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A B S T R A C T   

Pandanus tectorius leaf extract effect on the White-leg shrimp Penaeus vannamei tolerance against Vibrio para
haemolyticus were investigated in this study. Thirty shrimp post-larvae measured at approximately 1 cm were 
exposed for 24 h to 0.5, 1, 2, 3, 4, 5 and 6 g/L leaf extract and subsequently observed for survival and immune- 
related genes expression (Hsp70, ProPO, peroxinectin, penaeidin, crustin and transglutaminase), followed by 
determination of their tolerance and histological tissue profiles upon Vibrio challenge. Survival of shrimps treated 
with 6 g/L of leaf extract improved by up to 95% to controls. Hsp70, crustin, and prophenoloxidase mRNA levels 
were observed to be 8.5, 10.4, and 1.5-fold higher, respectively. Histopathological analysis of the hepatopancreas 
and the muscle tissues revealed major tissue degeneration in Vibrio-challenged shrimps but not in shrimps primed 
with P. tectorius leaf extract. Of all the dose examined, the best pathogen resistance results were obtained with a 
24 h incubation of shrimp in 6 g/L P. tectorius methanolic leaf extract. The tolerance towards V. parahaemolyticus 
might be associated with the increased regulation of Hsp70, prophenoloxidase and crustin upon exposure to the 
extract, all immune-related proteins essential for pathogen elimination in Penaeid shrimp. The present study 
primarily demonstrated that P. tectorius leaf extract is a viable alternative for enhancing P. vannamei post-larvae 
resistance against V. parahaemolyticus, a major bacterial pathogen in aquaculture.   

1. Introduction 

Marine shrimp farming is currently practised in at least 50 countries 
around the world, with major development centres in Asia and the 
Americas. Total production of marine shrimp was 5.51 million metric 
tonnes in 2017, valued at US$34.2 billion. In this context, White-leg 
shrimp, Penaeus vannamei is the main cultured Penaeid shrimp species 
in the world with 4.46 million metric tonnes, valued at US$26.7 billion 
[1]. Many obstacles occurred during shrimp farming, with diseases 
caused by viruses, bacteria and fungi being a major developmental 
threat. Disease outbreak causes mass mortality, resulting in major 

financial repercussions. Antibiotics were often used as a quick solution 
to treat or prevent shrimp diseases, but excessive use of these thera
peutic and prophylactic agents has led to the spread of 
antibiotic-resistant pathogens. In addition, bioaccumulation of anti
biotic residues can occur in shrimp tissues, resulting in serious human 
health consequences after consumption [2–5]. 

Realizing the downside of antibiotics, a number of bio-control stra
tegies have been proposed to control diseases during shrimp culture. 
These include the use of microalgae, probiotic bacteria, bioflocs, and 
plant extracts rich in antimicrobial properties to control the prolifera
tion of pathogens [6,7]. Application of these alternatives have been 
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shown to enhance the general health and protect cultivated shrimp in 
the event of a pathogen attack [4,8]. In this context, many medicinal 
plants used in the treatment of human disease are capable of having 
immunoprophylactic and chemotherapeutic effects in aquatic animals, 
including shrimp [9–19]. They possess bioactive compounds and phy
tochemicals such as phenols, polyphenols, alkaloids, quinones, terpe
noids, lectins, and polypeptides that are effective against pathogens that 
cause disease in aquatic organisms [20]. Thus, it is important to identify 
more plant species that are useful for the control of aquatic diseases. 

P. tectorius is a Southeast Asian medicinal plant and they are used by 
locals to treat wide range of human disease including stomach spasm, 
headache and arthritis. They grow in sandy soil and are mainly found 
along the shore and beach. The leaves and fruits are rich in anti- 
inflammatory [21], anti-oxidant, anti-hyperglycemic, 
anti-hyperlipidemic [22], anti-cancer [23,24], anti-tumor [25,26], 
anti-viral [27], and anti-diabetic [28] properties, with qualitative 
phytochemical analysis result confirmed the presence of phenolics, fla
vonoids, terpenoid, steroids, saponins and glycosides as chemical con
stituents in P. tectorius extract [29,30]. An antibacterial kinetic analysis 
demonstrated that P. tectorius exhibits strong antibacterial activity [29]. 
Despite their potential therapeutic benefits, relatively few research have 
been undertaken to date on their efficacy in treating and preventing 
diseases in aquatic organisms. Awad et al. [31] discovered that feeding 
P. tectorius extract increased the expression of immune-related genes 
(TNF, LYZ2, IL-8, and CD-4) as well as a tumor suppressor gene (WT-1a) 
and protected rainbow trout Oncorhynchus mykiss from Yersinia ruckeri 
infection. Dietary supplementation of P. tectorius extract at 20 g/kg 
significantly improved weight gain, serum antioxidant parameters, im
munity, and resistance of the common carp Cyprinus carpio against 
Aeromonas hydrophila, a common bacterial pathogen of fish [13].We 
demonstrated that a 24 h incubation of 2–6 g/L of P. tectorius fruit 
extract improved P. vannamei tolerance against V. parahaemolyticus, 
with survival increasing two-fold when the highest dose of extract was 
used [10]. The fruit extract pre-treatment increased the expression of 
several shrimp immune genes, including Hsp70, ProPO, peroxinectin, 
penaeidin, crustin, and transglutaminase, all of which increased in a 
dose-dependent manner. The mechanisms of action or the compounds 
derived from them that provide protection are however unknown [10]. 

In this study, we investigated the efficacy of P. tectorius leaf extract in 
improving P. vannamei tolerance to V. parahaemolyticus, the causative 
agent of vibriosis in Penaeid shrimp. The efficacy of this plant leaf 
extract in conferring shrimp immunity was determined by measuring 
the expression of Hsp70, prophenoloxidase, crustin, transglutaminase, 
peroxinectin, and penaeidin, all of which are immune proteins required 
for Penaeid shrimp resistance to pathogenic bacterial infection. Histol
ogy on the hepatopancreas and muscle assessed the degree and condi
tion of tissue damage caused by V. parahaemolyticus challenge in shrimp 
exposed and not exposed to Pandanus tectorius leaf extract. The findings 
of this study may help to improve our understanding of the prophylactic 
value of this mangrove plant species to Penaeid shrimps and aid in the 
development of strategies to prevent and treat vibriosis in aquaculture. 

2. Materials and methods 

2.1. Maintenance of P. vannamei 

P. vannamei post-larvae measuring approximately 1 cm were pur
chased from iSHARP Sdn. Bhd., Terengganu, and they were acclimatized 
for two weeks at 28 ◦C and 38 g/L salinity with continuous aeration 
before being used in the experiment. Post-larvae were raised at a density 
of 2000 individuals/L and fed live Artemia nauplii twice daily. The 
shrimp health status was monitored daily, and rearing water was 
changed once every two days to maintain water quality. Shrimps 
measured at approximately 1 cm were selected for experiments. 

2.2. Preparation of P. tectorius leaf extract and assessment of the safety 
level 

P. tectorius leaves collected from Setiu Wetlands, Terengganu were 
washed, cut into small pieces, air-dried, and stored at -80 ◦C for a day 
before lyophilization (EYELA FD-550, USA). Dried samples were ground 
to a fine powder, and 30 g of the powder was incubated in 300 mL of 
methanol for 24 h at room temperature (RT). The methanol extract was 
filtered through Whatsman No. 1 filter paper, concentrated in a vacuum 
with a rotary evaporator (BUCHI R-300, Switzerland), and stored at 
room temperature until further use [10]. 

The safety level of P. tectorius leaf extract was determined by 
exposing 30 shrimps separately for 24 h to 0.5, 1, 2, 3, 4, 5, and 6 g/L of 
extract, with non-exposed shrimps serving as controls. Shrimps were 
incubated in a closed water system, and the water was not changed 
during exposure. The number of dead and moribund animals was used to 
determine mortality [10]. The procedure was repeated twice, with each 
treatment carried out in triplicate. 

2.3. V. parahaemolyticus challenge tests 

In order to examine whether P. tectorius extracts could prime or 
induce protection of shrimp against pathogenic Vibrio, P. vannamei post- 
larvae exposed to the leaf extract at concentration as described in the 
previous section, were transferred to rearing water consisting 
V. parahaemolyticus for challenge tests, while shrimp not exposed to the 
extract served as the control group. For the challenge tests, 30 shrimp 
were exposed for 24 h to 1 × 106 cells/ml V. parahaemolyticus, the 
median lethal dose (LD50) of V. parahaemolyticus [10]. The 
V. parahaemolyticus used in this study were isolated from diseased 
shrimps in Vietnam [10,32]. The survival percentage was determined by 
counting the number of actively swimming animals, with moribund 
shrimps considered dead. The procedure was repeated twice, with each 
treatment carried out in triplicate. 

2.4. Tissue profiles in hepatopancreas and muscle of 
V. parahaemolyticus-challenged shrimps 

The hepatopancreas and muscle tissues of shrimps challenged with 
V. parahaemolyticus (with or without 24 h incubation at 6 g/L of 
P. tectorius leaf extract) and control shrimps (without leaf extract and 
Vibrio exposure) were fixed in Davison reagent for 48 h. Tissues were 
placed in 70% alcohol for 30 min before being transferred to a cassette 
and then to an automatic tissue processing machine (Leica™ 1020, 
Germany). The samples were then placed on a steel cassette and 
embedded in paraffin (melting point 54–56 ◦C). The paraffin blocks 
were allowed to freeze on a cold plate (Leica™ EG1150C, Germany) and 
then refrigerated overnight at 4 ◦C. The blocks were kept cool on a cold 
plate before being sectioned with an automated microtome (Leica™ 
RM2255 Microtome, Germany) at a thickness of 5 μm. Before staining 
with Harris hematoxylin and eosin, sample sections were mounted on 
albumin-coated glass slides (Sigma, USA). Slides were fixed with dibu
tylphthalate polystyrene xylene (DPX), and histological images were 
examined with a Leica™ DM LB2 Light Microscope (Germany) at 40x 
magnification and a Leica™ Image Analyzer System (Germany). 

2.5. Hsp70 expression and densitometry analysis 

Proteins were extracted from 100 mg of shrimp caudal muscle tissues 
exposed to different concentrations of leaf extract as previously 
mentioned [10]. Tissues were homogenized in cold Buffer K [33,34] and 
Protease Inhibitor Cocktail (Sigma-Aldrich Inc-P8849, USA) and 
centrifuged at 4 ◦C for 30 s. Prior to electrophoresis, the supernatant was 
transferred into a sterile Eppendorf tube and stored at -20 ◦C. For SDS 
polyacrylamide gel electrophoresis, 5 µL of homogenate was mixed in a 
1:1 ratio with sample buffer and heated at 95 ◦C for 5 min. Ten (10) µL of 

A. Anirudhan et al.                                                                                                                                                                                                                             



Fish and Shellfish Immunology Reports 4 (2023) 100101

3

sample was added to each lane of 10% polyacrylamide gels, and elec
trophoresis was performed at 120 V for 15 min, followed by 150 V for 45 
min. Until visualization, the protein gel was stained overnight with 
Coomassie Biosafe (BioRad Laboratories, USA). 

Protein gel was transferred to a polyvinylidene fluoride transfer 
membrane (BioRadImmun-Blot™ PVDF, USA) for antibody probing for 
Western immunoblotting. The PVDF membrane was probed with a 
1:5000 dilution of a mouse monoclonal antibody to Hsp70 (Clone 3A3, 
Thermo Scientific, USA). As a secondary antibody, a 1:2000 dilution of 
goat anti-Mouse IgG F(ab’)2 polyclonal antibody conjugated with horse 
radish peroxidase (HRP) (Bioreagent-SAB-100 J, Stressgen, Canada) was 
used. 0.7 mM diaminobenzidine tetrahydrochloride dehydrate (DAB) 
was used to detect antibody-reactive protein [10,35,36]. The expression 
of Hsp70 in shrimp was then determined by densitometry analysis. A 
densitometer (GS-800 BioRad Laboratories, USA) was used to scan the 
protein blot, and the intensity of Hsp70 bands was determined using 
Quantity One software (BioRad Laboratories, USA) and presented as a 
fold difference. 

2.6. Expression of immune-related genes in P. vannamei 

RNA was extracted from 100 mg caudal muscle tissues of 
V. parahaemolyticus-challenged shrimps (with or without 6 g/L leaf 
extract exposure) and control shrimps using the TRIsure™ reagent 
(Bioline, UK) according to the manufacturer’s protocol. Approximately 
1 µg of RNA was converted into first strand cDNA using a cDNA synthesis 
package, (Bioline, UK). qRT-PCR was used to determine the expression 
of immune-related genes, as described by Anirudhan et al. [10]. Prior to 
qRT-pCR, the primer specificity was confirmed with NCBI blastn (htt 
ps://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn). qRT-PCR 
was carried out in a CFX Connect™ System (Bio-Rad, USA) with a 2X 
SensiMix SYBR No-ROX package (Bioline, UK) containing forward and 
reverse primers targeting proPO, peroxinectin, penaeidin, crustin, hae
mocyanin, Hsp70, and ß-Actin (Table 1). The cycle threshold (CT) values 
were recorded by CFX Manager program software (BioRad, USA) and 
fold difference in quantity for each immune-related cDNA, relative to 
the β-actin gene, was calculated by the 2-ΔΔCt method [37]. 

2.7. Statistical analysis 

Values of larval survival were ArcSin transformed to satisfy 
normality and homocedasticity requirements whenever necessary. Sig
nificant differences in terms of survival were investigated by performing 
one-way ANOVA, followed by Tukey test at a significance level of 0.05. 

3. Results 

3.1. P. tectorius leaf extract protected shrimps against 
V. parahaemolyticus 

The survival percentage of P. vannamei exposed to various concen
trations of P. tectorius leaf extract were shown in Fig. 1. When shrimps 
were incubated in varying doses of leaf extract for 24 h, survival was 
approximately 93%, which was comparable to the control. Shrimp 
exposed to V. parahaemolyticus had a 24 h median lethal concentration 
(LC50) of 1.6 × 106 cells/ml (Fig. 2). The survival of shrimps incubated 
with P. tectorius leaf extract was increased in a dose-dependent manner 
following a LD50 V. parahaemolyticus challenge, with survival reaching 
95% when the leaf extract concentration was increased to 6 g/L, the 
highest dose examined in this study (Fig. 2). 

3.2. P. tectorius leaf extract upregulated Hsp70 and immune genes 
expression 

The expression of Hsp70 increased in a dose-dependent manner 
when shrimps were exposed to P. tectorius leaf extract. Hsp70 levels in 
shrimp tissues increased from 1.7 to 16.5-fold, with the latter occurring 
at 6 g/L of leaf extract (Table 2). 

Quantification of immune-related genes expression by qRT-PCR 
revealed a 8.5, 10.4 and 1.5-fold increase in Hsp70, crustin and 
prophenoloxidase mRNA respectively, whereas augmentation of per
oxinectin, penaeidin, and transglutaminase mRNA were unapparent 
upon exposure to the highest concentration of P. tectorius leaf extract 
(Table 3). 

Table 1 
Primer sequences, size (base pairs) and melting temperatures (Tm) used to amplify immune-related genes (Hsp70, crustin, prophenoloxidase, penaeidin, peroxinectin 
and transglutaminase) of P. vannamei.  

Primers Accession # Sequence Size bp Tm (◦C) 

Hsp70 (F) EF495128 5′-CCTCCAGGACTTCTTCAACG-3′ 144 63.0 
Hsp70 (R)  5′-GGTCACGTCCAACAGCAAC-3′

Crustin (F) AF430076 5′-ACGAGGCAACCATGAAGG-3′ 141 62.7 
Crustin (R)  5′-AACCACCACCAACACCTAC-3′

Prophenoloxidase (F) AY723296 5′-CGGTGACAAAGTTCCTCTTC-3′ 122 61.5 
Prophenoloxidase (R)  5′-GCAGGTCGCCGTAGTAAG-3′

Penaeidin-3a (F) Y14926 5′-CACCCTTCGTGAGACCTTTG-3′ 121 63.0 
Penaeidin-3a (R)  5′-AATATCCCTTTCCCACGTGAC-3′

Peroxinectin (F) AF188840 5′-CGAAGCTTCTTGCAACTACCA-3′ 56 63.8 
Peroxinectin (R)  5′-GCAGGCTGATTAAACTGGCTT-3′

Transglutaminase (F) EF081004 5′-GAGCTTCAAGATCGAGGATCGA-3 79 64.6 
Transglutaminase (R)  5′- GCTGGTGTTCGTAGCGGTTATC-3   
β-actin (F) AF300705 5′-CCACGAGACCACCTACAAC-3′ 142 62.7 
β-actin (R)  5′-AGCGAGGGCAGTGATTTC-3′

Fig. 1. Survival of P. vannamei after 24 h exposure to different concentrations 
of Pandanus tectorius leaf extract. Ctr, control (P. vannamei not exposed to leaf 
extract); Treatments, 0.5 to 6 g/L of leaf extract. Error bars are standard error. 
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3.3. P. tectorius leaf extract prevented histological degeneration in 
V. parahaemolyticus-challenged shrimps 

Histological examination of hepatopancreas and muscles of shrimps 
treated with Pandanus tectorius leaf extract and then exposed to 
V. parahaemolyticus are shown in Figs. 3 and 4, respectively. Similar to 
positive control group (shrimps un-exposed to P. tectorius or 
V. parahaemolyticus), shrimps exposed to the leaf extract and subse
quently challenged with Vibrio had intact tubules and tubules of lumen. 
However, the negative control group (shrimps challenged with 
V. parahaemolyticus without P. tectorius treatment) displayed enlarged 
hepatopancreatic nuclei, degenerated hepatopancreatic tubules and 
decreased number of blassenzelen, fibrillenzene and restzellen epithelial 
cells (Fig. 3). 

The muscle structure of control shrimps appeared normal, without 
tissue lesion or necrosis. Vacuolization increased in the lining of muscle 
cells and lumen epithelium of the positive control group, while hae
molytic infiltration and loss of muscle tissue structure in shrimp samples 
not exposed to P. tectorius leaf extract occurred upon V. parahaemolyticus 
challenge (Fig. 4). 

4. Discussion 

In this study, exposure to methanolic P. tectorius leaf extracts 
enhanced the survival of P. vannamei against pathogenic 
V. parahaemolyticus. When the maximal amount of extract (6 g/L) was 
employed, P. tectorius leaf extract enhanced P. vannamei tolerance 
against V. parahaemolyticus better than fruit extract, with survival per
centage increased by 15% in the median lethal dose challenge [10]. How 
this plant extract contributes to the enhanced tolerance in shrimp is 
uncertain, but several possibilities exist. 

P. tectorius is high in phenolic acids, flavonoids, and tannins, and it 
can behave similarly to other medicinal plants against 
V. parahaemolyticus ([38]; Andriani et al., 2015). These antimicrobial 
and antioxidant compounds enter the shrimp’s gut or circulatory system 
and prevent virulent bacterial growth by either chemically interfering 
with the synthesis or function of vital components [39] or circumventing 
their ability to conventionally resist antibacterial compounds [40–42, 
39,43,44]. In fact, many plants, including P. tectorius, contain antimi
crobial substances that are effective at destroying pathogenic bacteria 
such as Vibrios. These include Acalypha indica, Adhatoda vasica, Ana
cardium occidentale, Azadirachta indica, Lawsonia inermis, Psidium gua
java, Rosa damascena and Tridax procumbans extracts of which have been 
shown to be effective against V. anguillarum, V. alginolyticus, and 
V. harveyi, all of which are typical bacterial pathogen of Penaeus van
namei [18]. On other examples, methanolic extracts of Murraya koenigii, 
Psoralea corylifolia and Quercus infectoria protected shrimps from 
V. harveyi, Pseudomonas aeruginosa and Staphylococcus aureus. In these 
studies, improved survival was associated with a substantial reduction 
in bacterial load, suggesting a significant pathogen inhibition in the host 
[45]. 

On other aspect, P. tectorius can protect shrimps against 
V. parahaemolyticus by activating the immune system. Short-term 
exposure to the leaf extract was shown to increase Hsp70 accumula
tion in P. vannamei. Hsp70 mediates the activation of the proph
enoloxidase (proPO) system [46] and in this study, the number of ProPO 
mRNA was increased approximately 1.5-fold after exposure to 
P. tectorius leaf extract. Despite the low expression level, there might be a 
rise in ProPO activity. The proPO system is essential in antibacterial 
immunity because it produces melanin and cytotoxic intermediates that 
help in bacterial sequestration and killing, preventing severe tissue and 
organ damage during infection [47,48]. Hsp70 also stimulates the pro
duction of cytokines, which are secreted by activated immunocytes or 
matrix cells to inhibit pathogens. Cytokines occur in shrimp and play a 
variety of immunostimulatory functions, including the Fas receptor 
(Fas), platelet factor 4 (PF4), and interleukin-22 (IL-22), all of which are 
essential in obscuring viral replication [49]. 

As shown in this study, protection against V. parahaemolyticus of 
shrimps with P. tectorius leaf extract may also be offered by induction of 
crustin, an important group of antimicrobial peptides (AMP) for 
P. vannamei. Exposing shrimp to 6 g/L of leaf extract resulted in a 10.4- 
fold increase in the amount of crustin mRNA. Crustins are immune 
proteins with antimicrobial activity against Gram-positive and Gram- 
negative bacteria, including Vibrio [50,51]. In this context, Arockiaraj 
et al. [52] demonstrated that recombinant crustin protein from the 
freshwater giant prawn Macrobrachium rosenbergii (MrCrs) has the 
ability to agglutinate A. hydrophila, E. coli, Edwardsiella tarda, V. para
haemolyticus, V. alginolyticus and Pseudomonas sp. and other 
Gram-positive bacteria. The bacterial agglutination activities of re
combinant MrCrs protein recognized lipopolysaccharides in bacterial 

Fig. 2. Survival of P. vannamei after pre-treatment with P. tectorius leaf extract 
and 24 h exposure to 1 × 106 cells/ml V. parahaemolyticus. Ctr, control 
(P. vannamei not exposed to leaf extract); 106, shrimps challenged with 
V. parahaemolyticus alone (1 × 106 cells/ml); Pre-treatments, 0.5–6 g/L of leaf 
extract. Error bars are standard error. 

Table 2 
The relative density (RD) of Hsp70 expression in P. vannamei incubated 24 h 
with P. tectorius leaf extract. The relative Hsp70 quantity was calculated based 
on the RD of non-exposed control, with a relative value of 1. Asterisks (*) 
indicate protein up-regulation.  

Treatment Adjective Volume (RD) Relative Quantity 

Control 9.0 1.0 
0.5 g 15.7 1.7* 
1 g 17.4 1.9* 
2 g 19.8 2.2* 
3 g 26.7 2.9* 
4 g 40.9 4.5* 
5 g 122.5 13.6* 
6 g 147.8 16.5*  

Table 3 
The relative fold-difference of immune-related genes of P vannamei upon 
24 h incubation in 6 g/L Pandanus tectorius leaf extract. The value rep
resents the fold changes of mRNA expression (normalized against in
ternal control β-actin) relative to the control value, which are the 
samples from shrimp without any treatment. * represents significance 
difference between treatment and control (P < 0.05). The data shown 
are representative of two independent experiments with similar 
expression patterns.  

Immune related genes Relative fold-difference 

Hsp70 8.4 ± 4.0* 
Crustin 10.4 ± 2.0* 
ProPO 1.5 ± 1.0 
Transglutaminase -1.0 ± 0.5 
Peroxinectin -1.1 ± 0.5 
Penaeidin -1.1 ± 0.5  
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cell walls and bound on its substrate, immobilizing the invading bacteria 
and inhibiting further tissue invasion. They are also important compo
nents of shrimp hemocytes, as they are needed for apoptosis and 
phagocytosis [53]. Similar immunoregulatory capabilities were discov
ered for a type II crustin (LvCrustinB) that was strongly synthesized in 
the muscle and epithelium of L. vannamei, suppressing V. para
haemolyticus following infection [54]. According to the pattern of 
transglutaminase, peroxinectin, and penaeidin expression, protection 
against V. parahaemolyticus in shrimp exposed to P. tectorius leaf extract 
was unlikely to be linked to these immune proteins. The exact mecha
nism by which P. tectorius protects shrimps against pathogens is un
known, although dietary supplementation with this plant extract for 2 
weeks were demonstrated to boost the non-specific immune response 
and increased resistance to Y. ruckeri infection in rainbow trout. The 
highest recommended dose of 2% significantly increased lysozyme ac
tivity, myeloperoxidase level, and various important immune related 
genes such as TNF, LYZ2, IL-8, and CD-4 in the head kidney of rainbow 
trout [31]. These findings clearly suggested that P. tectorius contains 
compounds that can stimulate the immune system of fish, and that this 
may also occur in shrimp, as seen in our work. 

AHPND is caused by V. parahaemolyticus that have acquired a 
plasmid encoding PirAvp/PirBvp [55,56]. Upon infection, 
V. parahaemolyticus colonizes the shrimp gut by producing binary toxins 
such as TOXA (12.7 kDa) and TOXB (50.1 kDa) that resembles binary 

insecticidal toxins from Photorhabdus species, the Photorhabdus insect 
related (Pir) toxins; PirA and PirB. These toxins cause cell sloughing and 
damage to the hepatopancreas, eventually leading to organ failure and 
death [48,57,58]. Aside from the hepatopancreas, AHPND toxin was 
found to be toxic to the hemocytes and stomach [59]. In this study, the 
hepatopancreas of shrimp that were not exposed to P. tectorius leaf 
extract showed enlargement of the hepatopancreatic nuclei, collapse of 
the hepatopancreatic tubules, a lack of Blassenzelen, fibrillenzen, rest
zellen epithelial cells and sloughing, all of which are typical histopath
ological conditions of AHPND. Other pathological signs include 
necrosis, loss of structure, atrophy of tubule epithelial cells, vacuolation, 
rounding and sloughing of cells into the lumen, as well as inflammation 
[60]. Inflammation in infected tissues is a natural defense mechanism 
that occurs in response to injury, either locally or systemically within the 
challenged organism [61,62]. Interestingly, exposing shrimp to 
P. tectorius leaf extract prior to V. parahaemolyticus challenge was able to 
mitigate the hepatopancreas’s adverse effects. Histology showed that 
these shrimp hepatopancreas have massive compact ducts and blind 
ending tubules, with each consisting of a single layer of epithelial cells 
when challenged with V. parahaemolyticus. The hepatopancreas struc
ture was intact and there was no sloughing, observations comparable to 
the non-challenge shrimp sample (control). These findings suggest that 
P. tectorius leaf extract play a role in protecting shrimp against tissue 
injury, which may be explained by the presence of many antioxidative 

Fig. 3. Histological section of shrimp hepatopancreas. 1. Hepatopanceatic section of control shrimp showing healthy tubule (black thin arrow), tubule lumen (black 
wide arrow) and epithelial cells lining the tubules (black arrowhead). 2. Hepatopancreatic session of shrimp treated with leaf extract and then challenged with 
V. parahaemolyticus showing intact tubule (black thin arrow) and tubule lumen (black wide arrow). 3. Hepatopancreatic tubules from shrimp challenged with 
V. parahaemolyticus showing distended tubule lumen (black wide arrow) and distorted hepatopancreatic structure (back thin arrow). 

Fig. 4. Histological session of shrimp muscle. 1. Normal muscle from the control shrimp with muscle fibres intact (black arrow), no lesion and necrosis. 2. Muscle 
structure of shrimp treated with leaf extract and then challenged with V. parahaemolyticus showing no muscle necrosis and hemocytic infiltration. 3. Multifocal area 
of extensive coagulative necrosis and fragmentation of muscle fibres observed on Vibrio-challenged shrimps. (3A) Hyalinization and fragmentation of muscle fibres 
(wide arrow) along with hemocytic infiltration (thin arrow). Extensive loss of muscle. 
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compounds in this plant. P. tectorius is primarily rich in caffeoylquinic 
acids [63,64], vitamins (such as vitamins C, E and b-carotene) [65–67], 
isopentenyl, dimethylallyl acetate and cinnamate [68] and these resid
ual antioxidative compounds deposit of the P. tectorius leaf extract in the 
shrimp tissue can reduce toxin accumulation to non-lethal levels for 
shrimps [41,69] The anti-inflammatory properties linked to these phy
tochemicals ([70,71]; Andriani et al., 2015) may be the reason for less 
adverse histopathological effects in Vibrio-challenged shrimp tissues. 

Overall, incubating shrimp for 24 h in 6 g/L P. tectorius methanolic 
leaf extract is beneficial because it may increase immunological status 
and pathogenic bacteria tolerance during culture. Future studies should 
focus on finding phytochemical substances in the plant extracts and 
investigating their mechanistic activities during infection. Understand
ing how P. tectorius methanolic extracts improves tolerance may aid in 
the development of strategies to protect P. vannamei and possibly other 
Penaeid shrimp species against vibriosis while also reducing antibiotic 
use in farming. 
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