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The fundamental nature of the brain’s electrical activities recorded as electroencephalogram (EEG) remains unknown. Linear sto-
chastic models and spectral estimates are the most common methods for the analysis of EEG because of their robustness, simplicity
of interpretation, and apparent association with rhythmic behavioral patterns in nature. In this paper, we extend the use of higher-
order spectrum in order to indicate the hidden characteristics of EEG signals that simply do not arise from random processes. The
higher-order spectrum is an extension Fourier spectrum that uses higher moments for spectral estimates. This essentially nullifies
all Gaussian random effects, therefore, can reveal non-Gaussian and nonlinear characteristics in the complex patterns of EEG time
series. The paper demonstrates the distinguishing features of bispectral analysis for chaotic systems, filtered noises, and normal
background EEG activity. The bispectrum analysis detects nonlinear interactions; however, it does not quantify the coupling
strength. The squared bicoherence in the nonredundant region has been estimated to demonstrate nonlinear coupling. The bicohe-
rence values are minimal for white Gaussian noises (WGNs) and filtered noises. Higher bicoherence values in chaotic time series
and normal background EEG activities are indicative of nonlinear coupling in these systems. The paper shows utility of bispectral
methods as an analytical tool in understanding neural process underlying human EEG patterns.

1. Introduction

Biological signals are highly complex and understandably
nonlinear, may it be the firing of neurons, the beating of the
heart, or breathing. The nature of the signals is dramatic and
appears to be esoteric. These signals arise out of a multi-
tude of interconnected elements comprising of the human
body. These are bounded, finite, and the connections are
weakly coupled across all elements. These vary in time scales
ranging from nanoseconds for molecular motion to gross
observable behavior in terms of days and years. This implies
that biological systems are nonstationary [1, 2]. Signals of
biological origin require considerable experience for their
analysis and interpretation. This is only gained through
practical training and hand on expertise as most signals are
contaminated by processes of nonbiological origin at the

recording stage. Further, these signals can be mimicked by
noise and artifacts [3]. One of the contentious issues is that
filtered noises mimick time series of brain electrical poten-
tials which substantially vitiate both extraction of linear and
nonlinear measures of these time series.

Electroencephalography (EEG) is the recording of brain
cortical electrical activity from electrodes placed on the scalp.
The signals are also recorded subdurally or directly on the
cortex and are called Electrocorticogram (ECoG). The dyna-
mics and the structure patterns of both EEG and ECoG are
similar. EEG signals are used in seizure detection, organic en-
cephalopathies, monitoring anesthesia, and for the determi-
nation of brain death. There are perhaps 105 neurons under
each square millimeter of the cortical surface. Scalp EEG
measures space-averaged activity of 107 or more neurons
implying a source area of at least a square centimeter. EEG
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signals are quasistationary not exceeding 2–4 seconds in eye-
open state or 20–30 seconds in deep sleep. The stationary
condition varies with fleeting attention, and thus analytical
methods based on the assumption of the stationarity of the
system are superfluous. Signal prediction, therefore, is falla-
cious other than the mere detection of trends. Under these
circumstances, linear stochastic models remain the primary
method for the analysis of biological time series due to their
robustness, simplicity of interpretation, and their apparent
association with rhythmic behavioral patterns in nature. The
Fourier spectrum is trivial to linear methods. The linear
algebraic techniques and spectral estimates over years have
shown good correlation as approximation for inherently
nonlinear functions that are biological data [4–7].

Over decades of research publications, the application of
nonlinear time series methods involving invariant measures
such as Correlation Dimension (D2), Lyapunov Exponents
(λ), and Fractal Dimension (D1), have not gained wide ac-
ceptance in biomedical field. The measures do not provide
real insight into the biological phenomena due to their inhe-
rent high dimensionality along with long- and short-range
interactions within these systems [8–12]. The short data
lengths of biological time series deny perfect reconstruction
of their attractor. In attractor reconstruction, true indepen-
dence of each vector is not guaranteed due to the partial cor-
relations across dimensions. Therefore, nonlinear invariant
measures like D2, D1, and λ have limited value in medicine.
Even if one establishes the presence of chaos in deep sleep or
anesthesia [8–12], it is very difficult to reconstruct a model
that can reproduce the time series reflecting the behavioral
transitions during sleep and their apparent associations with
the time series. More so, the filtration of WGN using stiff
linear filters can mimic chaotic process including its validity
by surrogate testing [3, 13–16]. The results of nonlinear time
series invariants could not be validated as two different per-
sons in the same behavioral states have varying values. We
have reported D2 values in the range of 2–4 in seizures and
deep sleep. Similar D2 values are also found in normal
healthy individuals in awake state [17–22]. Therefore, the
biological acceptability of published nonlinear time series
measures is low. Even if we get a long-range pattern, there
remain high degrees of overlap in such invariant measures
across behavioral states.

In order to elicit better inference of EEG time series data,
we have extended the Fourier transform to bispectral estima-
tion using higher-order (third) moment [23–26]. This nul-
lifies all Gaussian random effects in the process. While bis-
pectrum analysis detects nonlinear interactions, it does not
quantify the coupling strength which we have evaluated
through bicoherence. The bicoherence, that is, a normalized
bispectrum has been used in sleep studies in animals [27].
There are also several reports of its application to human
brain signals, mainly, monitoring the degree of consciousness
or depth of anaesthesia. Bispectral methods have led to the
development of a device (Bispectral Index Monitor) which
has been recommended for clinical monitoring in critical
care and surgical anesthesia [28]. Recently, bispectral mea-
sures have been extended to detect subtle changes in EEG
dynamics in visual representation of motor tasks [29].

However, application of higher-order spectral techniques is
less wide-spread in medicine and biology. The aim of the
present investigation is to demonstrate the utilities of higher-
order spectrum in human EEG processing. There is a need
to represent the standard rhythmic manifestations of EEG
as revealed by bispectrum and reinforce its clinical and re-
search applications. All descriptions of brain electrical activ-
ity recordings invariably refer to these well-established back-
ground EEG rhythms. This paper also demonstrates the
significance of nonlinear interactions and coupling of brain
activity in the cerebral cortex using background EEG activ-
ities of normal subjects. We have used delta, theta, alpha,
beta, and indeterminate activities for the above study and
contrasted the results with chaotic time series (Lorenz and
Mackey-Glass systems), white Gaussian noise, and filtered
noises (1.5 Hz, 3 Hz, 9 Hz, 30 Hz, and 300 Hz).

2. Method

Any process is a linear process with respect to its second-
order statistics (power spectrum). The autocorrelation sequ-
ence does not give any evidence of nonlinearity. In contrast,
higher-order cumulants can give evidence of nonlinearity
(i.e., bispectrum for quadratic interactions). Polyspectrum
estimators are the natural generalizations of the autocorre-
lation function, and cumulants are specific nonlinear com-
binations of these moments. The power spectrum does not
carry information about phase which can be recovered from
higher-order polyspectra. The use of higher-order moments
nullifies all Gaussian random effects of the process, and the
bicoherence can then quantify the degree of the remaining
nonlinear coupling. The bispectrum and its normalized deri-
vative, the bicoherence, describes the components of a time
series that deviates from a Gaussian amplitude distribution.
Bispectra have been used to examine various physical time
series data including plasma physics and ocean waves [23–
26].

Fourier transform of f (t) is given by

f ′(w) =
∫∞
−∞

f (t)e−iωtdt. (1)

Power spectrum of (1) is

P f (w) = ∣∣ f ′(w)
∣∣2
. (2)

The natural estimate of the bispectrum (Bxxx) is the
Fourier transform of the third-order cumulant sequence
(Cxxx):

Bxxx
(
f1, f2

) =
∞∑

k=−∞

∞∑
l=−∞

Cxxx (k, l)e−i2π f1k e−i2π f2l . (3)

The bispectrum can be also written as (4), where Xn is
the Fourier Transform of {Xn}:

Bxxx
(
f1, f2

) = 1
N2

Xn′
(
f1 + f2

)
Xn f1Xn f2. (4)

The bicoherence or the normalized bispectrum (5) is a
measure of the amount of phase coupling that occurs in a
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signal or between two signals. Phase coupling is the estimate
of the proportion of energy in every possible pair of frequ-
ency components, f1, f2 (i.e., 1–50 Hz in EEG), which satis-
fies the definition of quadratic phase coupling (phase of com-
ponent at f3, which is f1 + f2, equals phase of f1+ phase of
f2) [23, 25]:

bic
(
f1, f2

) =
∣∣B( f1, f2

)∣∣2

P
(
f1
)
P
(
f2
)
P
(
f1 + f2

) . (5)

When the analyzed signal exhibits structure of any kind
whatsoever, it might be expected that some phase coupling
occurs. Bicoherence analysis is able to detect coherent signals
in extremely noisy data, provided that the coherency remains
constant for sufficiently long times, since the noise contri-
bution falls off rapidly with increasing N . The bicoherence
due to the coherent signal should be at least a factor of 3
above the maximum noise contribution, and the allowable
signal-to-noise ratio is 3e. Bicoherence can be considered a
very powerful noise filter. We have utilized the archived EEG
data available in the Department of Psychopharmacology at
the National Institute of Mental Health and Neurosciences,
Bangalore. We have taken normative data of standard fre-
quency band of EEG patterns of alpha, beta, theta, delta and
indeterminate activities. These pattern descriptions are the
accepted background rhythms in the EEG literature.

3. Results

The Lorenz and the Mackey-Glass systems are examples of
classical nonlinear and chaotic systems. These are included
in the study for the purpose of comparison with linear sys-
tems (WGN, filtered noises) and EEG with a view to demon-
strate non-Gaussian and nonlinear characteristics of EEG.
The time series of the Lorenz (x-component) and the
Mackey-Glass systems are shown in Figure 1. The WGN and
filtered noises of 1.5 Hz, 3 Hz, 9 Hz, 30 Hz, and 300 Hz used
in the study are given in Figure 2. The EEG signals of alpha,
beta, theta, delta, and indeterminate activities are shown in
Figure 3. We have used 4096 data points of the above time
series for estimation of bicoherence and Hinich statistics. The
respective bicoherence plots are given in Figures 4–6. The
numerical simulation of chaotic time series, WGN, filtered
noises, and the method of EEG data acquisition are described
in [25].

Table 1 provides probability measure of significance
(χ2 and P values), where the assumption Gaussianity holds
good for P ≥ 0.5. The results show P = 0 for chaotic time
series, low-frequency filtered noises (1.5 Hz–30 Hz), and
EEG data. Therefore, non-Gaussianity holds good for these
time series. The low-frequency filtered noises (1.5 Hz to
30 Hz) are within the bandwidth of normal background EEG
activities; therefore, the filtered noises may be considered
as spurious processes mimicking EEG rhythms. The results
given in Table 1 indicate large differences in the estimated
and theoretical interquartile ranges for chaotic time series
and the EEG data. In contrast, the estimated and theoretical
interquartile ranges (R) are relatively small for the WGN and
filter noises. As there are no gross differences between them,

Table 1

Time series χ2 P
R-

estimated
R-

theoretical
λ

Lorenz
system

8469.61 0.0 589.87 46.87 301.35

Mackey-Glass
system

5765.88 0.00 408.36 38.49 203.02

White
Gaussian
noise

2.07 1.00 0.08 2.25 0.07

Filtered noise
1.5 Hz

270.08 0.00 16.31 8.67 9.93

Filtered noise
3 Hz

627.06 0.00 46.60 12.99 22.74

Filtered noise
9 Hz

359.46 0.00 19.83 9.95 13.20

Filtered noise
30.0 Hz

120.05 0.00 5.80 5.89 4.40

Filtered noise
300 Hz

55.68 0.21 0.61 4.03 1.84

Alpha EEG
activity

9731.75 0.00 390.91 35.75 175.05

Beta EEG
activity

34794.08 0.00 1407.53 67.65 628.16

Theta EEG
activity

4442.43 0.00 118.94 23.49 75.33

Delta EEG
activity

14962.96 0.00 602.83 44.29 269.02

Indeterminate
EEG activity

3178.88 0.00 114.14 20.06 54.83

χ2 value, P: probability of the time series being Gaussian, R: interquartile
range, λ: noncentrality parameter, d.o. f = 271.

the assumptions of linearity are not rejected in these data.
The large differences in R-estimated and R-theoretical indi-
cate nonlinearity. Therefore, the normal background EEG
rhythms may be treated as nonlinear like chaotic processes.
The results clearly establishe non-Gaussian and nonlinear
nature of background EEG activities.

4. Discussion

Higher-order statistics (spectra) and their application to var-
ious signal processing problems are relatively recent. There
may be much more information in a stochastic non-Gaussian
or deterministic signal than conveyed by its autocorrelation
or power-spectral estimates. The higher-order spectra which
is defined in terms of the higher-order moments or cumu-
lants of a signal may contain this additional information. The
higher-order moments are the natural generalizations of
autocorrelation, and the cumulants are specific nonlinear
combinations of these moments. The nth-order spectrum is
defined as the Fourier transform of the nth-order cumulant
sequence. The test for Gaussianity and linearity is based on
the assumption that if the third-order cumulant of a process
is zero, then its bispectrum is zero, and hence the bicoherence
is also zero. A nonzero bispectrum, therefore, holds good for
a non-Gaussian process [23, 30].
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Figure 1: The time series of the (a) Lorenz (x-component) and (b) the Mackey-Glass systems. For each, 200000 data points were generated
of which first 5000 data points were discarded to remove the initial transients. Only 1024 data points are shown here.
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Figure 2: The plots show time series data of (a) 1.5 Hz low-pass filtered WGN, (b) 3 Hz low-pass filtered WGN, (c) 9 Hz low-pass filtered
WGN, (d) 30 Hz low-pass filtered WGN, (e) 300 low-pass filtered WGN, and (f) White Gaussian noise.

For a linear process, the bicoherence is a nonzero con-
stant. If the bispectrum is Gaussian distributed, we know
that the squared bispectrum is chi-square distributed with
two degrees of freedom. If the estimated bispectrum is zero,
then the statistic of bicoherence is a central chi-square

random variable with two degrees of freedom. The squared
bicoherence is summed over m points in the nonredundant
region. Then resulting statistic is chi-square distributed with
2 m degrees of freedom. The statistical test determines the
consistency of bicoherence values with a central chi-square



Computational and Mathematical Methods in Medicine 5

20
0

−20
0 100 200 300 400 500 600 700 800 900 1000A

m
pl

it
u

de

(a)

20
0

−20
0 100 200 300 400 500 600 700 800 900 1000A

m
pl

it
u

de

(b)

20

−20

0 100 200 300 400 500 600 700 800 900 1000A
m

pl
it

u
de

(c)

20
0

−20
0 100 200 300 400 500 600 700 800 900 1000A

m
pl

it
u

de

(d)

20

−20

Number of points

0 100 200 300 400 500 600 700 800 900 1000

A
m

pl
it

u
de

(e)

Figure 3: The plots show experimental time series data of various EEG activities: (a) delta EEG activity, (b) theta EEG activity, (c) alpha EEG
activity, (d) beta EEG activity, and (e) indeterminate EEG activity.
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(a) Lorenz map (x-component)
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Figure 4: The bicoherence plots of classical chaotic systems: (a) Lorenz map (x-component), (b) Mackey-Glass systems.

distribution. This method is suitable for extracting informa-
tion about the structure of the signals as it preserves nonmin-
imum phase information. The higher-order spectra carry
phase information which is ordinarily suppressed in power
spectral estimate. Extensive studies in the field of signal
processing have generated information on the input-output
relationships of linear systems through autocorrelation and
power spectrum. However, no definite information is avail-
able on the input-output relationship of nonlinear systems to
stochastic excitation and each type of nonlinearity is treated
as a special case [23, 30–32].

The present investigation uses the above concepts of
higher-order spectral (bicoherence) estimates to obtain
Hinich statistics for Gaussianity and linearity. The aim of the
study is to contrast the Hinich statistics and bicoherence
for well-understood classical chaotic system, WGN, filtered
noises, and the normal background EEG activities. The re-
sults are shown in Table 1 which provides the χ2 values,
P values, R-estimated, R-theoretical, and λ values. These
estimated values of EEG activities may be viewed in reference
to obvious nonlinear chaotic series of Lorenz and Mackey-
Glass systems and that of filtered noises which fall within its
bandwidth.

The bispectral analyses of chaotic systems are found to
be characteristically non-Gaussian and nonlinear. The chaos
hypothesis in biological systems is based on a finite correla-
tion dimension and a positive dominant Lyapunov exponent.
A number of technical problems, however, confound the esti-
mation of these measures. Even the instrumentation at the
recording stage may render the application of nonlinear
dynamics to these signals invalid. The use of analog filters
during signal capture and digital filters in its analysis may
account for spurious D2 or positive dominant Lyapunov ex-
ponent values [25, 33], whereas bispectral methods are
robust and least affected by extraneous noises and filters.
Here (Table 1), the chaotic time series (Lorenz x-component
and Mackey-Glass systems) are not only non-Gaussian but
also have skewed noncentral distribution (λ). In addition,
there is a large difference in their R-estimated and R-theo-
retical interquartile ranges. The Gaussianity assumption is
rejected as the probability of the time series being Gaussian
is small (P = 0). The linearity hypothesis also cannot be
accepted since the differences in the estimated interquartile
ranges are much larger than the theoretical values. The squa-
red bicoherence in nonredundant regions are positive and
have several peaks (Figure 4); hence, nonlinear coupling is
indicated in this systems.
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Figure 5: Bicoherence plots of (a) 1.5 low-pass filtered WGN, (b) 3 Hz low-pass filtered WGN, (c) 9 Hz low-pass filtered WGN, (d) 30 Hz low-
pass filtered WGN, (e) 300 low-pass filtered WGN, and (f) White Gaussian noise.

The Hinich statistics (Table 1) also includes the results
for WGN, filter noises. The WGN obviously shows highest
probability (P = 1) as to being Gaussian. Therefore, the re-
sults of linearity test are ignored. The stiffly filtered noises
(1.5 Hz, 3 Hz, 9 Hz, and 30 Hz) in the low-frequency ranges
do depart from Gaussianity (P = 0); however, the estimated
and theoretical interquartile ranges are very close to each
other. The 300 Hz signal is more closer to WGN than the
low-frequency signals. Therefore, the Gaussianity test holds
good at this high frequency. The linearity hypothesis is also
valid for WGN and filtered noises since their estimated and
theoretical interquartile ranges (R) are close to one another.
Figure 5 shows the estimated mean values of bicoherence
over the points in the nonredundant region. The plots do not
indicate nonlinear interactions or coupling.

The EEG time series have the lowest probability (P = 0)
of being non-Gaussian with large differences in their esti-
mated and theoretical interquartile ranges. The high non-
central characteristics (λ) are seen only with chaotic and EEG

time series. The mean bicoherence of EEG signals are positive
and large in the nonredundant regions with several peaks
(Figure 6). The bicoherent values are found to be high for
delta activity compared to other EEG rhythms. It reflects
neocortical forcing for nonlinear coupling by the low-frequ-
ency neurons in the deep midbrain and the brain stem
structures. We have shown higher bicoherence for all of the
normal background EEG rhythms that are associated with a
various behavioral states ranging from waking state and alert
behavior (beta and indeterminate) to light sleep (alpha and
theta) and deep sleep (delta). The normal background EEG
activities have bicoherence values ranging from 90 for alpha
to 4594.42 for delta. The high-squared bicoherence in nonre-
dundant regions reflect quadratic phase coupling of neu-
ronal ensembles in these conditions. The synchrony of neural
discharge (signal morphology) and the non-Gaussian com-
ponent (frequency coupling) is probably heterogeneous. The
squared bicoherence values of normal EEG rhythms (Figures
6(a), 6(b), 6(c), 6(d), and 6(e)) show wide ranging peaks in
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Figure 6: The bicoherence plots of (a) alpha EEG activity, (b) beta EEG activity, (c) theta EEG activity, (d) delta EEG activity, and (e) indeter-
minate EEG activity.

the nonredundant region. The coupling patterns, therefore,
may be different for different EEG activity.

5. Conclusion

In our detection of nonlinearity or absence of linear stochas-
tic mechanism, we have shown that the higher-order spectra
can reliably distinguish chaotic signals and EEG rhythms
from the filtered noises. The filtered noises in the lower pass-
bands show linear stochastic properties in the distribution of
their bicoherence values. The results of Hinich statistics and
bicoherence estimates indicate that EEG rhythms have simi-
lar properties as those of the chaotic time series. The EEG sig-
nals are unequivocally non-Gaussian and nonlinear in cha-
racter. In addition, the bicoherence patterns in the nonre-
dundant regions of the EEG time series are similar to chaotic
time series, reflecting quadratic phase coupling. The bispec-
trum preserves nonminimum phase information of a signal
and outputs zero spectrum for linear mechanism. Therefore,
the bicoherence statistics of nonredundant region of the

spectra (Hinich statistics) may be suitable for detecting hid-
den structure in signals [25].

References

[1] T. H. Bullock, J. Z. Achimowicz, R. B. Duckrow, S. S. Spencer,
and V. J. Iragui-Madoz, “Bicoherence of intracranial EEG in
sleep, wakefulness and seizures,” Electroencephalography and
Clinical Neurophysiology, vol. 103, no. 6, pp. 661–678, 1997.

[2] J. P. Pijn, J. Van Neerven, A. Noest, and F. H. Lopes Da Silva,
“Chaos or noise in EEG signals; dependence on state and brain
site,” Electroencephalography and Clinical Neurophysiology, vol.
79, no. 5, pp. 371–381, 1991.

[3] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Doyne
Farmer, “Testing for nonlinearity in time series: the method of
surrogate data,” Physica D, vol. 58, no. 1–4, pp. 77–94, 1992.

[4] P. E. Rapp, I. D. Zimmerman, A. M. Albano, G. C. de Guzman,
N. N. Greenbaum, and T. R. Bashore, “Experimental studies of
chaotic neural behavior: cellular activity and electroencepha-
lographic signals,” in Nonlinear Oscillationsin in Biology and



8 Computational and Mathematical Methods in Medicine

Chemistry, H. G. Othmer, Ed., Springer, Berlin, Germany,
1985.

[5] A. M. Albano, A. I. Mees, G.C. de Guzman, and P. E. Rapp,
“Data requirements for reliable estimation of correlation di-
mensions,” in Chaos in Biological Systems, H. Degn, A. V.
Holden, and L. F. Olsen, Eds., Plenum, New York, NY, USA,
1987.

[6] T. M. McKenna, T. A. McMullen, and M. F. Shlesinger, “The
brain as a dynamic physical system,” Neuroscience, vol. 60, no.
3, pp. 587–605, 1994.

[7] E. Basar, Chaos in Brain Function, Springer, Berlin, Germany,
1990.

[8] I. Dvorak and A. V. Holden, Mathematical Approaches to Brain
Functioning Diagnostics, Manchester University Press, 1991.

[9] B. H. Jansen, “Quantitative analysis of electroencephalograms:
Is there chaos in the future?” International Journal of Bio-Me-
dical Computing, vol. 27, no. 2, pp. 95–123, 1991.

[10] B. H. Jansen, “Is it and so what? A critical review of EEG
chaos,” in Measuring Chaos in the Human Brain, D. W. Duke
and W. S. Pritchard, Eds., World Scientific, Singapore, 1991.

[11] P. E. Rapp, “Chaos in the neurosciences: cautionary tales from
the frontier,” Biologist, vol. 40, no. 2, pp. 89–94, 1993.

[12] P. E. Rapp, in Chaos Theory in Psychology and Life Sciences, A.
Combs, Ed., Lawrence Erlbaum Associates, 1995.

[13] M. Palus, Nonlinearity in normal human EEG: Cycles and
randomness, not chaos, Santa Fe Institute, Santa Fe, NM, USA,
1994, Santa Fe Institute Publication Number 94-10-054.

[14] W. S. Pritchard, D. W. Duke, and K. K. Krieble, “Dimensional
analysis of resting human EEG II: surrogate-data testing indi-
cates nonlinearity but not low-dimensional chaos,” Psychophy-
siology, vol. 32, no. 5, pp. 486–491, 1995.

[15] D. Prichard and J. Theiler, “Generating surrogate data for time
series with several simultaneously measured variables,” Physi-
cal Review Letters, vol. 73, no. 7, pp. 951–954, 1994.

[16] W. S. Pritchard and D. W. Duke, “Measuring chaos in the
brain: a tutorial review of nonlinear dynamical EEG analysis,”
International Journal of Neuroscience, vol. 67, no. 1–4, pp. 31–
80, 1992.

[17] N. Pradhan, P. K. Sadasivan, S. Chatterji, and D. Narayana
Dutt, “Patterns of attractor dimensions of sleep EEG,” Com-
puters in Biology and Medicine, vol. 25, no. 5, pp. 455–462,
1995.

[18] P. E. Rapp, A. M. Albano, T. I. Schmah, and L. A. Farwell, “Fil-
tered noise can mimic low-dimensional chaotic attractors,”
Physical Review E, vol. 47, no. 4, pp. 2289–2297, 1993.

[19] L. Glass, D. T. Kaplan, and J. E. Lewis, “Tests for deterministic
dynamics in real and model neural networks,” in Nonlinear
Dynamical Analysis of the EEG, B. H. Jansen and M. E. Brandt,
Eds., World Scientific, Singapore, 1992.

[20] S. J. Schiff, T. Sauer, and T. Chang, “Discriminating determin-
istic versus stochastic dynamics in neuronal activity,” Integra-
tive Physiological and Behavioral Science, vol. 29, no. 3, pp.
246–261, 1994.

[21] N. Pradhan and D. N. Dutt, “A nonlinear perspective in under-
standing the neurodynamics of EEG,” Computers in Biology
and Medicine, vol. 23, no. 6, pp. 425–442, 1993.

[22] Z. J. Kowalik and T. Elbert, “A practical method for the mea-
surements of the chaoticity of electric and magnetic brain acti-
vity,” International Journal of Bifurcation and Chaos, vol. 5, no.
2, pp. 475–490, 1995.

[23] B. P. Van Milligen, E. Sánctiez, T. Estrada et al., “Wavelet bico-
herence: a new turbulence analysis tool,” Physics of Plasmas,
vol. 2, no. 8, pp. 3017–3032, 1995.

[24] A. Swami, J. Mendel, and C. Nikias, “Higher-Order Spectral
analysis toolbox For use with Matlab (Mathworks 1995)”.

[25] N. Pradhan, in Nonlinear Dynamics and Brain Functioning, N.
Pradhan, P. E. Rapp, and R. Sreenivasan, Eds., Novascience
Publishers, New York, NY, USA, 2000.

[26] S. Shahid and J. Walker, “Cepstrum of bispectrum—a new ap-
proach to blind system reconstruction,” Signal Processing, vol.
88, no. 1, pp. 19–32, 2008.

[27] T. H. Bullock, J. Z. Achimowicz, R. B. Duckrow, S. S. Spencer,
and V. J. Iragui-Madoz, “Bicoherence of intracranial EEG in
sleep, wakefulness and seizures,” Electroencephalography and
Clinical Neurophysiology, vol. 103, no. 6, pp. 661–678, 1997.

[28] “Bispectral Index, BIS, BISx, and Aspect are trademarks or
registered trademarks of Aspect Medical Systems”.

[29] A. Saikia and S. M. Hazarika, “Bispectrum analysis of EEG
during observation and imagination of hand movement,” in
Proceedings of the IEEE Students’ Technology Symposium (Tech-
Sym ’11), pp. 128–133, January 2011.

[30] O. Tirel, E. Wodey, R. Harris, J. Y. Bansard, C. Ecoffey, and L.
Senhadji, “The impact of age on bispectral index values and
EEG bispectrum during anaesthesia with desflurane and halo-
thane in children,” British Journal of Anaesthesia, vol. 96, no. 4,
pp. 480–485, 2006.

[31] A. Gallego, J. F. Gil, J. M. Vico, E. Castro, J. E. Ruzzante, and
R. Piotrkowski, “Wavelet transform and bispectrum applied
to acoustic emission signals from adherence scratch-tests on
corroded galvanized coatings,” Advanced Materials Research,
vol. 13-14, pp. 83–88, 2006.

[32] E. P. Tsolaki, “Testing nonstationary time series for Gaussian-
ity and linearity using the evolutionary bispectrum: an appli-
cation to internet traffic data,” Signal Processing, vol. 88, no. 6,
pp. 1355–1367, 2008.
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