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Abstract

Objective: To analyze the risk factors associated with intubated critically ill patients in

the emergency department (ED) and develop a prediction model by machine learning

algorithms.

Methods: This study was conducted in an academic tertiary hospital in Hangzhou,

China. Critically ill patients admitted to the ED were retrospectively analyzed from

May 2018 to July 2022. The demographic characteristics, distribution of organ dys-

function, parameters for different organs’ examination, and status of mechanical

ventilation were recorded. These patients were assigned to the intubation and non-

intubation groups according to ventilation support. We used the eXtreme Gradient

Boosting (XGBoost) algorithm to develop the prediction model and compared it with

other algorithms, such as logistic regression, artificial neural network, and random for-

est. SHapley Additive exPlanations was used to analyze the risk factors of intubated

critically ill patients in the ED.

Results:Of14,589 critically ill patients, 10,212 comprised the training group and 4377

comprised the test group; 2289 intubated patients were obtained from the electronic
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medical records. The mean age, mean scores of vital signs, parameters of different

organs, and blood oxygen examination results differed significantly between the two

groups (p < 0.05). The white blood cell count, international normalized ratio, respira-

tory rate, and pH are the top four risk factors for intubation in critically ill patients.

Based on the risk factors in different predictive models, the XGBoost model showed

the highest area under the receiver operating characteristic curve (0.84) for predicting

ED intubation.

Conclusions: For critically ill patients in the ED, the proposed model can predict

potential intubation based on the risk factors in the clinically predictivemodel.

KEYWORDS

emergency department, machine learning, mechanical ventilation, prediction model, tracheal
intubation

1 INTRODUCTION

1.1 Background and importance

Invasive mechanical ventilation (IMV) is the most effective therapeu-

tic approach for critically ill patients with acute respiratory distress

syndrome or other types of respiratory failure.1 Mechanical ven-

tilation provides respiratory support and allows adequate time for

the recuperation of impaired organs.2 Annually, more than 240,000

patients require mechanical ventilation in the emergency department

(ED), which accounts for 8%‒12% of all ventilated patients in the

USA.3,4 Typically, ED serves as the initial therapeutic setting for crit-

ically ill patients with acute respiratory failure, severe hemorrhagic

shock, septic shock, or multiple organ failure. Therefore, it is impera-

tive to identify the potential need for timely tracheal intubation and

mechanical ventilation support in the ED.5,6

IMV is indicated for critically ill patients with hypoxemia or hyper-

capnia, circulatory failure, and unconsciousness requiring airway pro-

tection toprevent aspiration.7 However, stratifying patients for further

respiratory support poses a significant challenge. First, some critically

ill patients may present with atypical clinical manifestations that could

result in delayed intubation.8 Second, there are differences in the pro-

ficiency and implementation of mechanical ventilation among young

or inexperienced clinicians.9 These challenges collectively result in

delayed intubation,which can lead to significant risks such as increased

in-hospital mortality,10 prolonged ventilation, and extended hospital

stays.11 Additionally, identifying critically ill patients who are unlikely

to derive benefit from non-invasive mechanical ventilation (NMV) is

crucial.12,13 Therefore, developing an intubation prediction tool to

guide clinical practice is an urgent requirement.14

Electronic medical records offer exponential growth in data, while

machine learning (ML) enables the processing of vast amounts of infor-

mation. By integrating the expertise of professional physicians with

advanced algorithms, the accuracy (ACC) of man‒machine diagnosis

can be enhanced. ML is increasingly utilized in the development of

disease prediction models,15–18 which can offer patients precise, per-

sonalized, and timely medical services, thereby improving treatment

success rates and mitigating patient suffering and wastage of medical

resources.

1.2 Goals of this investigation

The application of ML in the field of emergency medicine is not well-

elucidated, especially for ventilation prediction models. The present

study applied eXtremeGradient Boosting (XGBoost) and developed an

intubation risk predictionmodel for critically ill patients in EDbased on

the available indicators.19,20 This model classifies critically ill patients

into different risk levels while reducing the negative impact of the

subjective cognition of clinicians on clinical decision making regarding

timely tracheal intubation. Therefore, this retrospective study ana-

lyzed the clinical data from critically ill patients in the ED of a tertiary

teaching hospital and developed a multifactorial prediction model to

guide the decisionmaking.

2 METHODS

2.1 Data source and extraction

The study was conducted in the Second Affiliated Hospital Zhe-

jiang University School of Medicine (SAHZU), Hangzhou, China. The

Institutional Review Board approved the present study and waived

the requirement of consent for patient data due to the retrospec-

tive nature of the study. Endotracheal intubation was defined as the

endotracheal tube inserted into the trachea through the glottis.5 The

intubated patients were supported by a mechanical ventilator until

they were admitted into the intensive care unit (ICU) for further
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F IGURE 1 Flowchart of the patient screening process.

therapy. Patients’ informationwas extracted from the electronic health

records of SAHZU fromMay 2018 to July 2022.

The patient screening process is illustrated in Figure 1. Patientswho

did notmeet the following screening criteriawere excluded: thosewith

noclear intubation status, younger than18years toeliminateage inter-

ference, and patients with a missing data rate of >40% to ensure the

stability of themodel.

The model framework is illustrated in Figure 2. The data source,

patient cohort screening, and feature selection process are introduced,

followed by the data preprocessing process and statistical analysis.

Then, the structure and implementation of the model are described.

Finally, themodel evaluationmetrics are stated.

Subsequently, the mean value of all other patients was used to fill

the gaps in order to reduce the sample loss caused bymissing data. The

normalization process is to standardize all data into values between 0

and 1 to avoid the impact of inconsistent data dimensionality and value

range.

2.2 Model development

The model consists of three parts: an unsupervised cluster model, a

group of supervised base models, and attention layers. First, the unsu-

pervised model was used to classify patients into different subgroups.

Then, different basemodels were used to predict intubation risk in dif-

ferent subgroups of patients. The specific construction process of the

model is described in detail in the Supporting Information S1.

2.3 Evaluation

2.3.1 Control models setting

In order to compare the performance of themodels, several commonly

usedMLmodelswere chosen as controlmodels, such as logistic regres-

sion, artificial neural network, and random forest algorithm. All the

control models were hyperparametric tuned.

The Bottom Line

This retrospective analysis of 15 years of adult out of hos-

pital cardiac arrest (OHCA) data from Salt Lake City found

that when compared to women, men have a higher incidence

of OHCA, higher rates of characteristics associated with

improved survival, and higher unadjusted survival. However,

adjusted analysis showed no difference in survival between

men andwomen.

In addition, data without clustering partitioning were fed directly

into XGBoost to verify the effect of model structure on performance.

2.3.2 Model evaluation metrics

The performance of the established models was evaluated by area

under the receiver operating characteristic curve (AUROC), area

under the precision recall curve, ACC, sensitivity (SEN), and specificity

(SPE). The greater the AUROC value, the better the classification

performance.

2.3.3 Statistical analysis of data

The data were analyzed using statistical software (SPSS, version 17.0).

The differences between the intubation and non-intubation groups

were analyzed by Student’s t-test or Mann‒Whitney U-test, as shown

in Table 1. p < 0.05 indicates a significant difference. Analysis of vari-

ance test or Kruskal‒Wallis H-test was used to test the differences

among the three subgroups.Median andquartile differences described

the distribution of continuous variables.

3 RESULTS

3.1 General information

A significant difference analysis of all data was conducted between the

intubation and non-intubation groups, as shown in Table 1. The results

showed that most of the features had significant differences.

According to literature and physician recommendations,21–23 the

characteristics, including demographics, vital signs, and laboratory

tests used to construct the model, are summarized in Table 1. Con-

sidering the impact of data missing on model performance, charac-

teristics with a missing rate >40% were excluded. Finally, a study

cohort of 14,589 patients with 33 features was determined, with

a intubation:non-intubation ratio of 2289:12,300. The 33 features

are summarized in the Supplementary Material S2. The intubation

decisions were made by experienced senior clinicians in SAHZU and

practiced strictly according to the intubation indication. The data were
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F IGURE 2 Flowchart of themodel: data extraction, data preprocessing, andmodel development.

collected from the first test results of patients after admission to the

ED. The intubated patients were intubated before hospitalization or

during ED retention.

3.2 Model implementation

After the above model framework was established, the clinical dataset

was randomly divided according to the training:testing ratio of 7:3.

Ten-fold cross-validation was executed in training subset to find the

optimal model parameters. The experiments were repeated until most

suitable set ofmodel parameters were achieved. For the clustermodel,

the cluster number k was determined by the physicians’ experience

and set as 3. SHapley Additive exPlanations (SHAP) is a game theo-

retic approach that calculates the importance of features for any ML

model. The results show the contribution of different features to the

prediction model (Figure 3). According to SHAP analysis, white blood

cell (WBC) count, international normalized ratio (INR), respiratory rate

(RR), and pH are identified as the top four influential factors in pre-

dicting intubation. Five features related to infection and three other

features crucial for intubation prediction were selected for the cluster

features:WBC, neutrophil absolute value, neutrophil percentage, lym-

phocyte absolute value, lymphocyte percentage, INR, RR, and pH. The

patients were divided into three subgroups.

3.3 Comparison of clustering groups

After clustering, patients were divided into 1‒3 groups. principal com-

ponent analysis (PCA) dimension reductionwas used to visually display

the distribution of patients according to cluster labels, as shown in

Figure 4. The characteristics of patients in the intubation and non-

intubation groups with different subgroups are shown in the Support-

ing InformationS3. t-Testswereperformedbetween the intubation and
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TABLE 1 Study cohort characteristics.

Characteristics

Intubation group

(n= 2289)

Non-intubation

group (n= 12,300) p-Value

Demographics

Male, n (%) 1547 (67.6) 7932 (64.5) 0.004*

Age (years), mean (SD) 65.2 (16.5) 61.6 (25.1) 0.001*

Weight (kg), mean (SD) 62.9 (12.8) 63.8 (14.0) 0.152

Chief complaints, n (%)

Injuries 501 (21.9) 2528 (20.6) 0.148

Digestive system diseases 111 (4.9) 1439 (11.7) 0.000*

Respiratory diseases 435 (19.0) 1563 (12.7) 0.000*

Neurological diseases 719 (31.4) 3303 (26.9) 0.000*

Cardiovascular diseases 314 (13.7) 1506 (12.2) 0.050

Intoxication 35 (1.5) 238 (1.9) 0.188

Comorbidities, n (%)

Hypertension 544 (23.8) 3073 (25.0) 0.215

Diabetes 261 (11.4) 1445 (11.7) 0.637

Cancer 158 (6.9) 1084 (8.6) 0.255

Vital signs, mean (SD)

Respiratory rate (breaths/min) 17.9 (6.6) 15.7 (4.0) 0.000*

Heart rate (breaths/min) 96.7 (26.2) 90.2 (22.7) 0.000*

Systolic blood pressure (mmHg) 140.2 (38.3) 136.1 (30.7) 0.000*

Diastolic blood pressure (mmHg) 79.6 (22.5) 78.1 (17.4) 0.000*

Temperature (◦C) 36.9 (1.8) 36.9 (1.0) 0.000*

Oxygen saturation (%) 98.1 (16.3) 97.8 (7.5) 0.000*

Laboratory tests, mean (SD)

pH 7.52 (1.19) 7.44 (0.53) 0.000*

Base excess (mmol/L) ‒4.12 (7.59) ‒1.18 (5.15) 0.000*

Total carbon dioxide (mmol/L) 24.0 (9.9) 25.7 (9.0) 0.000*

Blood oxygen (vol%) 17.4 (4.7) 16.9 (3.9) 0.000*

Partial pressure of oxygen (mmHg) 133.2 (79.9) 115.8 (54.4) 0.000*

Partial pressure of carbon dioxide (mmHg) 43.2 (20.3) 37.6 (11.0) 0.000*

Blood urea nitrogen (mmHg) 9.40 (8.21) 7.83 (6.29) 0.000*

White blood cell (109/L) 14.0 (13.9) 10.4 (7.3) 0.000*

Neutrophil absolute value (109/L) 11.1 (6.5) 8.3 (5.3) 0.000*

Neutrophil percentage (%) 80.4 (14.5) 77.6 (13.0) 0.025*

Lymphocyte absolute value (109/L) 1.67 (2.31) 1.40 (3.64) 0.000*

Lymphocyte percentage (%) 13.6 (12.8) 15.8 (11.2) 0.001*

Platelet (109/L) 201 (105) 207 (91) 0.000*

Na+ (mmol/L) 217.3 (76.4) 212.4 (73.6) 0.019*

Ca+ (mmol/L) 2.29 (0.54) 2.34 (0.49) 0.410

K+ (mmol/L) 6.17 (2.86) 5.98 (2.47) 0.000*

Cl− (mmol/L) 163.6 (59.9) 160.4 (57.9) 0.238

HCO3
− (mmol/L) 21.3 (7.2) 22.6 (4.9) 0.000*

Hemoglobin (g/L) 125 (31) 127 (29) 0.000*

Creatine (µmol/L) 123.1 (150.2) 118.2 (442.9) 0.770

Lactate (mmol/L) 3.98 (4.11) 2.13 (2.08) 0.000*

(Continues)
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TABLE 1 (Continued)

Characteristics

Intubation group

(n= 2289)

Non-intubation

group (n= 12,300) p-Value

Total bilirubin (µmol/L) 21.3 (31.5) 19.7 (29.6) 0.022*

Prothrombin time (s) 16.0 (7.3) 14.0 (3.6) 0.000*

Prothrombin time activity (%) 81.6 (24.6) 93.7 (21.0) 0.000*

International normalized ratio 1.32 (0.96) 1.11 (0.46) 0.000*

Abbreviation: SD, standard deviation.

*p< 0.05 indicates a significant difference.

F IGURE 3 SHapley Additive exPlanations (SHAP) analysis of eXtremeGradient Boosting (XGBoost) model. Feature importance ranking of the
model. The x-axis is themean SHAP value and the y-axis is the feature.

F IGURE 4 Visual distribution of patient cluster. The x-axis is the
PCA 1 and the y-axis is the PCA 2. Dots represent sample points, and
different colors represent different clusters.

non-intubation groups. Table 1 summarizes the demographic charac-

teristics; those used for clustering differ significantly among the three

groups. The intubation ratewas increased fromgroups1 to3.As shown

in Figure 5, both RR and INR showed an increasing trend between the

intubation and the non-intubation groups. The pH among the three

groups did not show an increasing or decreasing trend, but the average

pH of groups 1 and 2was within the normal range, and the pH of group

3was the lowest (7.34), suggesting that the risk of decompensated aci-

dosis was maximal. For infection-related indicators, WBC, neutrophil

absolute value, and neutrophil percentage showed an increasing trend,

while the percentage of lymphocytes showed a decreasing trend.

The significant difference test between the three groups is shown in

Table 2.

3.4 Performance of the model

Table 3 shows the performance comparison of all base models for dif-

ferent subgroupsof patients. XGBoost has thebestmodel performance
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F IGURE 5 Distribution of clustering features. (A) Respiratory rate, (B) pH, (C) international normalized ratio, (D) white blood cell, (E)
lymphocyte percentage, and (F) neutrophil percentage. The x-axis represents different clustering groups, the y-axis represents different
characteristic values. The blue represents the intubation group and the orange represents the non-intubation group. The asterisk (*) means that
there is a significant difference between the intubation group and non-intubation group, ns means that there is no significant difference.

TABLE 2 Characteristics of different subgroups.

Characteristics Group 1 Group 2 Group 3 p-Value

Age (years), mean (SD) 58.6 (18.7) 64.0 (27.3) 60.8 (18.1) 0.000*

Weight (kg), mean (SD) 64.4 (14.7) 63.4 (13.5) 63.6 (13.4) 0.000*

Respiratory rate (breaths/min), mean (SD) 15.5 (3.6) 15.7 (4.3) 17.7 (6.2) 0.000*

pH, mean (SD) 7.38 (0.10) 7.42 (0.06) 7.34 (0.13) 0.000*

White blood cell (109/L), mean (SD) 7.8 (4.1) 9.0 (3.0) 19.8 (13.3) 0.000*

Neutrophil absolute value (109/L), mean (SD) 4.7 (2.1) 7.6 (2.7) 17.2 (5.9) 0.000*

Neutrophil percentage (%), mean (SD) 59.9 (9.4) 82.5 (6.8) 89.0 (6.3) 0.000*

Lymphocyte absolute value (109/L), mean (SD) 2.5 (1.9) 1.0 (0.5) 1.3 (1.7) 0.000*

Lymphocyte percentage (%), mean (SD) 31.4 (9.0) 11.3 (5.1) 6.2 (4.4) 0.000*

International normalized ratio, mean (SD) 1.06 (0.33) 1.12 (0.35) 1.30 (1.05) 0.000*

Intubation percentage 10.2% 14.0% 27.9% 0.000*

Number of patients 3537 8327 2725 –

Abbreviation: SD, standard deviation.

*p< 0.05 indicates a significant difference.

in all patient groups, with an AUROC of 0.8706, 0.8396, 0.7532, and

0.8353. Among all XGBoost-based models, model 1 has the highest

AUROC (0.8706), while model 3 has the lowest value (0.7532). For the

model trained and tested with all the data, the AUROCwas lower than

that of models 1 and 2 but higher than that of model 3, with an AUROC

of 0.8353.

Table 4 shows the model performance after adding the attention

mechanism. Compared to the basemodels without an increased atten-

tion mechanism, AUROC increased by 0.0025, 0.0049, and 0.0076,

respectively. Among the three patient groups, the AUROC for group 1

had the highest value of 0.8731, while that of group 3 was the lowest

at 0.7608. Also, SEN and SPE reached their maximum values in group

1, 0.8347 and 0.7849, respectively.

3.5 Feature importance analysis

The SHAP of different subgroups is shown in Figure 6. INR, pH, and

creatine were the top three features in terms of feature importance

for patients in group 1. For patients in group 2, the top three features



8 of 11 DING ET AL.

TABLE 3 Performance comparison of all basemodels.

Group Basemodel AUROC AUPRC SEN SPE ACC

1 LR 0.7501 0.5087 0.6514 0.8489 0.8286

ANN 0.8617 0.4566 0.8165 0.7523 0.7589

RF 0.8486 0.4387 0.8165 0.7450 0.7524

XGBoost 0.8706 0.4799 0.8073 0.7856 0.7881

2 LR 0.7085 0.5111 0.6809 0.7360 0.7283

ANN 0.7763 0.3680 0.7208 0.7193 0.7194

RF 0.8276 0.5445 0.7379 0.7337 0.7343

XGBoost 0.8396 0.6009 0.7721 0.7514 0.7543

3 LR 0.6603 0.5788 0.5614 0.7593 0.7041

ANN 0.7124 0.4697 0.6667 0.6661 0.6663

RF 0.7358 0.5014 0.7412 0.6424 0.6699

XGBoost 0.7532 0.5277 0.7149 0.6915 0.6980

All LR 0.7148 0.5303 0.6556 0.7740 0.7554

ANN 0.7943 0.4325 0.7340 0.7204 0.7225

RF 0.8264 0.5221 0.7653 0.7228 0.7293

XGBoost 0.8353 0.5416 0.7762 0.7277 0.7353

Abbreviations: ACC, accuracy; ANN, artificial neural network; AUPRC, area under the precision recall curve; AUROC, area under the receiver operating

characteristic curve; LR, logistic regression; RF, random forest; SEN, sensitivity; SPE, specificity; XGBoost, eXtremeGradient Boosting.

TABLE 4 Performance of themodel.

Group AUROC AUPRC SEN SPE ACC

1 0.8731 0.4992 0.8349 0.7849 0.7900

2 0.8445 0.5995 0.7606 0.7612 0.7611

3 0.7608 0.5718 0.7368 0.7069 0.7152

Abbreviations: ACC, accuracy; AUPRC, area under the precision recall curve; AUROC, area under the receiver operating characteristic curve; SEN, sensitivity;

SPE, specificity.

of feature importance were INR, lymphocyte absolute value, and pH.

For patients in group 3, systolic blood pressure (SBP), RR, and creatine

contributed maximally to intubation prediction. In groups 1 and 2, the

greater the INR, the greater the risk of intubation. Also, RR, SBP, and

lymphocyte absolute valuewere also positively correlatedwith the risk

of intubation, while pH and creatine were negatively associated with

the risk of intubation.

4 LIMITATIONS

Despite the valuable insights gained from this study, it is important

to acknowledge its limitations. First, as a single-center retrospective

study, the findings may not be generalizable to other settings or pop-

ulations. Additionally, some patient data loss could have potentially

biased the results and affected data quality. While efforts were made

to replace missing data with average values, this approach may not

accurately reflect individual patient characteristics.

Furthermore, the output of our model is only “intubation” or “non-

intubation,” it is ultimately up to clinicians to determine when intu-

bation should occur based on their clinical judgment and assessment

of each patient’s unique situation. Finally, the study included a large

amount of patient data during the COVID-19 pandemic, especially in

the early stages of the pandemic. At this stage, in order to prevent

the rapid deterioration of the patient’s condition, clinicians are more

inclined to early intubation. Therefore, in the post-epidemic era, the

effectiveness and applicability of themodel may need to be reassessed

and adjusted. Overall, while this study offers valuable insights into

factors associated with intubation outcomes in critically ill patients,

its limitations highlight the need for continued research in this area.

By addressing these limitations and building upon existing knowledge,

we can improve our understanding of critical care management and

ultimately enhance patient outcomes. In future studies, we aim to

strengthen the predictive ability of the model by introducing initial

diagnosis in the ED.

5 DISCUSSION

Based on data derived from 15,924 patients, we developed a model

with an AUROC of 0.84, SEN of 0.78, and SPE of 0.73 to predict the

need for intubation in critically ill patients in the ED. The predictive
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F IGURE 6 SHapley Additive exPlanations (SHAP) analysis of basemodel. (A)Mean |SHAP value| ranking of basemodel 1. (B) SHAP value
ranking of basemodel 1. (C)Mean |SHAP value| ranking of basemodel 2. (D) SHAP value ranking of basemodel 2. (E)Mean |SHAP value| ranking of
basemodel 3. (F) SHAP value ranking of basemodel 3. In (B), (D), and (F), the x-axis is SHAP value, and the y-axis is feature importance ranking. A
dot represents a sample, and the color indicates the value of that feature.

model utilizes only bedside parameters that are routinely available at

the time of ED admission, and may be employed in clinical settings to

alert physicians about patients who are at an elevated risk of requir-

ing intubation during their ED stay, without imposing any additional

workload onmedical or nursing staff.

TheMLmodels vary according to the scenarios. This study explored

the performance of different ML models in predicting tracheal intu-

bation in the ED.24 The XGBoost model exhibits the highest AUROC

and superior predictive performance in both subgroups and over-

all, surpassing other models. Therefore, we employed XGBoost to
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construct a multifactorial prediction model for tracheal intubation,

which can serve as a clinical decision-making tool to advance precision

medicine.

Manypredictive intubationmodels arebasedondata from ICU, such

as MIMIC-IV, eICU, HiRID, ANZICS, and PIC.25–27 Venturini et al. col-

lected data from 3425 ICU patients and proposed a newMLmethod to

predict the timing of intubation within 5 days of ICU admission based

on the concept of cure‒survival model.28 Using MIMIC-III and eICU

databases, Daniela et al. developed and validated a predictive model

for intubation in children between 24 h and 7 days following pediatric

ICU admission.29 These models exhibited good predictive perfor-

mance, but were trained in more homogenous critically ill populations

than we have studied here and focused on longer-term outcomes less

relevant toEDdecisionmaking.30,31 Toour knowledge, ourmodel is the

first intubation prediction model constructed using ED data. Different

from ICU, we found thatWBC, INR, RR, and pH are themost important

risk factors for tracheal intubation in ED, which provided new insights

for clinical practice.

The current model incorporates multiple features, including age,

RR, oxygen saturation, and others. Through analyzing the correla-

tion between these features and endotracheal intubation, a reliable

predictive model was established. Furthermore, cross-validation and

other evaluation metrics were employed to assess the performance

of the model while optimization and adjustments were conducted. At

present, it is necessary to input the detection indicators in the order

of the model interface, that is, the features, when the model is trained,

and the model gives the prediction results. In our future work, we will

consider encapsulating the model to simplify the difficulty of practical

operation and facilitate clinical use. Future studies would improve

and expand upon this model. For instance, incorporating additional

features and data such as patient medical history and laboratory

test results enhance the prediction ACC. Furthermore, integrating

the model with other medical devices and systems can enable real-

time monitoring and prediction of patients’ endotracheal intubation

needs.

In clinical practice, clinicians should finally choose whether to

perform early intubation according to the results of the model, their

own clinical judgment and the patient’s condition changes. Although

this study screened important risk factors for endotracheal intuba-

tion in the ED, it should be noted that no single feature can be used

alone for high-precision intubation prediction. In our model, multiple

features are combined for prediction. At the same time, according to

the results of cluster analysis, clinicians should allocate more energy

and medical resources to patients in group 3 to reduce mortality.

SHAP analysis revealed inconsistencies in feature importance across

different subgroups. Clinicians should focus on distinct features for

patients with different groups, such as coagulation function and pH

for groups 1 and 2, and blood pressure and respiratory function for

group 3.

Overall, our study highlights the potential benefits of using pre-

dictive modeling in emergency medicine. By leveraging data analytics

and artificial intelligence techniques, we can improve clinical decision

making and ultimately enhance patient care.
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