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Smart biomaterials combined with stem cell-based therapeutic strategies have brought
innovation in the field of bone tissue regeneration. However, little is known about
precartilaginous stem cells (PCSCs), which can be used as seed cells and incorporated
with bioactive scaffolds for reconstructive tissue therapy of bone defects. Herein, iron oxide
nanoparticles (IONPs) were employed tomodulate the fate of PCSCs, resulting in the enhanced
osteogenic differentiation potential both in vitro and in vivo. PCSCswere isolated from the ring of
La-Croix extracted from polydactylism patient and identified through immunohistochemically
staining using anti-FGFR-3 antibodies. Potential toxicity of IONPs towardPCSCswas assessed
through cell viability, proliferation, and attachment assay, and the results demonstrated that
IONPs exhibited excellent biocompatibility. After that, the effects of IONPs on osteogenic
differentiation of PCSCs were evaluated and enhanced ALP activity, formation of mineralized
nodule, and osteogenic-related genes expressions could be observed upon IONPs treatment.
Moreover, in vivo bone regeneration assessment was performed using rabbit femur defects as
amodel. A novel methacrylated alginate and 4-arm poly (ethylene glycol)-acrylate (4A-PEGAcr)-
based interpenetrating polymeric printable network (IPN) hydrogel was prepared for
incorporation of IONPs-labeled PCSCs, where 4A-PEGAcr was the common component
for three-dimensional (3D) printing. The implantation of IONPs-labeled PCSCs significantly
accelerated the bone formation process, indicating that IONPs-labeled PCSCs could endow
current scaffolds with excellent osteogenic ability. Together with the fact that the IONPs-labeled
PCSCs-incorporated IPN hydrogel (PCSCs-hydrogels) was biosafety and printable, we
believed that PCSCs-hydrogels with enhanced osteogenic bioactivity could enrich the stem
cell-based therapeutic strategies for bone tissue regeneration.
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1 INTRODUCTION

Repair of large bone defects caused by trauma, disease, or tumor
resection has become a fundamental challenge in the field of
orthopedics (Stahl and Yang, 2021). Currently, autologous or
allogeneic bone grafts are considered as the most appropriate
materials for the treatment of large bone defects but come with
some limitations such as infection, possible fracture, and limited
bone availability (Brink, 2021). To overcome these shortcomings,
functional tissue engineering bone grafts, containing osteoblast or
stem cells, growth factor, and bioactive materials, are considered
as promising alternatives that have attracted a great deal of
interest from researchers and focuses on regenerative strategies
for large bone defects (Battafarano et al., 2021; Chansaenroj et al.,
2021). Recently, stem cell-based therapeutic strategies have
attracted considerable attention in the field of bone tissue
regeneration due to their excellent osteogenic potential,
superior biocompatibility, low immunogenicity, and ease of
accessibility (Shang et al., 2021). In addition to their
differentiation potential, stem cells also have ability to regulate
other cells’ function and systemic inflammatory condition
through cell–cell interaction to enhance their therapeutic
efficacy (Sui et al., 2019). This was an advantage for bone
repair using stem cell-based therapeutic strategies.

There are several kinds of stem cells, including embryonic
stem cells (ESCs), bone marrowmesenchyml stem cells (BMSCs),
and adipose-derived mesenchymal stem cells (ADSCs), which
have been used as seed cells of tissue engineering for substitute
therapies of bone defects (Kim et al., 2011; Pan et al., 2016; Du
et al., 2021; Mende et al., 2021). Although the current stem cell-
based therapeutic strategies exhibited potential capacity for bone
tissue regeneration they still have some limitations in terms of
difficulty in isolation, purification, and manipulation of stem cell
fate. Apart from these stem cells, precartilaginous stem cells
(PCSCs), a kind of adult stem cells that can be isolated from
the peripheral layer of the epiphyseal organ with a perichondrial
mesenchyme in embryo limbs (the ring of La-Croix), have strong
proliferation ability and differentiation potential (You et al.,
2011). There are accumulating evidence that PCSCs exhibit
excellent chondrogenic activity and have been extensively
utilized as seed cells for reconstructive tissue therapy of
cartilage defects due to their excellent chondrogenic ability
(Guo et al., 2013; Pan et al., 2016). However, little is known
about their osteogenic ability when they were employed as seed
cells for bone defects repair. Therefore, it is highly desirable and a
great challenge to investigate their osteogenic potential, enriching
the stem cell-based therapeutic strategies for bone tissue
regeneration.

To date, the compounds with capability to promote cell
differentiation have been investigated in different bio-fields
(Huang C et al., 2018; Pei et al., 2020; Wang et al., 2021). While,
there are some application issues for the compounds in bio-
fields, such as the tanglesome extraction process, instability of
bio-activity, and bio-toxicity (Gu et al., 2021; Yang et al., 2021;
Hu et al., 2022). Comparing to the compounds, nanomaterials
have attracted considerable attention in the bio-field due to
their distinct physicochemical properties, superior

biocompatibility, and manipulation of stem cell fate (Zhang
et al., 2021b; Huang et al., 2021). Recent studies suggested that
magnetic iron oxide nanoparticles (IONPs) demonstrated great
potential for versatile biomedical applications, especially stem
cell therapy and bone tissue engineering (Hu et al., 2018; Soto
et al., 2021). IONPs can facilitate osteogenic differentiation of
stem cells via supporting transduction of dynamic mechanical
stimulation, which is of great requirement for bone tissue
regeneration (Henstock et al., 2014). Our previous study
suggested that IONPs could promote osteogenic
differentiation of human bone-derived mesenchymal stem
cells (hBMSCs), and mechanism exploration via gene
microarray assay and bioinformatics analysis exhibited that
IONPs could activate the mitogen-activated protein kinase
(MAPK) signal pathway (Wang et al., 2016). Incorporation
of IONPs could also endow current bone repair scaffolds
fabricated by electrostatic spinning and 3D-printing scaffolds
with enhanced osteogenic performance both in vitro and in
vivo. Hence, IONPs may endow PCSCs with great osteogenic
bioactivity and subsequently used as seed cells for bone tissue
regeneration.

To load the nanomaterials to achieve the excellent
performance, the scaffolds and polymer matrices have been
fabricated by various technologies (Huang et al., 2020; Liu et al.,
2021; Xu et al., 2021). Scaffold materials have attracted
considerable attention in stem cell-based therapeutic
strategies for bone tissue regeneration due to their ability to
hold stem cells for several cellular functions such as cell
attachment, proliferation, and differentiation (Chen et al.,
2019). There are numerous scaffolds, including hydrogels,
acellular tissue matrix, and collagen, which have been used
in bone tissue regeneration. Among these materials, hydrogels
have been extensively utilized as bone repair scaffolds due to
their good biocompatibility, favorable mechanical properties,
suitable degradation rate, and superior biological activities
(e.g., osteoconductivity and osteoinductivity) (Li et al.,
2020). Hydrogels have the ability to hold and retain stem
cells at the bone repair site, adaptively fill the lesion cavity,
optimize the microenvironment, and mediate the directional
growth of stem cells (Bai et al., 2018). Particularly, the
physicochemical properties of hydrogels can be adjusted by
varying the component and crosslinking methods. Recently,
interpenetrating polymeric network (IPN) hydrogels with two
or more crosslinked polymers are considered as a simple and
easily feasible route to improve cell spreading and proliferation
inside hydrogels (Geng et al., 2012). Therefore, IONPs-labeled
PCSCs-incorporated IPN hydrogels could be used as promising
repair scaffolds for bone tissue regeneration.

In the present study, PCSCs were successfully isolated and
identified through immunohistochemically staining using anti-
FGFR-3 antibodies. Subsequently, the effects of IONPs on
biocompatibility and osteogenic differentiation of PCSCs
were comprehensively investigated. Moreover, novel IPN
hydrogel was employed as scaffold for holding IONPs-
labeled PCSCs for in vivo bone regeneration assessment.
Together with the fact that the IPN hydrogel was printable
and could be used for 3D printing, we believed that IONPs-

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 8721492

Liao et al. Osteogenic IONPs-Labeled PCSCs IPN Hydrogel

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


labeled PCSCs with enhanced osteogenic bioactivity could
enrich the stem cell-based therapeutic strategies for bone
tissue regeneration.

2 MATERIALS AND METHODS

2.1 Materials and Reagents
Collagenase type I, sodium alginate, methacrylic anhydride, and
2-hydroxy4′-(2-hydroxyethoxy)-2-methylpropiophenone
(Irgacure 2959, 98%) were obtained from Sigma-Aldrich Co. Ltd.
(MO, United States). 4-arm poly (ethylene glycol) acrylate was
provided by Sinopeg Biotech Co. Ltd. (China). Cell Counting Kit-
8 was from Bimake (United States). Ultrapure water was achieved
from a Millipore auto-pure system. All regents were used without
further purification.

2.2 Culture and Identifying Precartilaginous
Stem Cells
PCSCs were isolated individually from the ring of La-Croix
extracted for polydactylism patient (age range 0.5–1 year) by
collagenase type I (Zhang et al., 2020), which was approved by
the ethics committee of Children’s Hospital affiliated to the
Nanjing Medical University. Briefly, the ring of La-Croix,
encompassing the lucent epiphyseal disk of embryo limbs, was
precisely dissected under the operating microscope, followed by
washing with phosphate-buffered saline (PBS) for three times.
After that, the tissue was cut into fragments (1 mm×1 mm)
digested with collagenase type I (1 mg/ml) for 12 h at 37°C in
5% CO2. After filtered by a 100-mesh aperture sieve, the obtained
PCSCs were cultured in growth medium at 37°C in 5% CO2. The
obtained PCSCs (passages 2 and 6) were used in subsequent
experiments. For cells identification, the PCSCs were seeded into
a 6-well plate containing poly-l-lysine-coated cover slips at a
density of 5*104 per well. After 3 days culture, the slips were
immunohistochemically stained using anti-FGFR-3 antibodies [a
specific marker for precartilaginous stem cells (Robinson et al.,
1999)].

2.3 Iron Oxide Nanoparticles Synthesis and
Characterization
IONPs were prepared according to a classic chemical co-
precipitation method using polyglucose-sorbitol-
carboxymethyl ether (PSC) as a stabilizer (Zheng L et al.,
2021). Briefly, PSC (100 mg) was dissolved in 5 ml ultrapure
water and the mixed solution was purified by argon for at least
5 min to remove the oxygen. After that, FeCl3 (30 mg) and
FeCl2 (15 mg) were dissolved in 10 ml ultrapure water and the
mixed solution was added to the reaction system, followed by
the addition of ammonium hydroxide (500 mg, 28% w/v) under
vigorous stirring at 80°C for 30 min. The obtained IONPs were
collected and dialyzed using membrane tubing (MWCO =
3000) to remove the free PSC. As for characterization, the
morphology of IONPs was characterized by transmission
electron microscopy (TEM, JEOL 1200EX). The

hydrodynamic size of IONPs was measured by dynamic light
scattering (DLS) (Malvern Zetasizer Nano ZS90,
United Kingdom).

2.4 Cell Experiment
2.4.1 Cell Culture
The PCSCs were cultured at 37°C with 5% CO2 in growth
medium (DMEM medium containing 10% fetal bovine serum
and 1% penicillin/streptomycin). For osteogenic induction, the
culture medium was replaced by osteogenic medium (growth
medium supplemented with 0.1 μM dexamethasone, 50 μg/ml
ascorbic acid, and 10 mM β-glycerophosphate). The culture
medium was replaced every 3 days.

2.4.2 Cellular Uptake Observation of Iron Oxide
Nanoparticles by Prussian Blue Staining
After seeded in 24-well plates (1*105 cells per well) and cultured
for 24 h, the PCSCs were incubated with various amount of
IONPs (Fe concentration: 50, 100, and 200 mg/ml) for 24 h,
collected, and fixed with 4% (v/v) formaldehyde (PFA) and a
Perl’s blue staining assay was performed to determine the
internalization of IONPs. After that, the cells were observed by
an inverted optical microscope (Olympus IMT-2, Tokyo, Japan).

2.4.3 Cell Viability
The toxicity of IONPs toward PCSCs was assessed using a
standard Cell Counting Kit-8 (CCK-8) assay (Zhang et al.,
2021a). In brief, PCSCs were seeded in 96-well plates (1*104

cells per well) before various amount of IONPs (Fe concentration:
50, 100, and 200 mg/ml) were added. To test the cytotoxicity,
10 μl CCK-8 was added and cultured for another 1 h. Cell viability
was detected according to the OD value observed by a microplate
reader (Multiskan GO, Thermo Fisher Scientific, United Ststes).

2.4.4 Live/Dead Staining
After treated with IONPs (100 mg/ml) for 3 days, PCSCs were
harvested, washed with PBS for three times, and stained with
calcein-AM/PI (Solarbio, China). Fluorescence images were
observed using an inverted optical microscope (Olympus IMT-
2, Tokyo, Japan).

2.4.5 Alkaline Phosphatase and Alizarin Red SStaining
PCSCs treated with IONPs (100mg/ml) were harvested after
osteogenic induction for 14 days (ALP staining) and 21 days (ARS
staining). The cells were stained using the BCIP/NBT alkaline
phosphatase color development kit (Beyotime, China) and 5%
ARS staining solution (Sigma, United Ststes) according to the
manufacturer’s instructions, respectively, followed by the
observation using an inverted optical microscope (Olympus IMT-
2, Tokyo, Japan).

2.4.6 Real-Time Quantitative PCR
PCSCs were cultured in a 6-well plate (3*105 cells per well) for
24 h, followed by the treatment of IONPs (100 mg/ml) for 3 days.
After that, total RNA was isolated using an RNA-Quick
Purification Kit (Yishan Biotech, Shanghai, China) and cDNA
was generated using a HiScript II Q RT SuperMix according to
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the manufacturer’s instructions. Finally, the quantitative PCRwas
detected using a ChamQTM SYBR Color qPCR Master Mix
(Vazyme Biotech). Supplementary Table S1 listed the forward
and reverse primers of the investigated osteogenic-related genes.

2.5 Preparation of Interpenetrating
Polymeric Network Hydrogel for Holding
Precartilaginous Stem Cells
An interpenetrating polymeric network based on photo-
crosslinking of methacrylated alginate and 4-arm poly
(ethylene glycol)-acrylate (4A-PEGAcr) was constructed for
holding PCSCs, where methacrylated alginate was synthesized
according to a reported study (Araiza-Verduzco et al., 2020). In
brief, 100 mg methacrylated alginate and 50 mg 4A-PEGAcr
were dissolved in 5 ml PBS at 37°C for 1 h, followed by the
addition of I2959 (1% (w/v)). After that, PCSCs were already
incorporated with IONPs in vitro to acquire great osteogenic
activity, followed by the transfer 500 μl of the mixed solution
containing 1*106 IONPs-incorporated PCSCs to a flat-
bottomed 1-ml tube and subjected UV-light irradiation
(365 nm) for 90 s. The as-prepared PCSCs-incorporated
hydrogel was submerged in PBS at 37°C for 1 h and
implanted to femur condyle defect of rabbit for in vivo bone
regeneration assessment.

2.6 Animal Experiment
All experimental protocols were approved by the ethics
committee of Drum Tower Hospital affiliated to the Medical
School of Nanjing University, and performed according to the
Institutional Animal Care and Use Committee (IACUC)
guidelines.

2.6 1 The Femur Condyle Defect Model
A total of 12 male Newland rabbits (3.5 kg) were enrolled in the
study and randomly divided into three groups (control group,
neat hydrogel group, and PCSCs-hydrogels group). Bilateral
femur condyle defect (high: 3 mm, diameter: 5 mm) was made,
followed by the implantation of hydrogels and the defects in the
control group remained blank. All rabbits were sacrificed at week
12 post-operation for in vivo bone regeneration assessment.

2.6.2 Micro-CT Analysis
The high-resolution micro-CT scanner (Scanco Medical,
Switzerland) was used to evaluate the in vivo bone
regeneration, where bone mineral density (BMD), bone
volume/total volume (BV/TV), trabecular number (TB.N),
trabecular separation (TB.Sp), and trabecular thickness
(TB.Th) were quantified. A commercial software MIMICS19.0
(Materialise, Leuven, Belgium) was used to generate 3Dmodels of
the harvested femurs.

2.6.3 Histological Analysis
After fixed with formalin at 4°C for 24 h, the harvested femur
condyles were decalcified using 15% ethylene diamine tetra-acetic
acid (EDTA) for 28 days. After that, the decalcified femur
condyles were embedded in paraffin and sectioned at 5 μm of

hematoxylin and eosin (H&E) and Masson’s trichrome staining.
The histological analysis of major organs (heart, liver, spleen,
lung, and kidney) followed the same process except for the
decalcification process.

2.7 Statistical Analysis
All experiments were performed with three replicates unless
otherwise stated. Data are mean ± standard deviation.
Statistical analysis was performed with Origin software (8.5
version). Asterisks in statistical analysis indicate statistically
significant differences between the control and experimental
groups (pp < 0.05; ppp < 0.01; and pppp < 0.005).

3 RESULTS

3.1 Isolation and Identification of
Precartilaginous Stem Cells
PCSCs were isolated individually from the ring of La-Croix
extracted for polydactylism patient (age range 0.5–3 years) by
collagenase type I, the process of which was shown in
Figure 1A. It could be seen that the PCSCs grow well under
a light microscope. In addition, fibroblast growth factor
receptor 3 (FGFR-3), a specific marker for precartilaginous
stem cells was used to identify the PCSCs (Robinson et al.,
1999), where human bone marrow-derived mesenchymal stem
cells (hBMSCs) were used as control. As shown in Figure 1B,
the immunofluorescence staining results for PCSCs
demonstrated the positive expression of FGFR-3. In contrast,
almost no FGFR-3-positive expression was found in hBMSCs
(Figure 1C). These results unarguably confirmed that the
isolated cells were PCSCs, which could be used for further
in vitro osteogenic differentiation and in vivo bone
regeneration assessment.

3.2 Preparation and Characterization of Iron
Oxide Nanoparticles
IONPs were synthesized by a classic chemical co-precipitation
method (Chen et al., 2018). The as-prepared IONPs solution
displayed dark brown color (Figure 2A, inset).
Characterizations of IONPs were performed using TEM and
DLS. TEM images (Figure 2A) demonstrated that the obtained
IONPs exhibited dimensional homogeneity and excellent
dispersity. The statistical average size (Figure 2B) of the
iron oxide cores were 7.14 ± 0.68 nm. In addition, the
hydrodynamic size (Figure 2C) of IONPs was 34.9 nm, the
value of which was larger than their physical size due to the
hydrated PSC shell. The polydispersity index (P.I.) was 0.229,
indicating the excellent monodispersity. It was also
demonstrated that the zeta potential (Figure 2D) of IONPs
was −41.69 mV, and the negatively charged value was
attributed to the numerous carboxyl of PSC (Yu et al.,
2020). It should be mentioned that the synthetic route of
PSC-coated IONPs exactly followed the technology of
ferumoxytol, which is the only inorganic nano-drug
approved by the Food and Drug Administration (FDA) for
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FIGURE 1 | Isolation and identification of PCSCs. (A) Process of isolation of PCSCs from the ring of La-Croix extracted from polydactylism patient. (B)
Representative images of immunostaining for DAPI (blue) and FGFR-3 (green), and hBMSCs were used as control.

FIGURE 2 | Preparation and characterization of IONPs. (A) Typical TEM image, (B) statistical size distribution according to (A–C) hydrodynamic diameter, (D) zeta
potential of as-prepared PSC-coated IONPs.
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clinical applications. Hence, IONPs we used in our study were
of great biosecurity, potentially translatable, and could be used
to investigate their biological effects on PCSCs.

3.3 In Vitro Biocompatibility and Cellular
Uptake of Iron Oxide Nanoparticles on
Precartilaginous Stem Cells
It has been widely reported that the cytomembrane of biological
cells is negatively charged due to the hydrophilic phosphonyl
group of phospholipid bilayer (Huang B et al., 2018). Hence, the
negatively charged PSC-coated IONPs might hardly be taken by
cells, limiting their interactions with biological cells. Hence, we
employed positively charged poly-L-lysine to modify IONPs
using a reported method (Sun et al., 2021). Effects of IONPs
on cell viability and cellular uptake of PCSCs were first studied.
As shown in Figure 3A, the Prussian blue staining results
demonstrated that the cellular uptake of IONPs by PCSCs was
obviously enhanced with the concentration of IONPs increased

from 50 to 200 μg/ml. The biocompatibilities of IONPs with
various concentrations toward PCSCs were further investigated
using Cell Counting Kit-8 (CCK8) at 3, 5, and 7 days (Figure 3B).
IONPs of all three concentrations demonstrated no obvious
cytotoxicity toward PCSCs after 3 and 5 days’ treatment with
the viability exceeding 80%. However, after treated with IONPs
(200 μg/ml) for 7 days, obvious decrease of cell viability could be
observed, resulting in the apparent toxicity. Hence, 100 μg/ml
could be considered as a proper concentration for further
osteogenic assessment. To further verify their potential toxicity
to PCSCs, live/dead staining was employed, and the results were
exhibited in Figure 3C. Nearly all the PCSCs were alive (green
fluorescence) after treated with IONPs at all investigated
concentrations. The effect of IONPs on attachment of PCSCs
was assessed using phalloidine/DAPI staining (Figure 3D), where
it could be seen that PCSCs spread out with their filopodia
extended. These results indicated that IONPs were
biocompatible toward PCSCs and could be used to further
assess their biological activity.

FIGURE 3 | In vitro biocompatibility and cellular uptake of IONPs on PCSCs. (A) Prussian blue staining of PCSCs treated with IONPs with various concentrations
(50, 100, and 200 μg/ml). (B) Cell viability of PCSCs after incubated with IONPs (concentration: 50, 100, and 200 μg/ml) for 3, 5, and 7 days. Representative scan of (C)
live/dead staining (green- and red-labeled cells denote living and dead cells, respectively) and (D) cytoskeleton staining of PCSCs after treated with IONPs with various
concentration (50, 100, and 200 μg/ml), respectively. Asterisk indicates statistically significant differences between the control and experience groups (pp < 0.05;
pppp < 0.005; and ppppp < 0.001).
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3.4 Effects of Iron Oxide Nanoparticles on
Osteogenic Differentiation of
Precartilaginous Stem Cells
Osteogenic differentiation is a crucial process for biological cells
when it was used as a osteogenic bioactive agent for bone tissue
regeneration, where alkaline phosphatase (ALP) activity and
formation of mineralized nodule are two significant signals for
the early and final stages process of osteogenic differentiation,
respectively (Zhang et al., 2017). Hence, the effects of IONPs on
osteogenic differentiation of PCSCs were further assessed using
ALP and alizarin red S (ARS) staining. As shown in Figure 4A,B,
IONPs demonstrated a dose-dependent effect in increasing ALP
activity and mineralized nodule formation. In addition, the
expression of osteogenic-related genes, including ALP, runt-
related transcription factor 2 (Runx2), and collagen type 1
(COL1) were determined using real-time PCR in PCSCs
treated with IONPs (100 μg/ml) for 3 days. As illuminated in
Figure 4C, the expression of these osteogenic-related genes were
significantly upregulated after treated with IONPs, where high
concentration IONPs (200 μg/ml) exhibited the strongest effect
on accelerating the osteogenic-related genes expression of PCSCs.
Taken together, these results confirmed that IONPs showed the
positive effect on facilitating osteogenic differentiation of PCSCs.

3.5 Preparation and Characterization of
Precartilaginous Stem Cells-Hydrogels
To further investigate the in vivo bone regeneration ability of
IONPs-labeled PCSCs when used as a osteogenic bioactive
agent, smart scaffolds with several advantages, including
excellent biocompatibility, porous microstructures, and
appropriate mechanical properties should be used for holding

PCSCs (Zheng J et al., 2021). Among these scaffolds, hydrogels
with three-dimensional culture matrices have been widely used
as space filling agents (flexibility in fitting in any application
site) and delivery vehicles for bioactive molecules
(controllability pore size in the polymer network) (Ma et al.,
2021). In our study, novel biomimetic interpenetrating
polymeric network (IPN) hydrogel constructed by
methacrylated alginate (MLA) and 4-arm poly (ethylene
glycol)-acrylate (4A-PEGAcr) through photo-crosslinking
upon exposure to long-wave UV light was used as scaffold to
hold PCSCs for bone regeneration assessment. The morphology
of lyophilized IPN hydrogel was characterized by SEM and the
results are shown in Figure 5A. It could be seen that our
prepared IPN hydrogel demonstrated a porous
microstructure with a pore size of around 30–50 nm,
facilitating several cellular functions such as cell attachment,
proliferation, and differentiation (Ajdary et al., 2021).
Moreover, physicochemical properties of IPN hydrogel,
including swelling rate, mechanical, and rheological
properties were further measured. As shown in Figure 5B,
the IPN hydrogel swelled to its maximum swelling ratio of
about 2100% within 24 h. The excellent swelling property might
make our hydrogel suitable for in vivo applications. The
compressive mechanical properties of our as-prepared
hydrogel were detected using standard mechanical tests.
According to the results of compression-crack test
(Figure 5C) and compression-relaxation cycles test
(Figure 5D), the compressive modulus of IPN hydrogel was
210 Pa and the gels can compress a strain of more than 55%,
indicating excellent load-bearing ability. In addition, only slight
energy dissipation could be observed, suggesting that the as-
prepared exhibited reliable mechanical properties. In addition,
rheological properties were further measured and the results of

FIGURE 4 | Effects of IONPs on osteogenic differentiation of PCSCs. (A) ALP staining of PCSCs after treated with various concentrations of IONPs (50, 100, and,
200 μg/ml) for 14 days. (B) ARS staining of PCSCs after treated with various concentrations of IONPs (50, 100, and 200 μg/ml) for 28 days. (C) Real-time PCR analysis
of ALP, Runx-2, and COL1 expression of PCSCs after treated with various concentrations of IONPs (50, 100, and 200 μg/ml) for 3 days. Asterisk indicates statistically
significant differences between the control and experience groups (pp < 0.05 and ppp < 0.01).
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frequency-sweep test, strain-sweep test, and step-strain test are
demonstrated in Figures 5E–G, respectively. It could be seen
that as-prepared IPN hydrogel demonstrated a solid-like
behavior [storage modulus (G′) was larger than the loss
modulus (G″)] and dominant elastic property (partly
destroyed and subsequently completely recovered). All these
features suggested that our IPN hydrogel with excellent
physicochemical properties could be employed as scaffold for
holding IONPs-labeled PCSCs for bone tissue regeneration.

3.6 In Vivo Bone Regeneration Assessment
of Iron Oxide Nanoparticles-Labeled
Precartilaginous Stem Cells-Hydrogels
In vivo bone regeneration performance of IONPs-labeled PCSCs
were finally assessed using a rabbit model of 5 mm femoral defect,
where IPN hydrogel was used as scaffold for holding PCSCs.
IONPs-labeled PCSCs-hydrogels (height: 5 mm and diameter:
5 mm) were directly implanted into the femur defects of rabbits
and neat IPN hydrogels were used as control. After 3 months of
implantation, femurs of rabbits were harvested and
comprehensively characterized by micro-CT and histological

analysis. Micro-CT data (Figure 6A), including the
reconstructed three-dimensional (3D) model, lateral and
longitudinal sectional images exhibited that more newly
formed bone could be observed around the bone defect area
in the PCSCs-hydrogels group compared with that in the neat
hydrogel and control groups. Furthermore, quantitative bone
density analysis of newly formed bone, including bone mineral
density (BMD), bone volume per total volume (BV/TV), and the
trabecular parameters of the cancellous bone such as trabecular
thickness (TB.Th), trabecular number (TB.N), and trabecular
spacing (TB.Sp) were performed according to the micro-CT data.
As demonstrated in Figure 6B, the values of BMD and BV/TV
were significantly increased in the PCSCs-hydrogels group
compared with a neat hydrogel group, indicating that PCSCs
played an important role in accelerating bone formation. Further
trabecular results exhibited the increased TB.Th and TB.N values
and the decreased TB.Sp after treated with IONPs-labeled
PCSCs-hydrogels by following the similar trend with the
BMD. Furthermore, histological analysis (H&E and Masson
staining) was also used to assess the bone regeneration
performance. As shown in Figure 6C, more newly formed
bone and trabecula could be observed in the PCSCs-hydrogel

FIGURE 5 | Preparation and characterization of PCSCs-hydrogels. (A) Surface topography and their local magnification of lyophilized PCSCs-hydrogels observed
by SEM. (B) Swelling rate at different time from 1 to 24 h. (C)Uniaxial stress–strain curves under compression until cracking. (D)Uniaxial compression–relaxation curves.
(E)G′ and G″ of hydrogels measured in a strain sweep experiment (from 0.1 to 10% strain, 6.28 rad s-1) at room temperature. (F)G′ and G″ of the hydrogels measured
in a frequency sweep experiment (from 0.1 to 60 rad s-1, 1% strain) at room temperature. (G) Hydrogels in a destroy–recovery experiment at room temperature.
The frequency and strain were set to the frequency of 100 Hz and amplitude of 300% to destroy the coordination interactions and switched back to a frequency of
6.28 rad s-1 and amplitude of 0.1% to monitor recovery of the mechanical properties.
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group compared with that in the neat hydrogel and control
groups with only fibrotic connective tissues. Finally, the in
vivo biosafety of our IONPs-labeled PCSCs-hydrogels was
detected using histopathological analysis. Major organs,
including heart, liver, spleen, lung, and kidney were collected
from the rabbits that were implanted IONPs-labeled PCSCs-
hydrogels and neat hydrogel for 3 months and
histopathologically examined through hematoxylin and eosin
(H&E) and Masson staining. As shown in Supplementary
Figure S1, no obvious damage or inflammation of these tissue
slices could be observed in all the investigated groups, indicating
that both IPN hydrogels and IONPs-labeled PCSCs were of great
biocompatibility.

4 DISCUSSION

Stem cell-based therapeutic strategies are considered to be very
promising platforms for bone tissue regeneration, among which
PCSCs has been the focus of significant interest due to their
potential regenerative capacity to transform themselves into a
crowd of different cells (Luo et al., 2012). Although, PCSCs
showed excellent chondrogenic ability but little is known
about their osteogenic ability when they were employed as
seed cells for bone defects repair. Recent investigations
demonstrated that nanomaterials, especially IONPs could
modulate the fate of stem cells and interactions between
nanomaterials and stem cells have taken into serious

FIGURE 6 | In vivo bone regeneration assessment of PCSCs-hydrogels. (A)Reconstructed 3Dmicro-CT and sectional images of femoral condyle after treated with
PCSCs-hydrogels for 12 weeks. (B) Quantitative evaluation of the regenerated area by analyzing the parameter of micro-CT: BMD, BV/TV, TBN, TB.Sp, and TB.Th. (C)
H&E and Masson staining images of bone defect implanted with neat hydrogel and PCSCs-hydrogel. Abbreviation: NB, newly formed bone. Asterisk indicates
statistically significant differences between the control and experience groups (pp < 0.05 and ppp < 0.01).
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consideration in facilitating stem cell-based therapeutic strategies
for bone tissue regeneration (Wang et al., 2020). In this study, we
have isolated PCSCs from the ring of La-Croix extracted for
polydactylism patient and observed that IONPs could promote
osteogenic differentiation of PCSCs. Subsequently, IONPs-
labeled PCSCs-incorporated IPN hydrogel was extensively
utilized as repair scaffolds for bone tissue regeneration and the
results indicated that IONPs-labeled PCSCs could accelerate the
bone repair process rapidly and efficiently.

There are two common methods to obtain somatic stem cells
1) directional differentiation of embryonic stem cells (ESC)
(Wichterle et al., 2002) and 2) in vitro isolation and
cultivation of the desired stem cells in specific tissue (Eberle
et al., 2013). The method 1) has some limitations in terms of
complex condition for directional differentiation of ESC. In our
study, PCSCs were isolated individually and identified using
FGFR-3. The positive expression of FGFR-3 unarguably
confirmed that the isolated cells were PCSCs. Subsequently,
IONPs were prepared by a classic chemical co-precipitation
method and the obtained IONPs were of low polydispersion,
which guaranteed the reproducibility of their biological effect.

To assess the bio-toxicity of IONPs, the viability and adhesion
of PCSCs cultured with IONPs (50, 100, and 200 μg/ml) were
detected. The results demonstrated that IONPs with the
concentration lower than 100 μg/ml were non-toxic toward
PCSCs, in agreement with previous reports (Wang et al.,
2017). Based on the biocompatibility results, the effects of
IONPs on osteogenic differentiation of PCSCs at
concentrations of 50, 100, and 200 μg/ml. The ALP activity
level (an important indicator for osteoblast differentiation) and
formation of mineralized nodule were considered as two specific
stages of osteogenic differentiation (Mohamed-Ahmed et al.,
2018). In our study, after treated with IONPs (especially at a
concentration of 200 μg/ml), the ALP activity level and
mineralization were significantly enhanced, indicating the high
osteogenic potential. The osteogenic-related genes, including
ALP, Runx2, and COL1 were further detected to verify their
osteogenic ability, where Runx2 was considered as an early master
regulator for the initiation of osteogenesis that regulate the
osteogenic-related genes such as COL1 and ALP (Komori,
2018). The results showed that all these genes were
upregulated after treated with IONPs, which matched well
with the aforementioned ALP activity level and mineralization
results. Hence, IONPs could be used to induce osteogenic
differentiation of PCSCs and IONPs-labeled PCSCs with
enhanced osteogenic activity could be further used for in vivo
bone tissue regeneration.

Smart biomaterials such as hydrogels, nanofibrils, and
biological ceramics have proven incredibly beneficial as
scaffold for bone tissue regeneration due to their adjustable
nanostructure, excellent biocompatibility, biodegradability,
proper mechanical properties, enhanced osseointeration
capability and superior biological activities (Yue et al., 2015;
Huang et al., 2020; De France et al., 2021). Among these
biomaterials, hydrogels with additional advantages such as
printability have attracted considerable attention. Numerous of
materials have been used to construct bioactive hydrogels for

bone tissue regeneration. Alginate, a naturally occurring
biopolymer, has been widely used design materials for bone
tissue regeneration due to their attractive properties such as
biocompatibility, biodegradability, antibacterial activity,
hydrophilicity, and nontoxicity (Hernández-González et al.,
2020). Previous study demonstrated that alginate could be
methacrylated and the obtained ionic and photo-crosslinked
alginate-methacrylate hydrogels showed modulable mechanical
properties (Araiza-Verduzco et al., 2020). PEG-based hydrogels
with great printability have been the focus of significant interest
in designing multifunctional scaffolds for bone tissue
regeneration, where PGE was the common components for
photo-crosslinked three-dimensional (3D) printing. In our
study, MLA/4A-PEGAcr IPN hydrogel was prepared through
photo-crosslinking and ionic-crosslinking. The as-prepared IPN
hydrogel possessed porous nanostructure and proper mechanical
properties and could be used to incorporate IONPs-labeled
PCSCs for bone tissue regeneration assessment. As for the
in vitro results, both micro-CT and histological analysis
indicated that the implantation of IONPs-labeled PCSCs
significantly accelerated the process of bone formation,
indicating that IONPs-labeled PCSCs could endow current
bone repair scaffolds with excellent osteogenic activity.

5 SUMMARY

This study is the first report of osteogenesis of PCSCs induced by
IONPs, which is evidenced by an enhanced ALP activity level,
mineralized matrix nodules, and osteogenic-related gene
expressions. Further in vivo therapeutic performance of bone
defect repair could be obtained by incorporation of IPN hydrogel
as scaffold. Together with the fact that the IONPs-labeled PCSCs-
incorporated IPN hydrogel was of great printability, biosafety,
and improvement of cell spreading and proliferation, we believed
that this PCSCs-based scaffolds could enrich the stem cell-based
therapeutic strategies for bone tissue regeneration.
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