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C-reactive protein (CRP) is a pentraxin that has long been employed as a marker of inflammation in clinical practice. Recent findings
brought up the idea of CRP to be not only a systemic marker but also a mediator of inflammation. New studies focused on structural
changes of the plasma protein, revealing the existence of two distinct protein conformations associated with opposed inflammatory
properties. Native, pentameric CRP (pCRP) is considered to be the circulating precursor form of monomeric CRP (mCRP) that
has been identified to be strongly proinflammatory. Recently, a dissociation mechanism of pCRP has been identified on activated
platelets and activated/apoptotic cells associated with the amplification of the proinflammatory potential. Correspondingly, CRP
deposits found in inflamed tissues have been identified to exhibit the monomeric conformation by using conformation-specific
antibodies. Here we review the current literature on the causal role of the dissociation mechanism of pCRP and the genesis of mCRP
for the amplification of the proinflammatory potential in inflammatory reactions such as atherosclerosis and ischemia/reperfusion
injury. The chance to prevent the formation of proinflammatory mediators in ubiquitous inflammatory cascades has pushed
therapeutic strategies by targeting pCRP dissociation in inflammation. In this respect, the development of clinically applicable
derivatives of the palindromic compound 1,6-bis(phosphocholine)-hexane (1,6-bis PC) should be a major focus of future CRP

research.

1. Introduction

C-reactive protein (CRP) is a marker of inflammation that
is extensively used in clinical practice. Recently, several
prospective clinical studies have shown that modest eleva-
tions in baseline CRP levels predict future cardiovascular
events [1-4]. This brought up the idea of CRP to be not only
a systemic marker of inflammation but also a mediator in
inflammatory foci.

CRP was discovered in Oswald Avery’s laboratory at the
Rockefeller Institute in New York City. William Tillett and
Thomas Francis Jr. detected a protein in sera from patients
with Streptococcus pneumoniae infection that interacted with
pneumococcal cell wall residues. Increasing plasma con-
centrations of CRP as a result of tissue injury [5, 6] or
inflammatory states [7-12] has been a long employed inflam-
matory parameter for clinical purposes. However, it took
another forty years to identify the specific ligand for CRP,

phosphocholine (PC) [13]. In the past, conflicting findings of
the role of CRP in inflammation made it difficult to evaluate
a potential involvement of CRP in the inflammatory cascade.
Ideas of anti-CRP strategies became less attractive. However,
recent studies suggested the existence of two conformations
of the protein to explain the contradictory data. A dissoci-
ation mechanism of the pentameric protein (pCRP) to its
monomeric subunits (mCRP) mediated by bioactive lipids
[14] has been described and localized upon damaged and
activated cells and platelets. This conformational change is
accompanied with an alteration of the inflammatory profile of
the protein [15]. The proinflammatory properties could now
be attributed to the monomeric isoform and the dissociation
process became the focus of anti-inflammatory therapeutic
strategies.

Here, we review the recent literature of CRP as a mediator
of inflammation and illustrate recent findings that reveal
the crucial role of dissociation of pCRP and genesis of
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mCRP for the amplification of the proinflammatory poten-
tial in inflammatory reactions such as atherosclerosis and
ischemia/reperfusion injury.

2. pCRP Is the Circulating Precursor
Form of mCRP

2.1. Structure of Pentameric CRP. Pentameric C-reactive
protein is part of the superfamily of pentraxins and as such
consists of five identical, noncovalently associated globular
protomers. 206 amino acids folded into two antiparallel 3-
sheets with flattened jelly-roll typology [16] forming one
subunit of about 23 kDa molecular mass [17]. Each of the
five subunits is linked by disulfide bonds [18] and is arranged
symmetrically around a central pore composing a cyclic
multimeric structure. Each protomer has been found to
accommodate a hydrophobic pocket that represents the
active site of binding PC. X-ray crystallography revealed the
hydrophobic pocket on the so-called recognition face which
consists of four amino acid residues. Especially Phe®® and
Glu®*! coordinate two calcium ions, mediating the binding of
phosphocholine to CRP [19, 20].

The CRP-ligand phosphocholine is composed of one
positively charged choline nitrogen head and a hydrophobic
methyl group tail, whereat Phe®® of the binding site interacts
with the tail and Glu® provides ionic interaction with the
head of PC. The effector face is located on the opposite
side of the pentamer, in which the globular recognition
domain of complement Clq binds and enables interaction
with the classical complement pathway. To date, no mutation
or deficiency of this phylogenetically highly conserved [21]
plasma protein is known in human, suggesting a pivotal
contribution to innate immune response.

2.2. Synthesis of Pentameric CRP. Pentameric CRP is pre-
dominantly expressed in hepatocytes and from there it is
secreted into circulation [22]. An expression of pCRP has also
been reported in neuronal cells [23], renal cortical tubular
epithelial cells [24], arterial tissue, respiratory epithelium
[25], adipocytes, and leukocytes [26-30]. However, it seems
unlikely that extrahepatic synthesis affects plasma levels
considerably. The proinflammatory cytokines interleukin 6
(IL-6) and, to a lesser extent, interleukin 15 (IL-1p) as
well as tumor necrosis factor (TNF) induce CRP expression
at the transcriptional level [31] through recruitment and
activation of the transcriptional factors C/EBP 3 and C/EBPS.
Furthermore, STAT3 and Rel proteins (NF-«) interact with
gene regulation by binding to the proximal promoter region
of the CRP gene, increasing the stability of C/EBP binding to
the CRP gene, which results in maximum induction [32]. In
contrast, both interferon-o (IFN-«) [33] and statins and nitric
oxide in human hepatoma Hep3B cells suppress the induction
of CRP expression by proinflammatory cytokines [34]. Thus,
serum CRP levels poorly correlate with disease states that
are associated with IFN-« signaling, such as viral infections
or systemic lupus [35, 36]. Pentameric CRP is cleared from
circulation and catabolized by hepatocytes in vivo and is not
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affected by inflammation and plasma concentration of pCRP,
resulting in a half-life of 19-24 hours [37].

2.3. pCRP in Inflammation. During inflammation pCRP
plasma levels can increase from undetectable levels in healthy
individuals up to 1,000-fold and more within 24 to 72 hours
[38]. Although baseline serum level elevations detected by
high-sensitivity CRP assays are generally accepted to be a
risk factor for developing cardiovascular disease [26, 39] and
cancer [40]; a significant role of pCRP in the underlying
pathological processes has been questioned [21, 40, 41]. This
is in part because of the contradictory literature as both
proinflammatory and anti-inflammatory effects of pCRP
have been reported.

Pentameric CRP was suggested to upregulate the activa-
tion of DNA binding protein complex NF-«B, a key mediator
of atherosclerosis [42-44] and the expression of monocyte
chemoattractant protein-1 (MCP-1) in human endothelial
cells. NF-«B regulates the activation of the gene encoding for
the chemokine MCP-1 on the transcriptional level, which, in
turn, promotes the migration of leukocytes into the suben-
dothelial tissue and contributes to atherosclerosis. It was
further postulated that pCRP induces the upregulation of cell
adhesion molecules such as intercellular adhesion molecule-1
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and
E-selectin via NF-«B upregulation [45, 46].

However, proinflammatory properties that have been
attributed to pCRP were found to be more likely due to
contaminations of commercially available CRP preparations.
C-reactive protein-induced in vitro vasorelaxation as well as
proapoptotic effects in endothelial cells, for example, have
been found to be an artefact caused by the presence of
the commonly used preservative agent sodium azide [47,
48]. Corresponding to the contamination with the bacterial
preservative sodium azide, endotoxin contamination with
lipopolysaccharide (LPS) in recombinant CRP preparations
provoked an acute phase response in mice, whereas purified
pCRP did not [49]. The integrin Mac-1 (et 3,; CD11b/CD18)
can be used to rate monocyte activation. This receptor
is expressed on monocytes and neutrophils and shows a
function-specific conformation [50, 51]. However, pCRP
failed to induce activation of Mac-1 on monocytes, monitored
by binding of activation-specific anti-Mac-1 antibodies in
flow cytometry, as well as fluorescence microscopy [52].
Khreiss et al. demonstrated that native pCRP has no effect on
the overall expression of ICAM-1, VCAM-1, and E-Selectin in
endothelial cells; however, treatment with mCRP significantly
induced the expression of these adhesion molecules [53,
54]. Further investigations proved that the inflammatory
response measured by neutrophil activation, adherence, and
extravasation was attenuated when pCRP had been dialyzed
prior to use [55, 56].

3. mCRP Represents the Proinflammatory
Isoform of CRP

3.1. Genesis of Monomeric CRP. Native circulating pen-
tameric CRP may dissociate under certain conditions that
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destabilize protein structure, such as exposure to heat, high
concentrations of urea, acidic microenvironment [57, 58],
prolonged storage in absence of calcium ions [59], or direct
immobilization on polystyrene tissue culture flasks [57].
Though in vitro genesis of mCRP has been reported exten-
sively, the in vivo existence has long been questioned. The
molecular structure of pCRP has been described as extremely
stable [60, 61] and protein denaturation has been seen as
the only condition to generate the monomer [21]. However,
Eisenhardt et al. demonstrated a dissociation process of
PCRP to mCRP on activated platelets [52] which was then
supported by reports of dissociation of pCRP after calcium
ion-dependent binding to cell membranes and liposomes
[14]. Only recently, the dissociation of circulating pCRP to
mCRP after binding to activated endothelium in areas of
inflammation could be observed in vivo in a rat model
of acute inflammation [62]. This supports the findings of
Habersberger et al. who postulated a pCRP dissociation
mechanism on circulating microparticles in patients follow-
ing myocardial infarction [63]. Strang et al. discovered a
previously unrecognized potential of beta-amyloid plaques
to dissociate pCRP to mCRP in the brains of patients with
Alzheimer’s disease and postulated an inflammatory role of
mCRP in Alzheimer pathology [64].

However, these data have to be interpreted with care
as alteration of the protein structure and even dissociation
of pCRP may occur due to preparation of material for
immunohistochemistry.

The dissociation process is mediated by exposure to
lysophosphatidylcholine (LPC), a bioactive lipid, which is
generated following phospholipase A2 (PLA2) expression
on activated cell membranes [65]. These findings were con-
firmed by the in vivo application of the PLA2 inhibitor ONO-
RS-082 that consequently prevented mCRP formation on
activated cells [62]. The role of PLA2 enzymes as regulators
of inflammation is supported by in vivo mouse models
of ischemic brain injury [66]. Gongalves et al. postulated
a role for lipoprotein-associated, PLA2-generated LPC for
human atherosclerotic plaque formation [67]. These findings
combined with the previously described dissociation and
localized deposition of mCRP in atherosclerotic plaques
[52] link PLA2-mediated membrane changes and subsequent
CRP dissociation in chronic inflammatory conditions such
as atherosclerosis. The ability of CRP to aggravate the
inflammatory response is thus dependent on PLA2-mediated
membrane changes in localized inflammatory lesions as a
prerequisite to dissociation and generation of mCRP. Elec-
tron microscopy revealed that the conformational change of
pCRP after binding to membranes, including liposomes and
cell membranes, first results in a partial structural change,
producing molecules that express CRP subunit antigenicity,
but with retained pentameric conformation. These molecules
can then loose pentameric symmetry resulting in the well-
recognized mCRP [14].

3.2. Solubility of Monomeric CRP. Monomeric CRP has been
characterized by a decreased aqueous solubility due to a
secondary protein structure shift from predominantly f3-
sheets to a-helices and expression of intersubunit contact

residues, in particular the residues 197 to 202 [68]. In patients
with high cardiovascular risk associated with increased pCRP
levels, mCRP cannot be found in the peripheral circulation
(unpublished observations, Eisenhardt et al.). Both nonre-
duced [69] and Cys-mutated mCRP were found to be rapidly
cleared from the circulation after intravenous administration
into mice [70].

Thus, mCRP rather represents the tissue-bound form of
CRP as it has been detected in various tissues throughout
the body [52, 71-78]. However, only recently, microparti-
cles derived from stressed cells were found to both bind
and transfer mCRP to activated endothelial cells, acting
as a ferry in disseminating inflammation [63]. Through
the process of membrane fusion, phagocytosis, or ligand
engagement of mCRP loaded microparticles with cell surface
[79], microparticles are capable of delivering a mCRP-based
proinflammatory stimulus.

3.3. mCRP in Inflammation. Monomeric CRP is considered
to be the inflammatory derivative of circulating pCRP. Some
of the following findings are based on recombinant mCRP
solutions expressed in Escherichia coli. Despite being purified
to keep endotoxin levels below the detection limit, drawbacks
of recombinant protein expression should be considered
when interpreting the data. Interaction of mCRP with Fcy-
RIII (CD16) in human neutrophils and other receptors of the
Fcy family [80, 81] as well as lipid rafts microdomains on
cell membranes [52, 82] are crucial for the mCRP-induced
cellular signaling. As functional blockade of CD16 only
partially inhibits the proinflammatory properties of mCRP
on leukocytes and endothelial cells [52, 54, 68] alternative
pathways have been proposed. Lipid rafts, cholesterol, and
sphingolipids enriched microdomains have been identified
for proinflammatory mCRP anchorage as human neutrophil
activation through mCRP fails after disruption of lipid rafts
by either methyl-f cyclodextrin or nystatin [82]. Cytokine
release, generation of reactive oxygen species (ROS), and
upregulation of the expression of adhesion molecules were
absent in the treated group [82]. Using specific gene silencing,
two major Fcy receptors, Fcy-RI (CD64), and Fcy-RIII
(CD16) could be identified as the major Fcy receptors on
human monocytes to mediate the proinflammatory potential
independent of lipid raft signaling [62]. In neutrophils,
mCRP attenuates DNA fragmentation through Fcy-RIII
(CD16) signaling, thus preventing apoptosis [68] similar to
the antiapoptotic mediators granulocyte macrophage-colony
stimulating factor, glucocorticoids, and LPS [83-85]. Khreiss
et al. demonstrated that mCRP induces interleukin-8 (IL-8)
secretion in human neutrophils via intracellular peroxynitrite
(ONOQ") signaling and following activation of nuclear
factor-xkB (NF-«B) and activator protein-1 (AP-1) resulting
as a major source of nitrosative stress [53]. The proinflam-
matory effect of mCRP is not restricted to leukocytes. The
expression of the adhesion molecules ICAM-1, VCAM-1,
and E-Selectin and the chemokines interleukin-8 (IL-8) and
monocyte chemoattractant protein-1 (MCP-1) were found to
be upregulated in human coronary artery endothelial cells
(HCAEC) incubated with mCRP [54]. Conversely, prolonged
culture was needed to detect endothelial cell activation after



pCRP exposure. That could be attributed to dissociation of
pCRP following activation of cell membranes.

Recent findings have shown that Clq complex colocalizes
with mCRP in human frontal cortex sections of patients
suffering from Alzheimer’s disease (AD). The histological
staining was performed with a conformation-specific anti-
body directed against mCRP [64]. Earlier histological studies
have found that CRP and complement components (most
often component Clq) can be found to be colocalized in
myocardial tissue during acute myocardial infarction [86].
Consistent with these findings, animal studies have shown
a complement-dependent increase in ischemic lesion size
following infusion with CRP [87, 88].

However, mCRP interaction with the complement system
differs depending on whether mCRP is in the ligand-free state
or isimmobilized on surface. Bound to surface either alone or
colocalized with oxidized low-density lipoprotein (ox-LDL)
or enzymatically modified low-density lipoprotein (E-LDL),
mCRP enables the activation of the classical complement
pathway. Via binding to Clq and following turnover of C3,
immobilized mCRP has been suggested to recruit Factor
H. Monomeric CRP-dependent complement activation thus
bypasses the more inflammatory and destructive terminal
sequence into membrane attack complex C5-9. In contrast,
ligand-free mCRP exhibits an inhibitory activity towards
complement, presumably by restricting the binding of Clq
with other complement activators (e.g., antibody-coated ox-
LDL) and thereby potentially protects unwanted complement
activation in the fluid phase [89]. New in vivo studies have
shown that the proinflammatory tissue-damaging effects of
human CRP are dependent on complement system activity.
This has been demonstrated in a model of myocardial infarc-
tion as well as in LPS-induced tissue injury by complement
depletion through cobra venom factor [62].

Interestingly, it has been reported that both pCRP and
Clq are found independently in circulation with no recog-
nized interaction forming a regulatory safety mechanism.
This can be explained by the fact that pCRP, in contrast
to mCRP, cannot bind Clq and was found to be unable
to activate the classical complement pathway in solution,
when not bound to its ligand [90]. When complexed to
its ligand phosphocholine, pCRP can bind Clq and can
activate CI, which is further increased after disruption of the
pentameric structure. The dissociation mechanism of pCRP
upon activated cells represents an intermediate conversion
step linking pCRP to complement activation and localizes
activated complement components in areas of inflammation.

3.4. mCRP in Cardiovascular Disease. Local deposition of
mCRP but not pCRP has been detected in infarcted areas
of brain tissue in stroke patients [91] and in infarcted
myocardial tissue of rats and humans [62]. In this regard,
gentle preparation of tissue for detection of mCRP by
immunohistochemistry as absence of extreme temperature
or acidic pH values is a prerequisite for interpretation of
these findings. Eisenhardt et al. showed that mCRP is the
more potent reagent, both increasing monocyte activation
and production of reactive oxygen species [50, 51]. Further
analysis of THPl-monocytes indicated a proinflammatory
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alteration of the proteome induced by mCRP stimulation
[92]. Monomeric CRP tested under physiological shear flow
and in static models has been found to induce monocyte
adhesion on various tissues [93]. Khreiss et al. reported
opposing effects of C-reactive protein on shear-induced
neutrophil-platelet adhesion. Whereas mCRP has been found
to upregulate platelet P-selectin expression and neutrophil-
platelet interaction, pCRP attenuated these key events of
acute coronary syndrome [94]. This is in line with findings
reporting that mCRP, unlike pCRP, has stimulatory effects
on platelets [95] and facilitates thrombus growth via platelet
stimulation [96].

In atheroma formation, monocyte arterial wall penetra-
tion and subsequent transformation into macrophages are
considered to be crucial steps. Unlike pCRP, mCRP activates
monocytes [52, 92] and colocalizes with macrophages in
atherosclerotic plaques [52]. As mCRP has further shown
to be highly prothrombotic [96], rupture of the fibrous cap
separating the lesion from the arterial lumen may result in
increased platelet aggregation [97].

As the majority of circulating microparticles (MP) have
been found to be shed of activated thrombocytes [79, 98],
a positive feedback mechanism in thrombus formation via
CRP dissociation upon MPs derived from platelets can be
assumed. Moreover, MP could activate mCRP in periph-
eral circulation, whereas potent platelets are stationary in
regions of thrombus formation [63]. Suleiman et al. showed
association in rise of circulating pCRP levels and size of
acute myocardial infarction (MI) [99]. These results are even
more interesting since Habersberger and colleagues detected
higher mCRP on MPs in sera of patients presenting with a ST-
elevation MI compared to a second group which had under-
gone percutaneous coronary intervention [63]. Monomeric
CRP further accumulates complement component Clq [14,
90, 100], thereby contributing to ischemia/reperfusion injury
in the myocardium.

Opverall, these findings confirm the idea of CRP disso-
ciation as a promising target to prevent proinflammatory
amplification in acute (cardiac ischemia/reperfusion) and
chronic (atherosclerosis) diseases.

4. mCRP Cannot Only Be Detected in
Cardiovascular Disease

4.1. mCRP in Kidney Disease. Healthy renal tissue has been
found to be negative for mCRP. However, Schwedler et al.
detected mCRP deposition in diabetic patients with severe
chronic kidney disease. The diabetic patients showed pro-
gressive tubular staining for mCRP associated with declin-
ing renal function and increasing severity of histologically
detectable lesions. The authors proposed a local production
of monomeric CRP, since mCRP staining was independent
of proteinuria and tightly associated within the tubular
cytoplasm [101].

4.2. mCRP in Chronic Neurodegenerative Disease. Strang
et al. recently demonstrated that mCRP is associated with
beta-amyloid (A-f) plaques in the cortical tissues from
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patients with Alzheimer’s disease (AD). A-f plaques have
been found to induce the dissociation of pCRP into individual
monomers, whereas the nonaggregated peptide did not.
Previous studies have shown the presence of CRP antigenicity
in AD affected brain tissue [23, 102, 103]. However, Strang
et al. were the first using conformation-specific antibodies to
demonstrate that mCRP is colocalized with A- 3 in sections of
the frontal cortex from patients with AD. The reported find-
ings may link CRP to the inflammatory processes underlying
the progression of AD [64].

4.3. mCRP in Rheumatic Disorders. Sjowall et al. proposed
that mCRP on the surface of apoptotic cell fragments could be
the driving antigen for the production of anti-CRP antibodies
in patients suffering from systemic lupus erythematosus
(SLE) [104, 105]. Anti-CRP levels in sera from SLE patients
have been found to correlate statistically significant with
lupus disease activity. Intriguingly, these serum anti-CRP
antibodies have been found not to be able to bind the
circulating isoform pCRP, whereas immobilized mCRP is
bound. The interaction of tissue-bound mCRP with anti-CRP
antibodies in vascular tissue has been suggested to promote
the production of atherosclerosis and could therefore link
elevated anti-CRP serum levels with chronic vascular disease
in SLE patients.

4.4. Targeting Monomeric C-Reactive Protein. The under-
standing of the dissociation mechanism as the underlying
process in many inflammatory disorders may enable the
development of novel therapeutic approaches by either inhi-
bition of pCRP dissociation or inhibition of mCRP itself.
As the dissociation of CRP is the more upstream process,
the therapeutic blockade appears to be the more favorable
approach. Blocking the dissociation of pCRP by cross-linking
two pCRP molecules in a “double doughnut’-like com-
plex, the palindromic compound 1,6-bis(phosphocholine)-
hexane (1,6-bis PC) was found to abrogate proinflammatory
properties. In a molar ratio of 5 1,6-bis PC:2 pentameric
CRP, it transfers the potentially inflammatory molecules
to an inert complex, thereby inhibiting CRP interactions
with complement and other proinflammatory ligands (e.g.,
phosphoethanolamine, modified LDL). 1,6-bis PC is a deriva-
tive of CRP-ligand phosphocholine (PC), and as such it
is bound corresponding to phosphocholine in a calcium-
dependent manner in the PC-binding pocket [106]. Recently,
we demonstrated that the stabilization of CRP with 1,6-bis
PC abolished mCRP formation and deposition in vivo [62]
(Figure 1). Restrictively, 1,6-bis PC is not convenient for clin-
ical purposes due to its pharmacokinetics and its low affinity
to pCRP (K; = 150 nM). After intravenous administration,
1,6-bis PC is rapidly cleared from circulation resulting in an
approximated half-time of 90 min in mice [106]. Thus, a more



potent drug with higher oral bioavailability, higher affinity
to pCRP, and prolonged half-time needs to be designed
to efficiently target the pCRP dissociation process as an
innovative therapeutic strategy.

5. Conclusion

Currently available evidence suggests that mCRP has marked
proinflammatory properties in vitro and in vivo. Activated
membranes in acute and chronic inflammation thereby medi-
ate the proinflammatory conformational change of the cir-
culating pCRP and localize the proinflammatory monomer.
This receptor-mediated process aggravates inflammation via
leukocyte recruitment, endothelial activation, and recruit-
ment of the complement cascade. 1,6-bis PC is able to inhibit
the proinflammatory effects through stabilization of pCRP
in a decameric form [63, 106], thereby inhibiting mCRP
deposition. After successful prototype development, future
studies will now have to focus on potential new compounds
with improved oral bioavailability and a longer half-life to
permit a potential anti-inflammatory clinical application.
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