
RESEARCH ARTICLE Open Access

Quantification of tumor burden in multiple
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Abstract

Background: Whole-body diffusion weighted imaging (WB-DWI) has proven value to detect multiple myeloma
(MM) lesions. However, the large volume of imaging data and the presence of numerous lesions makes the reading
process challenging. The aim of the current study was to develop a semi-automatic lesion segmentation algorithm
for WB-DWI images in MM patients and to evaluate this smart-algorithm (SA) performance by comparing it to the
manual segmentations performed by radiologists.

Methods: An atlas-based segmentation was developed to remove the high-signal intensity normal tissues on WB-
DWI and to restrict the lesion area to the skeleton. Then, an outlier threshold-based segmentation was applied to
WB-DWI images, and the segmented area’s signal intensity was compared to the average signal intensity of a low-
fat muscle on T1-weighted images. This method was validated in 22 whole-body DWI images of patients
diagnosed with MM. Dice similarity coefficient (DSC), sensitivity and positive predictive value (PPV) were computed
to evaluate the SA performance against the gold standard (GS) and to compare with the radiologists. A non-
parametric Wilcoxon test was also performed. Apparent diffusion coefficient (ADC) histogram metrics and lesion
volume were extracted for the GS segmentation and for the correctly identified lesions by SA and their correlation
was assessed.

Results: The mean inter-radiologists DSC was 0.323 ± 0.268. The SA vs GS achieved a DSC of 0.274 ± 0.227,
sensitivity of 0.764 ± 0.276 and PPV 0.217 ± 0.207. Its distribution was not significantly different from the mean DSC
of inter-radiologist segmentation (p = 0.108, Wilcoxon test). ADC and lesion volume intraclass correlation coefficient
(ICC) of the GS and of the correctly identified lesions by the SA was 0.996 for the median and 0.894 for the lesion
volume (p < 0.001). The duration of the lesion volume segmentation by the SA was, on average, 10.22 ± 0.86 min,
per patient.

Conclusions: The SA provides equally reproducible segmentation results when compared to the manual
segmentation of radiologists. Thus, the proposed method offers robust and efficient segmentation of MM lesions
on WB-DWI. This method may aid accurate assessment of tumor burden and therefore provide insights to
treatment response assessment.

Keywords: Diffusion weighted imaging, Semi-automatic segmentation, Atlas-based segmentation, Total lesion
burden, Multiple myeloma
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Background
Multiple myeloma is a hematologic neoplasia character-
ized by an abnormal proliferation of malignant plasma
cells throughout the bone marrow with specific diagno-
sis criteria [1, 2]. Whole-body diffusion weighted im-
aging (WB-DWI) has a proven value to detect and
follow-up of MM lesions [3]. The International Myeloma
Working Group (IMWG) holds that magnetic resonance
imaging (MRI) is the gold standard for the detection of
bone marrow involvement in MM [4]. Whole-body MRI
(WB-MRI) protocols have now been standardized, which
include T1-weighted (T1w), short tau inversion recovery
(STIR) and diffusion weighted imaging (DWI) [5]. Infil-
trative bone marrow pathologies, such as MM, show
high cellularity patterns and water content while de-
creasing the amount of fat. As a result, MM lesions often
present with low signal on T1w spin echo MRI, being
easily distinguishable from yellow marrow, while show-
ing restricted diffusion. Apparent diffusion coefficient
(ADC) is an imaging biomarker that quantifies diffusion
processes within the tissues, and it is related to the ratio
of intracellular and extracellular water diffusivity. It has
been proposed as a potential imaging biomarker to as-
sess treatment response. Hypercellularity or cell swelling
causes contraction of the extracellular space, resulting in
restricted diffusion of water molecules, as indicated by a
low ADC value; on the contrary, tissues with low cellu-
larity or necrotic areas exhibit an increase of ADC value.
Combined with signal intensity on high b-value DWI
images, ADC has been shown as a good indicator of the
biophysical properties of bone metastases [6–9].
One of the biggest challenges for radiologists when

evaluating WB-MRI images is the increased volume of
data. Additionally, in patients with a large number of
MM lesions and several patterns of bone marrow in-
volvement, the quantification of the total lesion burden
by means of segmentation is challenging when using
manual delineation, on a slice by slice manner. Further-
more, the choice of a limited number of lesions, occa-
sionally engaged due to time constraints, instead of the
total lesion volume may lead to wrong treatment re-
sponse assessment. Lesion segmentation is challenging
and depend on several factors, including low image qual-
ity, a large number of lesions and limited contrast reso-
lution. These problems may be solved by utilizing
information from multiple contrasts mechanisms and by
combining different segmentation algorithms (threshold-
ing, region-growing, clustering) [10]. Although region-
growing algorithms to delineate lesions are emerging
[11], significant user’s interaction is still necessary to de-
fine seed points or a threshold that segments the lesion.
Another big challenge, related to infiltrative bone mar-
row pathologies, is the inherent difficulty to distinguish
between disease infiltration and hematopoietic marrow

due to reconversion after treatment or hematopoietic
stimuli in patients with MM [12].
In this work, we propose a novel smart algorithm (SA)

that: i) removes organs presented with high signal inten-
sity on WB-DWI (spleen, kidneys, spinal cord, bladder
and testis) based on WB atlas registration, ii) restricts
the lesion area to the skeleton and nearby areas, also
based on a WB atlas registration and iii) segments suspi-
cious areas on DWI images of MM patients, utilizing T1
information. The purpose of the current study was to
develop a fast, semi-automatic segmentation method
that is robust irrespectively of the types of MM lesion
patterns and that could be used to assist radiologists in
the accurate quantification of total lesion burden with
implications on treatment response assessment.

Methods
Patients and imaging protocol
Forty WB-MRI from MM patients, acquired between
2014 and 2018, were consecutively selected by a
hematologist from our MM database. The Hemato-
Oncology department of our institution keeps record of
all patients with MM that are diagnosed and followed in
our institution. Four radiologists (3 specialists and one
resident) assessed these datasets. The inclusion criteria
were that WB-DWI (b value of 0 and 800 or 1000 s/
mm2) and WB-T1w were available, that no severe ana-
tomical deformities, distortion artifacts or implants were
present and that at least one lesion was found by all ra-
diologists (N = 22). Consequently, a retrospective ana-
lysis was performed on these 22 WB-MRI datasets,
obtained from 16 patients (10 male age 67 ± 13 years; 6
female age 70 ± 6 years) diagnosed with MM. Two fe-
male and three male patients had multiple WB-MRI
exams during treatment. From the 22 WB-MRI, at the
time of the exam, four had Monoclonal Gammopathy of
Unknown Significance (MGUS) and 18 had MM, from
which 13 had active disease according to the IMWG cri-
teria; two MGUS and three MM were diagnosed at that
date; all the others relapsed. Images were anonymized
being nominated by a prefix (WB) and a number (from
01 to 22).
WB-MRI was performed using a 1.5 T MRI scanner

(Ingenia, Philips Healthcare, Best, The Netherlands). At
least three sequences were acquired namely T1w, STIR
and DWI (0 and 800 or 1000 s/mm2 b-value). T2-
weighted images were also acquired in five cases.
Four to five axial DWI sequences were acquired in dif-

ferent anatomical levels covering the WB of the patient,
with 44–79 slices, using free breathing single-shot echo
planar imaging. Multiplanar reconstructions were made
by stitching together different axial stations and recon-
structing in the coronal plane, in order to generate a sin-
gle WB diffusion dataset. Each DWI sequence was
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acquired with 2 b-values (0 and 800 or 1000 s/mm2),
using the following parameters: repetition time (TR):
6219–12,075 ms; echo time (TE): 63–90ms; acquisition
matrix: 1628 × 902; slice thickness 4–7 mm; pixel spa-
cing: 1.5–1.8 mm. For the T1w acquisition the parame-
ters were: TR 412ms, TE 4ms, acquisition matrix 484 ×
1219 or 484 × 980, slice thickness 5–6 mm and pixel spa-
cing 2.09 × 2.09 or 1.14 × 1.14. An example of a recon-
structed WB-DWI and WB-T1w in the coronal plane,
where lesions are well visible, is shown in Fig. 1.
This dataset was used for validation of the semi-

automatic segmentation method proposed.

Semi-automatic segmentation
The semi-automatic segmentation can be divided into
three main steps: removal of the hyperintense organs
based on WB atlas registration [13, 14]; selection of the
skeleton and nearby regions, also based on a WB atlas
registration; and, finally semi-automatic segmentation on
the selected regions based on threshold methods.
Since we did not have a DWI atlas, we started our

work by constructing one, as described below. Once cre-
ated, it was used in this study but can be applied in
other similar studies.

DWI atlas building
Seventy-four high b-value (800 or 1000 s/mm2) DWI
images from 74 patients (42 male age 69 ± 10, 25 diag-
nosed with MM, 11 with prostate carcinoma and 6 with
follicular non-Hodgkin lymphoma or carcinoma of the
transverse colon or nodular lymphoma or clear cell kid-
ney carcinoma; 32 female age 62 ± 10, 32 diagnosed with
MM) were selected and anonymized to build a represen-
tative DWI atlas. There was no overlap between this

dataset and the one used to validate the SA. The differ-
ence in the b-values played no role in the construction
of the algorithm. Patients gave written informed consent.
This representative DWI atlas was achieved by register-
ing (geometrical alignment) the images to each other
and then computing their average.
The registration algorithm used to build the image

atlas comprised the computation of an optimal rigid
transformation followed by affine and a free-form trans-
formation. Multi-resolution registration with four levels
was used on both rigid and affine transformations, while
one resolution was used for the free-form. The adaptive
stochastic gradient descent optimization algorithm with
mutual information as similarity metric was used with a
maximum number of iterations of 255. Linear
interpolation was used for image resampling. The rigid
transformation was initialized based on the image’s geo-
metric center. For the free-form deformation model, a
grid of control points was placed over the fixed image
and the deformation field was determined based on the
displacements of the grid. The transformation between
control points was chosen to be propagated by cubic B-
spline, since they provide excellent alignments with a
low computational cost [13].
To initialize the gender atlas building, first a represen-

tative image was chosen and then all images were regis-
tered using that image as the first template (fixed
image). Then, the mean image of the registered images
was taken and then used as a fixed image for the next it-
eration of the template building process, and so on. This
process was repeated three times, since none significant
difference between the subsequent mean images was ob-
served. This last mean image was then considered the
final atlas. The techniques of registration were imple-
mented in Python language, using Pycharm as the inter-
preter and using Simple Elastix [15]. All the steps of the
atlas construction algorithm are shown in Fig. 2.

Atlas segmentation
Four radiologists (3 specialists and one last year resident)
with 10, 7 and 5 years of experience manually segmented
the normal hyperintense organs (spleen, kidneys, spinal
cord, bladder, and testis) in the male and female atlases,
using a semi-automatic tool Level Tracing Effect of 3D
Slicer 4.8.1 [16]. Their segmentations were merged by
union, i.e., the gold standard segmentation contains all
voxels that were selected for at least one radiologist.
This guarantees that all voxels of each organ were
included.
MM lesions are mainly located in the skeleton or

nearby areas. Exceptions are the extramedullary plasma-
cytomas which are less common, with an incidence of
7–18% in newly diagnosed MM and 6–20% in the course
of the disease [17, 18]. Therefore, in addition to

Fig. 1 Representative coronal slice of a WB-T1w (left) and WB-DWI
(right) of the same MM patient. MM focal lesions visible on left
femoral head, right iliac wing and lumbar vertebral bodies, show
hyperintense signal on b800/1000 image (right) and hypointense
signal on T1w image (left)
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removing the normal hyperintense organs, the lesion
search area was restricted to the skeleton and nearby
areas. This was achieved by manually delineating, on 3D
Slicer, the skeleton of the male and female atlases. The
head was excluded due to neck glands and sinus liquid
hyperintense tissues. The goal was not to have a perfect
segmentation of bones, but rather a restricted area that
surrounds them, approximately 2 mm.
At this point, there were two DWI atlases, one per

each gender, their skeleton and hyperintense organs
segmentations.

Automatic selection of the lesions search regions
The atlas was registered to each high b-value validation
DWI image, using the same algorithm used to build the
atlas. Then, for each validation image, the transform-
ation found was applied to the pre-segmented atlas,
obtaining this way the location of the hyperintense or-
gans and skeleton.

To guarantee that the hyperintense organs were com-
pletely removed and that the appendicular skeleton, es-
pecially the proximal and long bones, were included,
these registered binary segmentations were dilated using
a spherical kernel of 4 and 6mm, respectively.

Finally, the hyperintense organs of the validation im-
ages were removed and the skeleton with nearby areas
were selected for lesion search.

Threshold and connected component segmentation
Lesion identification was based on the imaging charac-
teristics of MM lesions. The lesions are of high signal in-
tensity on DWI images but with equivalent or lower
signal intensity than the muscle on T1w [19–22].
For DWI lesion identification, a threshold was defined

based on the intensity distribution. Considering lesion
intensities as outliers, optimal threshold was defined
based on eq. 1,

DWI lesion intensity≥Q3þ k Q3−Q1ð Þ ð1Þ

where Q1 and Q3 are the first and third quartiles and k
is a value that is adjusted for each patient. Generally, for
outliers identification, k values of 1.5 or 3 are likely to
achieve good results [23], however, based on our prelim-
inary tests, the optimal k is around 4. This was applied
to each skeleton restricted and organ removed image,
created in the previous step.
The connected component approach grouped each

threshold segmented area by connected components, to

Fig. 2 Atlas building scheme. Initially, an image is selected as the reference (fixed) and the others are moving images. Each moving image is
registered to the fixed image, by applying an optimal rigid transformation, followed by an optimal affine and free-form transformations (B-spline),
which maximizes the similarity between the fixed and moving images. Then, the registered moving images are averaged, resulting in a mean
image. Then, this mean image is selected as the new fixed image and all the original moving images are again registered to it, following the
same process. This was repeated until no meaningful changes were found between successive mean images
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handle each lesion individually. For each patient, from
the identified lesions on DWI, the ones that had a sig-
nificant percentage of voxels with intensity on T1w
higher than mean intensity in the psoas muscle were re-
moved. This percentage was not fixed; it depended on
the patients and on imaging quality. Based on prelimin-
ary results, the optimal percentage was around 90%.
Psoas muscle was the chosen to compare lesion’s inten-
sities since it is usually a low-fat muscle and its area ex-
tends widely in more than one slice. No size criteria
were used for lesion segmentation. T1w image intensity
was corrected using N4ITK MRI Bias Correction, avail-
able on 3D Slicer and registered to DWI (b0 images)
using rigid transformation (Fig. 3).

Validation
Manual segmentation
The manual segmentation was done by the same four ra-
diologists that segmented the normal hyperintense organs
in the atlases (E1, E2, E3, and E4) using ITK-SNAP 3.6.0
[24]. Radiologists were given access to all the WB-MRI
images available (DWI, T1w, T2w, STIR) in the recon-
structed coronal plane. After visual analyzing the images,
they proceeded with the manual segmentation of lesions.
Radiologists’ manual segmentation of MM lesion lacks

high agreement, which is supported by previous studies
regarding inter-observer measurements [25, 26]. To

overcome this, a majority voting method was used,
where a voxel is considered as lesion if at least three out
of four radiologists considered it as such. This was taken
as the lesion segmentation gold standard (GS).

Statistical analysis
Dice similarity coefficient (DSC) [14] was the metric
used to assess the segmentation agreement: SA vs GS
and radiologist vs radiologist. Also, sensitivity in lesion
detection was assessed for SA and each radiologist in re-
lation to the GS. A lesion was considered correctly de-
tected if it overlapped, at least partially, with a lesion in
the GS. A non-parametric Wilcoxon test was performed
on IBM SPSS version 25 to compare the distributions of
the DSC of the SA against GS and against the mean
inter-radiologist DSC.
ADC histogram metrics (median, mean, 5th, 25th,

75th, 95th percentiles, skewness, kurtosis) and lesion
volume were computed for the GS and for the correctly
identified lesions by the SA (just those that have a match
with the GS). Finally, the intraclass correlation coeffi-
cient (ICC) was assessed between them. ADC parametric
map was calculated based on eq. 2,

ADCi ¼ −
ln

Si
S0

bi−b0
ð2Þ

Fig. 3 Semi-automatic lesion detection in DWI scheme. (1) The atlas is registered to a DWI image; (2) The transformation found is used to register
the organs and skeleton atlas to the DWI image. Then the lesion search area is obtained by removing the organs and selecting the skeleton and
nearby areas; (3) Afterwards, an automatic threshold is applied to the image, enhancing possible lesions. The T1w intensities of these possible
lesions are then compared to the average of the psoas muscle to remove possible false detections; (4) The final result is shown in pink
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where Si is the image acquired with the higher b-value
(800 or 1000 s/m2) and S0 the lower (0 s/mm2). bi and bo
are the b-values. The metrics were implemented in Py-
thon, using SimpleITK [27].

Results
Smart algorithm lesion segmentation
The threshold values predefined for the lesion segmenta-
tion based on the DWI and T1w images were not opti-
mal for all patients. The k value ranged from 2.5 to 7.5,
being 4 the most frequent value. The cut-off percentage
to exclude the lesions based on the T1w varied between
60 and 99%, being 90% the most frequent.
The duration of the lesion segmentation by the SA

was, on average, 10.22 ± 0.86 min, per patient.
The number of lesions segmented by each of the four

radiologists (E1, E2, E3, E4), per patient is presented in
Fig. 4. Lesions manual segmentation done by E1, E2, E3,
E4, the GS and the segmentation done by the SA on a
WB image is shown in Fig. 5. According to the GS seg-
mentation, our dataset comprised four images with 1 le-
sion, eight images with 2–5 lesions and 10 images with
at least 6 lesions. Four images had more than 40 lesions.
The mean DSC between SA vs GS and radiologists vs ra-
diologists (inter-radiologists) are presented in Table 1.
Boxplots of the distribution of DSC of SA vs GS and
inter-radiologist are shown in Fig. 6.
The DSC measured between radiologists showed a

poor agreement, and therefore high segmentation vari-
ability. Considering all combinations of the four

radiologists, an average DSC of 0.332 ± 0.261 was
achieved. Taking into consideration that a DSC above
0.7 is suggestive of very good agreement [28], this result
is much lower than would be generally acceptable. Even
considering the two radiologists that showed the highest
level of agreement (E3 vs E4 0.379 ± 0.295), the agree-
ment was very low. Mean sensitivity of the radiologists
was 0.836 ± 0.285.
Considering only as input the DWI images, without

T1w information, the SA algorithm achieved a mean
DSC against the GS of 0.229 ± 0.215, sensitivity of
0.872 ± 0.202 and PPV of 0.166 ± 0.179. Its distribution
is significantly different from the mean DSC of inter-
radiologist segmentation (p = 0.024, Wilcoxon test).
Considering as input the DWI and T1w images, the SA

vs GS achieved a mean DSC of 0.274 ± 0.227, sensitivity of
0.764 ± 0.276 and PPV 0.217 ± 0.207. Its distribution is not
significantly different from the mean DSC of inter-
radiologist segmentation (p = 0.108, Wilcoxon test).
Agreement between the ADC values of the GS and

that of the correctly identified lesions by the SA was ex-
cellent with ICC ranging between 0.972 and 0.996 (p <
0.001) for the median, mean, 5th, 25th, 75th and 95th
percentile; and 0.961 for the lesion volume (p < 0.001).
The ICC for the kurtosis was 0.286 (p < 0.079) and for
the skewness 0.475 (p < 0.005) (Table 2).

Discussion
In this work, we developed an algorithm to improve the
process of segmentation of lesions of MM in WB-DWI

Fig. 4 Parallel coordinate plot for the number of manually segmented lesions by each radiologist (E1, E2, E3, E4), per DWI (WB 01–22)
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images, to allow accurately and rapidly quantification of
total lesion burden, by validating against radiologist’s
manual segmentation. Quantification of bone marrow le-
sions (bright on DWI) volume without considering nor-
mally hyperintense organs and other structures was
made possible due to the development of an atlas-based
and a smart lesion detector algorithm. The first allowed
the removal of normal hyperintense organs and restric-
tion of the search area to the skeleton or nearby areas
from the images to be studied, using a suitable registra-
tion procedure. The second applied an outlier detector
algorithm to delineate lesions. The segmentation per-
formance was improved by introducing T1w informa-
tion. Percentiles of single lesions obtained from the

outlier segmentation were compared to the average of
the intensity of psoas muscle, on T1w.
We have shown the feasibility of applying this segmen-

tation algorithm in a group of 22 WB-DWI images, cor-
responding to 16 patients diagnosed with MM, in
different stages of the disease and where the majority
checks for the active MM criteria.
According to the revised IMWG diagnostic criteria for

MM, the presence of at least two focal lesions on MRI
studies with more than 5mm in size is a biomarker of
malignancy and one of myeloma defining events. Ac-
cording to the GS segmentation, eighteen images from
our dataset had at least 2 lesions. Four images had more
than 40 lesions. In normal clinical practice, total lesion
volume is not assessed. Instead, the biggest lesions diam-
eters are measured, which may be problematic due to
non-spherical lesions and decision variation. If its biggest
diameter is less than 5 mm, it is too small to characterize
as pathological. On the other hand, might be excluding
clinical findings. We opted by not to define a minimum
size for lesions, assigning more freedom on this.
The high disagreement between radiologists was con-

firmed by the low mean DSC of the manual segmenta-
tion (0.332 ± 0.261) and the high variance in the number
of lesions detected, which is shown in Fig. 4. It should
be noted that, in general, the higher the number of le-
sions, the higher the disagreement between the radiolo-
gists (Fig. 4), which can be explained by the fatigue and

Table 1 Mean DSC ± standard deviation (SD) for SA vs GS and
inter-radiologist

DSC ± SD

SA vs GS 0.274 ± 0.227

E1 vs E2 0.353 ± 0.277

E1 vs E3 0.364 ± 0.261

E1 vs E4 0.263 ± 0.252

E2 vs E3 0.367 ± 0.237

E2 vs E4 0.264 ± 0.244

E3 vs E4 0.379 ± 0.295

Fig. 5 Representative coronal slices of the segmentation of the spine, pelvis and sternum. Segmentation from E1 (a), E2 (b), E3 (c), E4 (d), GS (e)
and SA (f) on one image example. Segmentations are color-coded for easy reference. Identified lesions are highlighted by a white arrow.
Radiologists segmented 7, 6, 42, 16 different lesions, of which 6 were identified by at least three (GS). SA identified 19 different lesions, from
which 4 were correctly identified as such, which results in a sensitivity of 0.666 and PPV of 0.211. Overall, the segmentation of the lesions is
consistent between the manually, GS and SA segmented images, with a greater focus on the iliac lesion
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complexity when having to analyze more than 60 images
per sequence and counting four sequences. Furthermore,
manual delineation hindered the reading process, mak-
ing errors more propitious. This small test allowed to
have a proof of concept about the disagreement between
radiologists when defining situations with multiple le-
sions as in MM, which stresses the need for the develop-
ment of a robust tool to assist radiologists to better and
more rapidly identify lesions and to segment them. This
divergence shows how difficult it is to detect and seg-
ment lesions in the common clinical practice, which re-
sults in misinterpretations between experts of the same
field. Tight schedules, high workflow and lack of proper

segmentation tools maybe some of the reasons for this
low agreement.
The DSC of the smart-segmentation algorithm is not

significantly different from the majority voting of radiol-
ogists (p = 0.108, Wilcoxon test), achieving a very good
sensitivity (0.764 ± 0.276). The SA succeeds in identify-
ing lesions as such but still has false positives. One cause
of false positives is the presence of hyperintensities at
the periphery of the field of view due to radiofrequency
coil effects. When these hyperintense areas are in
muscle, for instance, they may not be removed based on
the T1w, and thus wrongly classified. Although the
agreement SA vs GS is not the ideal, the results show
that our method provides equally reproducible segmen-
tations than the manual. Preliminary results obtained in
the development stage have shown that using both DWI
and T1w as inputs seem to improve the segmentation
performance compared to using only the DWI images.
This was expected since it is accessing further lesion in-
formation, which may help to distinguish between MM
lesion and hematopoietic marrow due to reconversion.
The ICC, considering the correctly identified lesions

by the SA and the GS, was 0.894 for the total lesion vol-
ume and 0.996 for the median ADC values (p < 0.001),
which shows the reliability of the volume and median
ADC measurements using the SA. This information
could be used to assess treatment response by measure-
ments of ADC and lesion volume changes between pre-
and post-treatment scans and to distinguish between

Fig. 6 Boxplots depicting the distribution of DSC of SA vs GS and inter-radiologist. The horizontal line represents the median of the distribution
while the diamond symbolizes the average

Table 2 ICC and p-values of histogram metrics between SA and
GS

Histogram metric ICC p value

Median 0.996 < 0.001

5th percentile 0.990 < 0.001

25th percentile 0.996 < 0.001

Mean 0.991 < 0.001

75th percentile 0.972 < 0.001

95th percentile 0.981 < 0.001

Volume 0.894 < 0.001

Kurtosis 0.286 < 0.079

Skewness 0.475 < 0.005
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different MM patterns, for instance, diffuse from normal
[19].
To our knowledge, there is no previous relevant work

describing a semi-automatic segmentation of MM le-
sions on WB-DWI, using an atlas-based approach and
comparing it to the segmentation of radiologists. Thus,
the performance of our method cannot be directly com-
pared to any method described in the literature. How-
ever, in a previous study, a semi-automatic segmentation
model using a Markov Random Field was used to infer
tumor diffusion volume and ADC, using WB-DWI [29].
Although the results were quite promising, it still re-
quires a lot of user interaction to define the contrast be-
tween the lesion and normal tissues and to define a
threshold that covers the lesions. Also, this segmentation
algorithm was not validated against radiologists, since
they only evaluated based on responder/non-responder
to treatment. Plus, the associated computational time is
of the order of 30 min. Our method benefits from the in-
clusion of two sequences in the analysis, which increases
the confidence in the results and is faster (computational
time of approximately 10 min). The latter further sup-
ports the notion that optimized semi-automatic registra-
tion methods combined with algorithms that
quantitatively analyze DWI and T1w images can be used
to assist radiologists while defining the total lesion bur-
den. Also, the high ICC of the lesion volume and of the
median ADC with that of GS may show the potential of
extracting this global measurement out of the segmenta-
tion and use it as an indicator of response to therapy.
As far as metabolic imaging is concerned, lytic lesions

and extramedullary masses present as avid for 18F-fluor-
odeoxyglucose (18F-FDG). Thus, positron emission tom-
ography/computed tomography (PET/CT) exhibits high
value for its identification, besides distinguishing active
from inactive metabolic lesions due to the combination
of functional and morphological information. According
to the IMWG, 18F-FDG PET/CT is recommended to
distinguish active from smoldering MM only when WB-
MRI is unavailable and WB X-ray is negative [30]. MRI
remains as the preferred and more sensitive method for
the assessment of diffuse bone marrow involvement of
the spine.
Among the limitations of this study is the fact that for

technical reasons, some of the selected images suffered
from artifactual hyperintensities that contaminated the
results. There is a need for the image acquisition tech-
nique to be meticulous, thus minimizing these effects.
Another limitation was the exclusion of skull and neck
lesions due to technical problems in the raw images,
which reduce the accuracy to quantify total lesion bur-
den. Nonetheless, we verified that no radiologist seg-
mented lesions above the neck. Also, the fact that the
lesion area is restricted to the skeleton and nearby areas

maybe excluding extramedullary plasmacytomas. How-
ever, this would not have a significant impact on the
total lesion volume assessment, since the majority of le-
sions are found in the spine, proximal and long bones.
Among the 22 WB images evaluated, 15 had previous
treatment, thus T2 shine-through effect is not com-
pletely excluded just by using DWI and T1w images.
Moreover, the incorporation of ADC maps or other se-
quences, as STIR, opposed-phase and post-contrast T1w
images may increase the reliability of the segmentation
helping to eliminate false positives, what would benefit
this study. Another limitation is the fact that the radiolo-
gists’ reading, and segmentation time was not measured
in this study. Thus, their time performance was not yet
compared with the algorithm. Even though, just for a
simple reference, a recent report from the Sociedad
Española de Radiología Médica state that radiologists
should be given 40 min to analyze WB-MRI datasets
[31], without segmentation.

Conclusions
The proposed method provides equivalent segmenta-
tions to the manual ones from radiologists on MM le-
sion and reproducible results on ADC histogram
metrics. This study can be considered as part of the de-
velopment of automatic detection and segmentation
methods for MM lesions, with high sensitivity. The
current smart segmentation algorithm might be useful
to perform a more objective evaluation of total lesion
volume and ADC quantification in order to provide a
more accurate assessment of treatment response in pa-
tients with MM.
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