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ABSTRACT
◥

Aggregation of genome-wide common risk variants, such as
polygenic risk score (PRS), can measure genetic susceptibility to
cancer. A better understanding of how common germline var-
iants associate with somatic alterations and clinical features
could facilitate personalized cancer prevention and early detec-
tion. We constructed PRSs from 14 genome-wide association
studies (median n ¼ 64,905) for 12 cancer types by multiple
methods and calibrated them using the UK Biobank resources
(n ¼ 335,048). Meta-analyses across cancer types in The Cancer
Genome Atlas (n ¼ 7,965) revealed that higher PRS values were
associated with earlier cancer onset and lower burden of somatic
alterations, including total mutations, chromosome/arm soma-

tic copy-number alterations (SCNA), and focal SCNAs. This
contrasts with rare germline pathogenic variants (e.g., BRCA1/2
variants), showing heterogeneous associations with somatic
alterations. Our results suggest that common germline cancer
risk variants allow early tumor development before the accumu-
lation of many somatic alterations characteristic of later stages of
carcinogenesis.

Significance: Meta-analyses across cancers show that common
germline risk variants affect not only cancer predisposition but the
age of cancer onset and burden of somatic alterations, including
total mutations and copy-number alterations.

Introduction
Cancer is a genomic disease driven by the accumulation of somatic

alterations, but germline variants also contribute to the process of
carcinogenesis (1). Through comprehensive genomic analyses, such as
The Cancer Genome Atlas (TCGA; ref. 2) and Pan-Cancer Analysis of
Whole Genomes (PCAWG; ref. 3), numerous somatic driver altera-
tions [including mutations and somatic copy-number alterations
(SCNA)] have been identified, and their effects on carcinogenesis
have been extensively evaluated in a pan-cancer manner. Similar

efforts have been extended to rare germline pathogenic variants, such
as BRCA1/2 variants, which are observed in approximately 8% of all
patients with cancer and present in high-penetrance cancer-associated
genes (1). These rare germline pathogenic variants contribute to
carcinogenesis through coordination with somatic alterations, as
exemplified by frequent colocalization of rare germline pathogenic
variants with somaticmutations or loss of heterozygosity (LOH) of the
same predisposition gene (two-hit theory; ref. 1). However, such rare
pathogenic variants account for only a small fraction of the familial
risk, leaving much heritability unexplained.
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Recent genome-wide association studies (GWAS) have identified
hundreds of common germline risk variants, which show low-
penetrance and have relatively smaller effect sizes. Such common
risk variants are estimated to exist in a genome-wide manner as more
than thousands in total for a wide range of cancer types (i.e., poly-
genicity; ref. 4). Although individual risk variants have small effects,
aggregation of genome-wide risk variants can explain genetic liability
to cancers, affecting a great number of people; common germline risk
accounts for a higher proportion of cancer incidence than lifestyle-
related risk factors for most cancer types at the population level (5).
Polygenic risk score (PRS), a score reflecting the combined effect of
genome-wide common risk variants identified by GWAS, is a widely
used approach to measure polygenic germline risk. PRS has a clinical
potential to promote personalized prevention and early detection of
cancer by identifying individuals at substantially elevated risks (5). PRS
has been shown to effectively predict the risk of cancer development
formost cancer types in the general population (6), and even in carriers
of rare germline pathogenic variants for breast and ovarian cancers (7).
However, there are only sporadic reports on PRS associations with
certain driver mutations and cancer subtypes (8). A comprehensive
evaluation of polygenic germline–somatic associations is thus needed.

Here, we constructed cancer PRSs with high-prediction capability
by applying multiple PRS construction methods in parallel and
calibrating them using the UK Biobank (UKB) resources. We exam-
ined the PRS associations with a wide range of somatic alterations and
clinical features in TCGA by jointly modeling PRSs and rare germline
pathogenic variants, to provide a comprehensive portrait of germline–
somatic associations (Fig. 1).

Materials and Methods
PRS

We used four methods to construct PRS, Clumping and Thresh-
olding (CþT), PRScs (released on April 24, 2020, https://github.com/
getian107/PRScs; ref. 9), lassosum (v0.4.5, https://github.com/tshmak/
lassosum; ref. 10), and LDpred2 (specifically, LDpred2-auto in bigsnpr
R package v1.4.4, https://privefl.github.io/bigsnpr/; ref. 11), with the
1000 Genomes Project (phase 3) European samples as the reference
panel (Fig. 1). PRScs and LDpred2 are Bayesian approaches using
HapMap3 variants (9, 11), whereas lassosum-selected variants from
genome-wide variants using penalized regression (10).We used PRScs
with automated optimization of the parameter phi (PRScs-auto). We
applied these methods to public GWASs and GWASs obtained from
the data provider as summarized in Supplementary Table S1. For
breast cancer (BRCA), multiple studies with the same case–control
definition were available, and we chose the study with the largest
sample size. We note that “ESCA (BEEA)” is a GWAS for Barrett’s
esophagus and esophageal adenocarcinoma, which considered both
diseases as a single entity because of a very high genetic correlation
between these two diseases. On the other hand, “ESCA (EA)” is a
GWAS only for esophageal adenocarcinoma. To guarantee the con-
sistency of PRS between UKB and TCGA, we restricted the variants in
the GWAS summary statistics to the variants included in all of UKB,
TCGA, and the reference panel. For theGWASs inwhich the summary
statistics were available, we matched the palindrome variants between
the summary statistics and the reference panel if the difference of their
allele frequencies was less than 0.1. We also evaluated the strand of
these palindrome variants and removed them if there was strand
inconsistency. All palindrome variants were excluded for the GWASs
in which the allele frequencies were not reported in the summary
statistics. We used plink1.9 (v1.90b6.16, https://www.cog-genomics.

org/plink/1.9/; ref. 12) for clumping with the command “plink–clump–
clump-r2 0.1–clump-kb 250,” and examined eight thresholds for
GWAS P values, 1�10�1, 1�10�2, . . ., 1�10�7, 5�10�8. The PRSs
were evaluated in UKB data with age, sex, and top 20 genetic principal
components as covariates. We defined the control group as the
individuals whowere not diagnosedwith cancer andwere not reported
as patients with cancer by themselves. For the case group, we included
both individuals with relevant International Classification of Diseases
(ICD)-10 codes and individuals who self-reported to be diagnosed
with relevant cancer types. If the cancer types were defined histolog-
ically, we did not include self-reported individuals in the case group.
The ICD-10 codes, histology, and cancer types are described in
Supplementary Table S2. We picked up the hyperparameters that
gained the largest area under the curve (AUC) per PRS method after
excluding scores that negatively correlated with disease status, and
compared the R2, AUC, and odds ratios of deciles across the methods.
We used the Delong’s test to evaluate the difference of AUC between
the full model and the reduced model including all covariates but
PRS, and the P values were subsequently adjusted by the Benjamini–
Hochberg method. We note that the skin cutaneous melanoma
(SKCM) and uterine endometrial carcinoma (UCEC) studies included
UKBparticipants in their discovery cohorts, whichmay inflate the PRS
performance of those studies.

Evaluation of germline–somatic associations
PRSs were evaluated in cancer types in which the adjusted P value

was below 0.05 andR2was above 0.01 in theUKB cohort.We restricted
our subsequent analysis to patients in which primary solid tumor or
primary blood-derived cancer samples were available (TCGA sample
code 01 or 03). SKCM was excluded because the majority of the
samples were from metastatic sites. Because our PRSs were generated
from cohorts that mostly included European individuals, we evaluated
the association of PRS values with somatic alterations and clinical
features only in European samples (see also ancestry analysis section of
Supplementary Materials and Methods). Samples with atypical sex
chromosomes (see sex inference section of Supplementary Materials
andMethods) as well as samples with the do_not_use flag in the TCGA
PanCanAtlas Project (merged_sample_quality_annotations.tsv), such
as those with a history of unacceptable prior treatment, were also
excluded.

In each cancer type, generalized linear model was fitted using
genetic or clinical feature as dependent variables [after rank-based
inverse normal transformation (INT) to quantitative variables] and
PRS values of the corresponding cancer type (after INT), subtypes, and
the presence of germline pathogenic variants (a binary variable) as
independent variables. Samples with missing values were excluded
from the analysis. Although we cannot exclude the possibility that the
germline pathogenic variants were in linkage disequilibrium (LD)with
common germline variants used for PRS calculation, such LD should
be weak, if at all. Furthermore, we calculated PRSs from a large number
of variants (Supplementary Table S3), and therefore the confounding
effects of LD for individual variants should beminimized.We assumed
the normal distribution for quantitative phenotypes and the binomial
distribution for the mutations of individual driver genes. Then, the
effect sizes and standard errors were combined through fixed-effect
meta-analysis to derive a final P value. Meta-analysis was conducted
using the R package “meta.”

Data availability
Our findings are supported by data that are available from public

online repositories, or data that are publicly available upon request
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from the data provider. Specifically, GWAS summary statistics were
downloaded from the Breast Cancer Association Consortium (https://
bcac.ccge.medschl.cam.ac.uk/bcacdata/; BRCA), the Prostate Cancer
Association Group to Investigate Cancer Associated Alterations in the
Genome consortium (http://practical.icr.ac.uk/blog/; prostate cancer,
PRAD), the database of Genotypes and Phenotypes (dbGaP) accession
phs001868.v1.p1 (SKCM), GWAS catalog (https://www.ebi.ac.uk/
gwas/home; UCEC and ovarian serous carcinoma, OV), and the
Harvard Dataverse (https://doi.org/10.7910/DVN/2VBLLP; cervical
cancer, CESC). The GWAS summary statistics of colorectal cancer
(COADREAD), lung cancer (LUCA), lung adenocarcinoma (LUAD),
and lung squamous cell carcinoma (LUSC) were obtained from
Supplementary Tables of the original articles. The GWAS summary
statistics of ESCA (BEEA), ESCA (EA), glioblastoma multiforme
(GBM), and head and neck squamous cell carcinoma (HNSC) were
provided by the authors. The UKB resource (https://www.ukbiobank.
ac.uk/) was accessed through application number 47821. For TCGA,

birdseed files were downloaded from GDC Portal (dbGaP accession
phs000178.v10.p8). Somatic and germline mutational data in Muta-
tion Annotation Format, RNA-seq expression data, In Silico Admix-
ture Removal (ISAR)–corrected copy-number segment data, and
clinical information were downloaded from GDC (https://gdc.can
cer.gov/about-data/publications/pancanatlas and https://gdc.cancer.
gov/about-data/publications/PanCanAtlas-Germline-AWG).

Further details of the methods are provided in the Supplementary
Materials and Methods.

Results
Wefirstwidely collectedGWASsummary statistics andobtained them

from 14 studies (n ¼ 9,347–247,173; median 64,905) of 12 cancer types
(Supplementary Table S1). GWAS effective sample sizes, calculated as a
doubled harmonic mean of the number of cases and controls, were
between 7,949 and 245,620 (median 39,658; Fig. 2A). All GWASs used in
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Overview of this study. A graphical overview of germline–somatic association analyses. CESC, cervical cancer; COADREAD, colorectal cancer; ESCA (BEEA),
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this studywere predominantly frompopulationswithEuropean ancestry.
Single-nucleotide polymorphism (SNP)-based heritability estimateswere
different across cancer types, ranging from h2 ¼ 0.042 [95% confidence
interval (CI), 0.018–0.066] forUCEC toh2¼ 0.16 (95%CI, 0.11–0.20) for
ESCA (EA). We then applied multiple PRS construction methods to
available variants in these GWASs to obtain the best predictive PRSs.
CþT, a simple PRS construction method, was conducted for all studies,
with different P value thresholds (minimum 5�10�8). In addition, we
adopted three LD-aware methods [PRScs (9), lassosum (10), and
LDpred2 (11)] for 8 (57%) studies (from 7 cancer types) with complete
GWAS summary statistics. Compared with CþT, these methods used a
larger number of variants, which may contain potentially informative
variants (Fig. 2B; Supplementary Table S3; refs. 9–11). Although
LDpred2 and PRScs produced one PRS, CþT and lassosum produced
8 and 80 PRSs according to their hyperparameters, respectively, thus
generating a total of 90 PRSs per individual for each study.

We evaluated the predictive performance of PRSs, including
Nagelkerke’s R2and AUC for the case–control status in individuals
of European ancestry in theUKB cohort (n¼ 335,048) and selected the
PRS with the highest performance for each study (see Materials and
Methods, Figs. 1 and 2C; Supplementary Fig. S1–S3, and Supplemen-
tary Tables S2–S4). For 8 studies with complete GWAS summary
statistics, the LD-aware methods consistently produced PRSs with
higher predictive performance than CþT. For the remaining 6 studies,
of which, GWAS summary statistics were available for a limited set
of variants, the best PRS was achieved by CþT with the most lenient
P value threshold (Supplementary Table S3). Although even the best
PRS showed limited improvement in these studies (Fig. 2C), the best

PRS was able to stratify individuals more successfully than the CþT
PRS with genome-wide significant variants (i.e., P < 5�10�8 as used in
previous studies; refs. 5, 8) for all studies (Supplementary Fig. S3),
suggesting that the substantial heritability attributed to sub-GWAS
significant variants. The best PRS tended to show higher predictive
performance for the studies that had a larger effective sample size
and a higher heritability, including BRCA, PRAD, and SKCM (Fig. 2A
andC). Taken together, we constructed highly predictive PRS for each
study by applying the LD-aware methods to genome-wide variants.

We next applied the best PRSs selected in each study to the TCGA
cohort. Because PRSs were calculated using European GWASs, we
performed ancestry admixture analysis (Supplementary Fig. S4 and
Supplementary Table S5) and restricted our subsequent analyses to the
samples (n ¼ 7,965) of European ancestry without sex aneuploidy to
prevent confounding by low PRS transferability between popula-
tions (13). After excluding SKCM, mainly consisting of metastatic
samples, we focused on the PRSs with high predictive performance
(i.e., R2 > 0.01 and adjusted P < 0.05; see Materials and Methods)
calculated from 7 studies (for 7 cancer types), for 5 of which complete
GWAS summary statistics were available (Fig. 1; Supplementary
Table S4). The predictability of the PRSs was confirmed by the highest
PRS values in the corresponding cancer type (Supplementary Fig. S5A
and S5B).We evaluated the pair-wise correlation of PRS values among
the 7 cancer types in the TCGA cohort (n ¼ 2,924), which revealed
several positive and negative correlations (Supplementary Fig. S5C).
The most prominent was the positive correlation between UCEC and
BRCA, which was validated in the UKB cohort (n ¼ 269,544). This
relationship was further supported by an additional genetic correlation
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analysis using LD score regression, showing a significant positive
correlation (rg ¼ 0.20; 95% CI, 0.08–0.32) between UCEC and BRCA.
These results suggest common germline susceptibility between these
biologically related cancer types. Pathway enrichment analysis dem-
onstrated the overrepresentation of cell-cycle pathway genes in both
cancer types (FDR ¼ 2.4�10�2 and 6.9�10�6 for UCEC and BRCA,
respectively), among which, CCND1, CDKN2A, and CDKN2B were
associated with both cancer types (P < 0.05, Supplementary Table S6).
The subset of the PRS values only using the variants within the three
genes weremore highly correlated to each other [r¼ 0.33 (TCGA) and
0.32 (UKB)] than the entire PRS values [r ¼ 0.11 (TCGA) and 0.07
(UKB)], suggesting the contribution of cell-cycle susceptibility to both
cancer types.

We next evaluated associations of PRS values for the corresponding
cancer types with somatic alterations and clinical features in the 7
cancer types of the TCGA cohort (n ¼ 82–759; median 399) using
generalized linear regression (Fig. 3A; Supplementary Figs. S5 and
S6). As PRS has been reported as an independent risk of cancer
development from rare germline variants in breast and ovarian
cancers (7), and their presence did not affect the distribution of PRS

values in our analysis (Supplementary Fig. S5D), we incorporated
the presence of rare germline pathogenic variants (1) as covariates
(Supplementary Fig. S5E). Because PRS values were slightly differ-
ent between subtypes in certain cancer types, we also adjusted for
subtype (Supplementary Fig. S5F). First, higher PRS values were
associated with younger age at diagnosis in BRCA and PRAD (P ¼
0.014 and 0.041, respectively; Fig. 3A; Supplementary Fig. S6A).
Similar trends were observed across all evaluated cancer types, and
this association was significant in the meta-analysis (P ¼ 0.001),
suggesting that individuals with higher common germline risk
develop malignancy at a younger age, generalizing the previous
finding in certain cancer types (14). Second, after the removal of
hypermutator samples, higher PRS values were associated with a
smaller number of total mutations per tumor (P ¼ 0.032; Fig. 3A;
Supplementary Fig. S6C). Given tumor mutation burden increases
with age, this observation reflects early tumor onset in individuals
with increased common germline risk. Intriguingly, PRS values also
showed a negative association with chromosome/arm SCNA scores,
which reflect the numbers and extents of SCNAs, without apparent
heterogeneity across cancer types. This result suggests a limited role
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Figure 3.

Germline–somatic association analyses in TCGA. A, The associations between PRS values and somatic/clinical features of cancer. Left, pooled effect size
(standardized mean difference, SMD) of PRS values for evaluated features. Right, heatmap indicating the SMD of PRS values for each feature in each cancer type.
B, Forest plots of cancer type–specific and pooled SMD of PRS values for driver mutations. Genes listed as drivers in three or more cancer types were evaluated.
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of aneuploidy in the carcinogenic process for individuals with
increased common germline risk (P ¼ 0.008; Fig. 3A; Supplemen-
tary Fig. S6G). Consistently, the genomic fraction of LOH, loss of
one parental allele causing allelic imbalance, showed a negative
association with PRS values (P ¼ 0.005; Fig. 3A; Supplementary
Fig. S6K). The scores of focal SCNAs, another class of SCNAs
caused by different biological mechanisms from chromosome/arm
SCNAs, were also negatively associated with PRS values in the meta-
analysis (P ¼ 0.040; Fig. 3A; Supplementary Fig. S6I). These
negative associations were consistent even when amplification and
deletion were considered separately (P ¼ 0.147 and 0.030 for
chromosome/arm SCNAs and 0.350 and 0.090 for focal SCNAs,
respectively; Supplementary Fig. S7). As increased genomic insta-
bility is characteristic of later stages of carcinogenesis (15), these
results suggest that common germline risk enables early tumor
development before many mutations and SCNAs accumulate.

In contrast, the associations with PRS values were not significant for
the number of driver mutations across cancer types (P ¼ 0.677;
Fig. 3A; Supplementary Fig. S6E). We also examined the associations
of PRS values with mutations of individual driver genes, but all
associations were not significant except for TP53 mutations in OV
(Supplementary Fig. S8). The associations remained insignificant after
meta-analyzing the genes that were considered as drivers in three or
more cancer types (Fig. 3B). These observations suggest that common
germline risk does not necessarily affect the necessity of driver muta-
tions during cancer development.

For other genetic and clinical features, we found no significant
association with PRS values as well, including tumor immunity (leuko-
cyte fraction and cytolytic activity;Fig. 3A; Supplementary Fig. S6Mand
S6O) and transcriptomic signatures (50 hallmark signatures; Supple-
mentary Fig. S9). Patient survival (overall survival and progression-free
survival) was evaluated by univariate Cox proportional hazards model,
which revealed no difference between PRS value-high and -low samples
(Supplementary Fig. S10A and S10B). Clinical features specific to cancer
type (histological grade, including Gleason score of PRAD, and
sidedness of COADREAD; Supplementary Fig. S10C–S10E) were
not significantly associated with PRS values. Taken together, our
results suggest that the common germline risk have no or minimal
effect on the transcriptomic and clinical phenotype in cancer.

Next, we assessed the associations of rare germline pathogenic
variants with somatic alterations and clinical features. Younger age
at diagnosis was associated with the presence of rare germline path-
ogenic variants (P ¼ 1.89�10�6; Supplementary Fig. S6B), especially
inOV, BRCA, andCOADREAD, confirming the early onset of familial
cancers. We also detected associations of rare germline pathogenic
variants with total mutation number and genomic fraction of LOH
in BRCA and OV (P ¼ 2.96�10�4 and 2.43�10�4 for total mutation
number and 0.017 and 0.033 for genomic fraction of LOH, respectively;
Supplementary Fig. S6D and S6L), likely reflecting the mutagenic effect
of germline BRCA1 and BRCA2 variants in these cancer types (16).
However, the associations with genetic features were heterogeneous
across cancer types and not significant in the meta-analysis. These
findings suggest the functional heterogeneity of rare germline patho-
genic variants across responsible genes and cancer types, demonstrating
their differences from common germline variants.

Finally, to independently validate the germline–somatic associations,
we analyzed additional threePRADcohorts inPCAWG(n¼ 32, 40, and
116) because the associations between PRS values and somatic altera-
tions were most prominent in PRAD in our analysis. These cohorts
showed similar results on associations between PRS values and clinical
and genetic features to that from TCGA (Supplementary Fig. S11).

Meta-analysis of the four PRAD cohorts showed significant associations
of PRS values with earlier age at diagnosis and a lower number of total
mutations and SCNAs. In contrast, the associations of rare germline
pathogenic variants were not significant for any of those features.

Discussion
Through cross-cancer meta-analyses of TCGA resources, we found

that elevated PRS values were associated with earlier tumor onset and a
lower number of somaticmutations and SCNAs, which was confirmed
in independent PRAD cohorts. Although the association between PRS
and early tumor onset has been reported for breast and prostate
cancers (14), our analysis is the first to generalize such observations
to a wide range of cancer types. Recent cancer evolution studies
revealed the temporal ordering of somatic alterations, which showed
genomic instability as later-stage events of carcinogenesis (15). Our
findings suggest that individuals with higher common germline risk
require relatively lower somatic alterations characteristic of later stages
of carcinogenesis for tumor development. This is in contrast with
germline pathogenic variants, which showed heterogeneous associa-
tions with somatic features across cancer types and responsible genes.

The mechanisms of high incidence and early onset of cancer in
individuals with germline pathogenic variants may include (i) pro-
moting the selection of certain somatic driver alterations, especially in
the same gene or pathway, (ii) promoting the accumulation of somatic
alterations, as in the cases of germline pathogenic mismatch repair
gene variants (such as MLH1 and MSH2), and (iii) enhancing the
oncogenic process; for example, by modulating the expression or
function of certain genes (17). Our results suggest that common
germline variants may not promote the accumulation of somatic
alterations and/or certain driver alterations, but enhance the onco-
genic processes in conjunction with somatic driver mutations. Given
PRS values are not associated with the number of drivermutations, the
effects of somatic driver mutations on carcinogenesis may be different
according to common germline risk. Indeed, differential effects of
driver mutations among individuals have already been reported in
clonal hematopoiesis of indeterminate potential, which has somatic
driver mutations similar to hematologic malignancies but not meeting
its criteria (18). The heterogeneous consequences of driver mutations
may be affected by common germline risk, which is an interesting
direction of future research.

Although several germline–somatic associations have been reported
for common germline variants (8, 19), such associations were limited
to individual cancer types and specific somatic alterations and clinical
features. Furthermore, although some common germline variants have
been reported to affect somatic features in locus-specificmanners, such
as rs8051518, an RBFOX1 intronic variant that enhances the effect of
SF3B1mutation on RNA splicing (20), their global effects are yet to be
known. To the best of our knowledge, this is the first study showing the
universal effect of PRS on somatic alterations maintained across
cancers. As the PRS was constructed independently and included
different common germline variants between cancer types, our anal-
ysis demonstrates the general effect of common germline variants
rather than the effect of a specific variant.

Theremay be some possible limitations in this study. First, although
we constructed highly predictive PRSs with the LD-aware methods,
variance explained by PRSs was still smaller than heritability predicted
by common germline variants. In the future, generation of large
GWASs and methodological advances for PRS will improve the
predictive performance of PRS. Second, our analysis was restricted
to European samples because both GWASs (Supplementary Table S1)
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and large-scale cancer genetic studies (2) have been conducted mainly
for Europeans. Thus, replication studies will be required to generalize
our results to other populations. Finally, our power to detect the
associations between germline risks and various genetic and clinical
features is limited. However, we have provided the best available
evidence using some of the largest datasets and multiple PRS con-
struction methods, although further validation of our findings using
much larger-scale datasets should be warranted.

In conclusion, our comprehensive assessment of germline–somatic
associations reveals the overall effects of common germline variants
and their difference from rare pathogenic variants. Particularly,
increased common germline risk enables accelerated tumor develop-
ment without many somatic alterations frequently observed in later
stages of oncogenesis. Such understanding helps to improve the
predictive capacity for early-onset cancers, contributing to the refine-
ment of their management strategy.
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