In contrast, the average RMS errors of
the two compared methods increase about 8.0790 and 0.4554 for the Super4PCS and the FGR methods,
respectively. This implies that the proposed method is more robust to the variation of the distance
between the scene and the camera when compared to the two state-of-the-art methods. However, when
the minimum distance increases to 5 m, the average RMS errors of all methods increase rapidly above
about 31. This is caused by the sensor limitation of the ASUS Xtion Pro RGB-D camera, whose effective
sensing distance ranges from 0.8 m to 3.5 m. Therefore, in the case of the 5 m minimum distance, the
captured point cloud has a large number of invalid data points, which significantly deteriorates the
registration performance of the proposed and the compared methods.

Table 4 also records the RMS results of the three registration results shown in Figures 10–12. It is
clear from Table 4 that the proposed method produces the best initial registration results compared to
the FGR method and Super4PCS method. On the other hand, the ICP refinement process only makes
a minor improvement to the proposed method. Because the proposed method can provide accurate
initial registration results, the ICP refinement process is an ignorable step in the proposed multi-view
point cloud registration system.
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Table 4. Average RMS comparison results between the proposed and the state-of-the-art methods.

Test Dataset Proposed
Method Super4PCS FGR Proposed

Method + ICP
Super4PCS

+ ICP FGR + ICP

1 m dataset 19.6716 22.1680 19.7152 19.5366 20.3303 19.2841
3 m dataset 19.9090 30.2470 20.1706 19.6401 29.2774 19.0025
5 m dataset 32.0353 43.1703 33.9440 31.5003 40.6470 31.2734

Room 1 18.4981 27.0479 18.8040 18.3856 24.4929 18.4195
Room 2 26.3199 29.0571 29.5579 25.7527 25.6207 25.7157
Room 3 18.3148 20.9321 18.7524 18.2912 18.3036 18.2979

5.3. Computational Efficiency

One major advantage of the proposed method is its high computational efficiency. Table 5 shows
the average processing time of all the methods in the experiment. Observing Table 5 finds that the
processing time of the proposed method is only about 4 ms regardless of the effect of distance and
environment variations, which is much faster than the Super4PCS and the FGR methods to produce
the initial registration result. However, the ICP refinement greatly increases the processing time of
the proposed method. Therefore, without the ICP refinement process, the proposed method is able to
accurately align multi-view point clouds in real time. Note that the average processing time of the
proposed alignment calibration is about 52,914.98 ms. However, this step is only performed once in
the offline calibration process.

Table 5. Average processing time (in milliseconds).

Test Dataset Proposed
Method Super4PCS FGR Proposed

Method + ICP
Super4PCS

+ ICP FGR + ICP

1 m dataset 4.11 553,958.70 12,077.14 27,378.52 599,331.00 70,038.29
3 m dataset 3.14 528,159.80 30,508.29 17,385.10 574,146.00 119,717.10
5 m dataset 4.18 100,250.80 48,501.62 32,572.52 237,221.20 65,188.71

Room 1 3.77 636,178.79 10,902.57 40,000.84 732,519.07 60,492.71
Room 2 4.24 135,305.92 57,163.71 52,331.24 261,104.14 160,310.5
Room 3 3.90 582,703.07 25,278.57 46,932.69 671,707.43 53,883.57

6. Conclusions

In this paper, an efficient point cloud registration method is proposed to align multi-view point
clouds based on a camera calibration technique. One advantage of the proposed method is that
it converges quickly and only needs to perform point cloud transformations without any iterative
process. The proposed method consists of an offline calibration and an online operation. In the offline
calibration, the relationship between different fixed camera views is calibrated to form several specific
coordinate transformation matrices. Moreover, an alignment calibration process is proposed to obtain
more accurate transformation matrices against the calibration errors. In the online operation, the
point clouds captured from these fixed camera views can be directly and accurately aligned through
the corresponding transformation matrices. Experimental results show that the proposed method
is able to produce accurate point cloud registration results, even if no fine registration process is
performed. Furthermore, the proposed method can process in real time. The average processing time
of the proposed method is only about 4 ms running on a commercial notebook computer to align two
point clouds, which is much faster than the existing ICP-based point cloud registration approaches.
These advantages can make the registration of multi-view point clouds possibly become an online
process with high registration accuracy via a sequential panning-tilting capturing process of a single
RGB-D camera.

In the future, the proposed method will be further extended to combine with different control
platforms to facilitate a variety of 3D reconstruction applications, such as 3D dense-map building,
object model reconstruction, etc.
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