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Protein quality control (PQC) is critical to maintain a functioning proteome. Misfolded or
toxic proteins are either refolded or degraded by a system of temporal quality control
and can also be sequestered into aggregates or inclusions by a system of spatial quality
control. Breakdown of this concerted PQC network with age leads to an increased risk
for the onset of disease, particularly neurological disease. Saccharomyces cerevisiae
has been used extensively to elucidate PQC pathways and general evolutionary
conservation of the PQC machinery has led to the development of several useful
S. cerevisiae models of human neurological diseases. Key to both of these types of
studies has been the development of several different model misfolding proteins, which
are used to challenge and monitor the PQC machinery. In this review, we summarize
and compare the model misfolding proteins that have been used to specifically study
spatial PQC in S. cerevisiae, as well as the misfolding proteins that have been shown
to be subject to spatial quality control in S. cerevisiae models of human neurological
diseases.

Keywords: protein quality control, spatial protein quality control, protein misfolding, misfolding model, inclusions,
aging, cell stress, temperature-sensitive

INTRODUCTION

The presence of protein inclusions is a hallmark of many age-related neurological diseases (Kaytor
and Warren, 1999; Koo et al., 1999; Paulson, 1999). There is much evidence to suggest that the
misfolded proteins generated during progression of these diseases are deposited into inclusions by
the cell’s protein quality control (PQC) machinery to shield cellular components from their toxic
properties (Saudou et al., 1998; Arrasate et al., 2004; Takahashi et al., 2008; Tyedmers et al., 2010).

Though protein deposits are common to many neurological diseases, inclusions can also be seen
in aged neuronal cells of healthy animals (Fiori, 1987; Peters et al., 1991), reinforcing the idea that
inclusions are a normal response of the PQC machinery to misfolded proteins. However, there are
several lines of evidence for an age-related decline in the cells ability to process damaged proteins,
which may explain the increased incidence of neurological disease with age (Cuervo and Dice,
2000; Koga et al., 2011; Kruegel et al., 2011; Andersson et al., 2013; Oling et al., 2014; Saez and
Vilchez, 2014).

While the observed inclusions vary in form and intracellular location across species ranging
from bacteria to humans, the formation of cellular inclusions in response to aberrantly folded
proteins is evolutionarily conserved and is a consequence of the cell’s ongoing effort to maintain
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protein homeostasis, or proteostasis. Organisms across the
evolutionary tree have evolved systems of temporal quality
control and spatial quality control to maintain a functioning
proteome (Hartl and Hayer-Hartl, 2009; Mogk and Bukau, 2017).
The chaperones of the temporal quality control system ensure
proper folding of newly synthesized proteins, attempt to refold
misfolded proteins and promote degradation of those that cannot
be effectively refolded (Hill et al., 2017; Josefson et al., 2017;
Sontag et al., 2017). A system of spatial quality control runs
in parallel to sort and deposit potentially harmful misfolded
proteins and its action is most apparent when the temporal
quality control system fails or is overloaded. When this occurs,
misfolded proteins are partitioned into inclusions which shield
the cell from their toxicity and can aid in their eventual clearance
(Taylor et al., 2003; Escusa-Toret et al., 2013; Wolfe et al., 2013).

Due to the general conservation of the PQC machinery,
several model organisms have been used to study not only
the pathways involved in PQC, but also how they manage
misfolded proteins that have been identified as important in the
development of several human age-related neurological diseases.
One of these is the proven model eukaryote, Saccharomyces
cerevisiae. It is well-suited for the study of PQC, particularly in
the context of aging, because aging can be studied in two major
contexts: non-proliferative and proliferative cells. Yeast can be
grown to stationary phase, where they eventually lose viability.
This loss of viability, sometimes called chronological aging, can
in many ways mimic aging experienced by differentiated cells like
neuronal cells. Furthermore, proliferative cells, like stem cells, can
also be modeled since yeast similarly undergo asymmetric cell
divisions.

Asymmetric divisions are important in the context of spatial
quality control because they allow damage, notably damaged
proteins, to be segregated asymmetrically. During asymmetric
cell division in yeast, the daughter cell is rejuvenated and
one reason for this is that damaged or misfolded proteins
are retained in the mother cell as part of the system of
spatial quality control (Aguilaniu et al., 2003; Shcheprova et al.,
2008). Evidence is emerging that some stem cell types also
segregate damage asymmetrically to allow the stem cell lineage
to propagate free of damage (Rujano et al., 2006; Fuentealba
et al., 2008; Bufalino et al., 2013; Ogrodnik et al., 2014). Since
this asymmetrical division of damage is limited to proliferating
cells, it is possible that the higher incidence of inclusions in
differentiated cells like neurons may be a consequence of the
inability of the spatial quality control machinery to remove
damage through division. Spatial PQC, therefore, plays a key role
in both aging and age-related neurological disease and yeast has
been successfully used to study the pathways involved in both
contexts.

A key reason for this success has been due to the development
of model proteins that either probe how the cell responds to
misfolding proteins in general or how they deal with those
that are thought to be the main causative agents of human
disease. Model misfolding proteins are especially useful in the
study of both temporal and spatial quality control as they can
be used to track processing by the quality control machinery
with minimal perturbation to the system itself. Fluorescently

tagged substrates are indispensable, particularly in the study of
spatial quality control, as they allow straightforward tracking
of aggregate formation and localization by light microscopy.
They also allow the study of spatial quality control in
relation to temporal control by following aggregates in the cell
through time. Several misfolding model proteins have been
developed for these purposes. Furthermore, several human
disease proteins have also been successfully used in yeast
to study both the nature of the toxicity of the misfolded
proteins, as well as how the PQC machinery responds to these
proteins. Herein, we review the major model proteins used
in S. cerevisiae to study spatial PQC pathways and the role
of spatial quality control in the molecular basis of human
disease.

MODEL MISFOLDING PROTEINS

Model misfolding proteins have helped to define the different
quality control sites that have been identified in yeast
(Kaganovich et al., 2008; Miller et al., 2015; Hill et al., 2017)
(Figure 1). When induced, they often initially accumulate at
stress foci, called CytoQs/Q-bodies/peripheral aggregates, in
the cytoplasm or at the surface of organelles including the
endoplasmic reticulum, mitochondria, and vacuole (Specht
et al., 2011; Spokoini et al., 2012; Escusa-Toret et al., 2013;
Miller et al., 2015). During prolonged stress, the aggregates
coalesce into larger foci, often called inclusions, which are
deposited or collected at several defined sites: the juxtanuclear
quality control (JUNQ), the intranuclear quality control (INQ)
and the insoluble protein deposit (IPOD) site (Kaganovich
et al., 2008; Miller et al., 2015). They also can associate with,
and be imported into, mitochondria (Zhou et al., 2014; Ruan
et al., 2017). Other sites are likely to exist as some misfolding
human disease models do not appear to localize to these
defined sites (Tenreiro et al., 2014; Farrawell et al., 2015). The
misfolding models are summarized in Table 1. We grouped
them into three general categories: Temperature-sensitive (Ts)
misfolding proteins, continuously misfolding proteins, and
human disease proteins. For each category, we will first describe
the development of model proteins for S. cerevisiae and then
discuss how they have been used to elucidate spatial quality
control pathways.

TEMPERATURE-SENSITIVE
MISFOLDING PROTEINS

Luciferase, FlucSM/DM
Photinus pyralis luciferase was an early model substrate used
in the study of PQC. It was selected to elucidate the
cellular chaperone machinery in Escherichia coli because it was
thermolabile, could be reactivated in vivo, and activity could
readily be monitored by luminescence assay (Schröder et al.,
1993). A fluorescently tagged version was later used to study
spatial quality control in E. coli (Winkler et al., 2010) before
versions were adapted for use in S. cerevisiae (Specht et al., 2011).
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FIGURE 1 | Spatial protein quality control sites in Saccharomyces cerevisiae. When induced to misfold, proteins aggregate in the cytosol and on the ER membrane
(Escusa-Toret et al., 2013). These initial cytosolic aggregates are called CytoQ (Miller et al., 2015), stress foci (Spokoini et al., 2012), peripheral aggregates (Specht
et al., 2011), cytosolic puncta (Kaganovich et al., 2008) or Q-bodies (Escusa-Toret et al., 2013). These coalesce into larger structures, usually referred to as
inclusions. Smaller inclusions have been observed tethered to actin cables (Liu et al., 2010; Song et al., 2014) or are captured by mitochondria (Zhou et al., 2014;
Böckler et al., 2017). Yeast cells have several distinct larger inclusions including, but not limited to, the intranuclear quality control site (INQ), the juxtanuclear quality
control site (JUNQ), and the perivacuolar IPOD site (Kaganovich et al., 2008; Miller et al., 2015). Other IPOD-like peripheral inclusions likely exist as some aggregates
of model substrates do not co-localize with the IPOD, e.g., the non-amyloidogenic disease protein OPTN (Kryndushkin et al., 2012). An additional site, the
age-associated protein deposit site (APOD, not depicted here) has been identified in aged cells (Saarikangas and Barral, 2015).

Mutant versions of Luciferase, FlucSM/DM were developed to
be more susceptible to heat denaturation (Gupta et al., 2011).
S. cerevisiae compatible constructs were recently developed
(Ruan et al., 2017).

Ubc9ts (ubc9-2)
Temperature-sensitive mutants of S. cerevisiae genes have
been used to study gene function for decades, particularly of
essential genes. Many Ts alleles behave as effective nulls and
one mechanism for this was shown with the gene product
of a Ts allele of the ubiquitin conjugating enzyme, Ubc9.
Several mutant ubc9 proteins were shown to be short-lived at
the restrictive temperature and the observed rapid breakdown
could be suppressed and was dependent on proteasome activity
(Betting and Seufert, 1996). A GFP tagged version of ubc9-2
containing the point mutation Y69L was then used to show
that misfolding proteins partition between at least two quality

control compartments, the JUNQ and IPOD (Kaganovich et al.,
2008).

guk1-7, gus1-3, pro3-1, ugp1-3
A screen of a panel of 22 Ts alleles of six essential
genes encoding predominantly cytoplasmic proteins showed
that a significant fraction was degraded at the restrictive
temperature, clearly demonstrating degradation as a major
mechanism for Ts phenotypes (Khosrow-Khavar et al., 2012).
Four unstable mutants were fluorescently tagged and used
as model misfolding substrates: guk1-7, gus1-3, pro3-1, and
ugp1-3 (Comyn et al., 2016). A Ts mutant of a guanylate
kinase, guk1-7, was selected for further characterization. The
temperature sensitivity of guk1-7 is a consequence of four
missense mutations. It was shown to co-localize with Hsp104-
mCherry and with Hsp42-mCherry foci (Comyn et al., 2016),
and based on these markers, they are likely deposited into
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TABLE 1 | Fluorescently tagged misfolding model proteins.

Name Origin Mutant model Misfolding Control Expression Fluorescent
tag location

Reference

Luciferase P. pyralis Heat denaturation Ts N/A Constitutive – ACT1 N-terminus Specht et al., 2011

FlucSM P. pyralis Heat
denaturation/missense

Ts Fluc Constitutive C-terminus Ruan et al., 2017

ubc9-2 S. cerevisiae Heat
denaturation/missense

Ts UBC9 Induced – GAL N-terminus Kaganovich et al., 2008

guk1-7 S. cerevisiae Heat
denaturation/missense

Ts GUK1 Constitutive –
TDH3

C-terminus Comyn et al., 2016

gus1-3 S. cerevisiae Heat
denaturation/missense

Ts GUS1 Constitutive –
TDH3

C-terminus Comyn et al., 2016

pro3-1 S. cerevisiae Heat
denaturation/missense

Ts PRO3 Constitutive –
TDH3

C-terminus Comyn et al., 2016

ugp1-3 S. cerevisiae Heat
denaturation/missense

Ts UGP1 Constitutive –
TDH3

C-terminus Comyn et al., 2016

Actin(E364K) D. melanogaster Missense Continuous None
available

Induced – GAL C-terminus Kaganovich et al., 2008

VHL H. sapiens Absent binding partner Continuous N/A Induced – GAL N-terminus Kaganovich et al., 2008

1ssCPY∗ S. cerevisiae Missorting Continuous N/A Constitutive –
PRC1, Induced –
GAL

C-terminus Park et al., 2007, 2013

1ssPrA S. cerevisiae Missorting Continuous N/A Constitutive –
TDH3

C-terminus Prasad et al., 2010

tGnd1 S. cerevisiae Nonsense Continuous GND1 Constitutive C-terminus Miller et al., 2015

DegAB S. cerevisiae) Degron (contains
degradation signal)

Continuous N/A Constitutive –
TDH3

N-terminus Shiber et al., 2013

Htt103Q H. sapiens Huntington’s disease Continuous Htt25Q Induced – GAL C-terminus Krobitsch and
Lindquist, 2000

β-amyloid H. sapiens Alzheimer’s disease Continuous N/A Induced – GAL C-terminus Treusch et al., 2011

Alpha synuclein H. sapiens Parkinson’s disease Continuous N/A Induced – GAL C-terminus Outeiro and Lindquist,
2003

FUS H. sapiens Amyotrophic lateral
sclerosis (ALS)

Continuous N/A Induced – GAL C-terminus Fushimi et al., 2011;
Kryndushkin et al., 2011;
Sun et al., 2011

TDP-43 H. sapiens Amyotrophic lateral
sclerosis (ALS)

Continuous N/A Induced – GAL C-terminus Johnson et al., 2008;
Kryndushkin et al.,
2011

OPTN H. sapiens Amyotrophic lateral
sclerosis (ALS)

Continuous N/A Induced – GAL C-terminus Kryndushkin et al.,
2012

References are to the earliest use of the misfolded reporter in the study of spatial quality control.

one or more of the major PQCs like Q-bodies, JUNQ/INQ or
IPOD.

QUALITY CONTROL OF
TEMPERATURE-SENSITIVE PROTEINS

Many temperature sensitive proteins are not degraded at the
restrictive temperature. The conditional lethal phenotype caused
by these stable variants are likely due to local perturbations
in domain structure caused by the mutations. This local effect
is apparent in Ts alleles that encode homomultimeric proteins
where intragenic complementation is possible (Sundberg and
Davis, 1997). Dominant Ts alleles have been proposed to affect
protein structure locally (McMurray, 2014). Indeed, these local
effects may generally help to explain the wide range of phenotypes
that can be observed with different Ts mutants of the same gene.

In contrast, a significant percentage of temperature-sensitive
mutants display a recessive, null phenotype at the restrictive
temperature that is often due to degradation of the expressed
protein (Khosrow-Khavar et al., 2012). The null phenotype of
unstable Ts alleles can often be rescued by removal of one
or a combination of genes involved in PQC, indicating that
the mutations do not significantly affect protein function, but
instead cause partial unfolding that the quality control machinery
recognizes, resulting in that protein being targeted for destruction
(Betting and Seufert, 1996; Gardner et al., 2005; Khosrow-Khavar
et al., 2012). It is this class of Ts mutants that has been adapted for
the study of PQC.

Of the Ts substrates adapted, Luciferase is the only one with
several well-established assays to monitor enzymatic activity,
which is one of the main reasons it was initially chosen as
a model substrate (Schröder et al., 1993). When used as a
spatial quality control substrate, it has a rather mild aggregation
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phenotype that either requires a higher 42◦C heat shock or
proteasomal inhibition for aggregates to be clearly visible. As
a consequence, destabilized versions of luciferase, FlucSM and
FlucDM were later engineered to make them more amenable to
studies of proteome stress (Gupta et al., 2011). FlucSM expressed
in yeast forms clear aggregates at 42◦C, but experiments with
milder 37◦C heat stress have not yet been reported in yeast
(Ruan et al., 2017). Luciferase is also the only exogenous Ts
substrate used in the study of spatial quality control. This has the
potential advantage that it is unlikely to specifically interact with
endogenous proteins. However, it may also not be recognized by
the PQC machinery in the same way as an endogenous protein,
potentially limiting its use in elucidating endogenous spatial
quality control pathways.

The remaining substrates are Ts versions of S. cerevisiae
proteins which have been selected to be unstable at or above
37◦C. Ubc9-2 has often been used as a spatial quality control
substrate since it was originally used to help define the
JUNQ and IPOD deposition sites (Kaganovich et al., 2008).
The guk1-7, gus1-3, pro3-1, and ugp1-3 proteins expand
the number of available Ts substrates significantly and allow
interesting comparisons between processing of endogenous
misfolded proteins since they differ in their wild-type gene
function, cellular localization and pathways of degradation
upon misfolding. At the permissive temperature, these Ts
substrates have been reported to have the following localization
patterns: ubc9-2, nucleus; guk1-7, nucleus and cytoplasm; gus1-
3, cytoplasm and mitochondria; pro3-1, cytoplasm; ugp1-3,
cytoplasm and plasma membrane1. It is perhaps not surprising
that these model proteins show notable differences in the
way they are processed by the PQC machinery. For example,
degradation of pro3-1 is partially dependent on the E3 ubiquitin
ligase San1 for degradation while guk1-7 is significantly less
dependent. They also show different responses to deletion of
prefoldin subunits. Furthermore, gus1-3 appears to be unique
in that it does not appear to depend on the proteasome for
degradation (Khosrow-Khavar et al., 2012). Table 2 summarizes
what is known about the processing of the Ts model
substrates.

There are further subclasses of Ts proteins that are important
to distinguish between, especially in the context of quality
control. Some proteins are TL (thermolabile) while others
are TSS (temperature sensitive synthesis) (Sadler and Novick,
1965; McMurray, 2014) (Figure 2). TL mutants are universally
destabilized at the restrictive temperature, whereas TSS mutants
are those that only misfold during synthesis. In yeast, a clear
distinction between these phenotypes was shown with Ts mutants
of Gal80 (Matsumoto et al., 1978). These unique properties can
be exploited to examine whether the PQC machinery handles
misfolding of newly synthesized or aged proteins differently. Of
the Ts proteins used to study spatial quality control, only Ubc9ts
has been characterized in this way and was shown to be TL as
it could form foci during heat shock even after expression was
shut off (Escusa-Toret et al., 2013). For this reason, we cannot
generally distinguish between TL and TSS in this review.

1https://www.yeastgenome.org/

CONTINUOUSLY MISFOLDING
PROTEINS

Actin(E364K)
The actin mutant actin(E364K) was originally isolated in
Drosophila melanogaster (Drummond et al., 1991) and was
later shown to be degraded by the PQC machinery (McClellan
et al., 2005). A GFP tagged version localized to quality control
compartments seen with ubc9-2 (Kaganovich et al., 2008).

von Hippel–Lindau (VHL)
The von Hippel–Lindau (VHL) tumor-suppressor protein is
subject to chaperone mediated folding in mammalian cells
(Feldman et al., 1999). Tumor-causing mutations that disrupt
VHL binding to Elongin B/C leads to misfolding and degradation
by the proteasome (Feldman et al., 1999; Schoenfeld et al., 2000).
Wild type VHL was shown to be degraded in yeast due to absence
of Elongin B/C and this was similarly dependent on the ubiquitin-
proteasome pathway (McClellan et al., 2005). GFP tagged VHL
was shown to be subject to spatial quality control in yeast similar
to ubc9-2 and actin(E346K) (Kaganovich et al., 2008).

1ssCPY∗

The first mutant version of the vacuolar enzyme
carboxypeptidase Y (Y, yscY, CPY, PRC1) was isolated in
1975 (Wolf and Fink, 1975) in a screen with the purpose of
investigating the function of the proteinase itself. However,
CPY∗ did not localize to the vacuole, its regular destination,
but instead was retained in the ER for proteasome-independent
rapid degradation and was found to be misfolded (Finger et al.,
1993).

Many derivatives of CPY have been used to study their
degradation or PQC pathways, which differ depending on the
domains they are fused to, e.g., the fusion to a transmembrane
domain to study ER membrane proteins (Stolz and Wolf,
2012). One such derivative is 1ssCPY∗, which is a cytoplasmic
misfolding substrate made by eliminating the ER-targeting
signal sequence from CPY∗. Though originally used as a
negative control when studying ERAD dependent degradation,
(Medicherla et al., 2004) GFP tagged 1ssCPY∗ was shown to
form inclusions and is subject to spatial quality control (Prasad
et al., 2010; Park et al., 2013). Based on this construct, a similar
cytosolic misfolding protein, 1ssPrA, was made using vacuolar
proteinase A (PEP4) (Prasad et al., 2010).

tGnd1
A dosage suppressor screen using a high copy (2 µ) genomic
library was performed to identify factors involved in stabilization
of the misfolded model 1ssCPY∗ (Heck et al., 2010). The
recovered hits were found to express truncated proteins, one
of which was a truncated form of Gnd1, a phosphogluconate
dehydrogenase. The truncation proved to be a competing
PQC substrate. Fluorescently tagged tGnd1 was shown to
localize to JUNQ/INQ and CytoQ deposits (Miller et al.,
2015).
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TABLE 2 | Spatial quality control pathways implicated in processing of the misfolding model substrates, as well as dependence on the proteasome for degradation.

Name Degradation Ubr1
dependent?

San1
dependent?

Sorted to
JUNQ/INQ?

Sorted to
IPOD?

Reference

Luciferase Proteasome Yes N/D Yes No Nillegoda et al., 2010; Miller
et al., 2015

FlucSM/DM Proteasome N/D N/D N/D N/D Gupta et al., 2011; Ruan et al.,
2017

ubc9-2 Proteasome N/D N/D Yes Yes Betting and Seufert, 1996;
Kaganovich et al., 2008

guk1-7 Proteasome Yes No Yes1 N/D Khosrow-Khavar et al., 2012;
Comyn et al., 2016

gus1-3 Unknown N/D N/D N/D N/D Khosrow-Khavar et al., 2012

pro3-1 Proteasome Yes Yes N/D N/D Khosrow-Khavar et al., 2012

ugp1-3 Proteasome Yes N/D N/D N/D Khosrow-Khavar et al., 2012

Actin(E364K) Proteasome N/D N/D Yes Yes Kaganovich et al., 2008

VHL Proteasome N/D N/D Yes Yes McClellan et al., 2005;
Kaganovich et al., 2008

1ssCPY∗ Proteasome Yes Yes Yes Yes1 Eisele and Wolf, 2008; Miller
et al., 2015

1ssPrA Proteasome No Yes Yes1 Yes1 Prasad et al., 2010

tGnd1 Proteasome Yes Yes Yes Yes1 Heck et al., 2010; Miller et al.,
2015

DegAB Proteasome N/D N/D Yes Yes1 Furth et al., 2011; Alfassy et al.,
2013; Shiber et al., 2013, 2014

Htt103Q Proteasome, autophagy N/D N/D No Yes Kaganovich et al., 2008;
Chuang et al., 2016

β-amyloid Secretory pathway N/D N/D N/D N/D Treusch et al., 2011; D’Angelo
et al., 2013

Alpha synuclein Proteasome, autophagy N/D N/D No No Outeiro and Lindquist, 2003;
Petroi et al., 2012; Tenreiro
et al., 2014

FUS N/D N/D N/D No Yes, only
N-terminal
fusion

Kryndushkin et al., 2012

TDP-43 Proteasome, autophagy N/D N/D No No Farrawell et al., 2015; Leibiger
et al., 2018

OPTN Proteasome N/D N/D No Partially Kryndushkin et al., 2012

N/D, not determined. 1 inferred from relative location.

DegAB
A study of the degradation signal (degron) of the kinetochore
protein, Ndc10, showed that it functions autonomously, as it
leads to degradation of various other stable proteins when it is
attached (Furth et al., 2011). This degron consists of two parts,
DegA and DegB, leading to the collective name DegAB (Alfassy
et al., 2013). This model degron differs from conventionally used
terminally misfolding model substrates for PQC as it does not
aggregate spontaneously, is not cytotoxic and can model mildly
misfolded PQC substrates, which remain soluble and derive from
an endogenous yeast protein (Shiber et al., 2013). A GFP fusion
of DegAB, GFP-DegAB, can be used to study spatial PQC and
generally forms two inclusions, one of which is juxtanuclear.

QUALITY CONTROL OF CONTINUOUSLY
MISFOLDING PROTEINS

All non-thermolabile misfolding proteins presented here are
targeted for degradation via the ubiquitin-proteasome pathway

(Schoenfeld et al., 2000; McClellan et al., 2005; Park et al.,
2007; Heck et al., 2010; Furth et al., 2011). Nonetheless,
the factors required for degradation of substrates differ. For
example, actin(E364K) and VHL have been compared in the
same study and it was shown that Hsp90 is required for VHL
degradation but not for actin(E364K) degradation. Additionally,
VHL requires the Hsp70 chaperone Ssa1 and its co-chaperone
Sti1 for degradation (McClellan et al., 2005). 1ssCPY∗ and tGnd1
share a requirement for the Ubr1 and San1 E3 ubiquitin ligases
for their degradation (Eisele and Wolf, 2008; Heck et al., 2010;
Miller et al., 2015). Similarly, DegAB was found to depend on
Ssa1 or Ssa2 (Shiber et al., 2013).

Another similarity of all non-thermolabile substrates studied
so far in this regard is their spatial sorting in the cell, as they have
been observed to at least partially localize to both the JUNQ/INQ
and IPOD compartment upon aggregation. Actin(E364K) and
VHL both localize to JUNQ/INQ and IPOD but VHL requires
heat shock for localization to the IPOD (Kaganovich et al.,
2008). Proteasome inhibition alone results in a single nuclear
inclusion, most likely the JUNQ/INQ (Kaganovich et al., 2008;
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FIGURE 2 | The model proteins have different patterns of misfolding.
Continuously misfolding proteins misfold at all temperatures. Ts proteins
(green panel) misfold during heat shock and fall into two classes: Thermolabile
(TL) and temperature-sensitive synthesis (TSS). TL proteins universally misfold
during heat shock while TSS proteins misfold only if synthesized during heat
shock. Examples are listed for each category.

Specht et al., 2011; Spokoini et al., 2012; Miller et al., 2015).
1ssCPY∗ and tGnd1 have been demonstrated to localize to
the JUNQ/INQ in the stabilizing ubr11 san11 background in
which these model proteins are no longer, or only marginally,
ubiquitinated. This observation lead to the conclusion that
ubiquitination is not a requirement for JUNQ/INQ targeting
(Miller et al., 2015). In these experiments, tGnd1 is also targeted
to a second cytoplasmic focus, which most likely corresponds to
the IPOD, while 1ssCPY∗ appears exclusively targeted to INQ.
However, cytoplasmic foci have also been observed for 1ssCPY∗.
DegAB foci were shown to co-localize with Hsp42 and Hsp104
(Shiber et al., 2013) and detergent solubility properties of DegAB
were determined to be similar to those of 1ssCPY∗ as measured
by flow cytometry (Shiber et al., 2014). In summary, there are
clear differences in sorting of these model proteins, which makes
it reasonable to use more than one misfolding substrate when
general conclusions about spatial sorting pathways are to be
drawn.

HUMAN DISEASE PROTEINS

Age-associated proteopathies have been increasingly modeled in
yeast to gain more nuanced insight into the molecular bases
of the diseases while circumventing potential ethical issues
such as those with patient samples. The successful introduction
of a range of different disease model proteins highlights the

versatility and applicability of this model organism in the
study of proteostasis, aging, and disease development (Braun
et al., 2010). Different types of high-throughput screens with
budding yeast are particularly powerful and have been used,
in part, to find modifiers of cytotoxicity of disease proteins
(Willingham et al., 2003; Cooper et al., 2006; Liang et al.,
2008; Elden et al., 2010; Ju et al., 2011; Kayatekin et al., 2014).
Importantly, fluorescently tagged versions of several proteins
implicated in disease progression have been introduced to study
how the spatial quality control machinery handles them and to
help determine what contributes to their toxicity in diseased
neurons. Here, we focus exclusively on substrates that have
been shown to be subject to spatial quality control and aim
to provide guidance in the selection of model substrates used
to study spatial quality control pathways relevant to these
proteopathies. For more thoroughly detailed descriptions of
yeast models of human neurodegenerative disease, we refer the
reader several excellent reviews (Braun et al., 2010; Pereira
et al., 2012; Tenreiro et al., 2013; Braun, 2015; Menezes
et al., 2015; Fruhmann et al., 2017). The disease models
are summarized below and common constructs are listed in
Table 1.

Huntington’s Disease
Htt103Q/Htt97Q
Yeast models for characterization of Huntingtin (Htt), the
protein that is mutated in patients of Huntington’s disease, were
established by testing variants of exon 1 of the N-terminus
of human Huntingtin. These differ in the lengths of the
polyglutamine expansions that modify aggregation behavior
(Krobitsch and Lindquist, 2000). The Huntingtin model protein
commonly used in yeast is Htt103Q, which is named after
the number of glutamines in the expansion. A non-expanded
variant, Htt25Q, is used as a control. Non-expanded variants,
like Htt25Q, display diffuse localization in the cytoplasm, while
expansions of 72 glutamines or more cause the proteins to
form visible aggregates of varying size and quality (Krobitsch
and Lindquist, 2000). Interestingly, it has been reported that an
intermediate length huntingtin with a 47 glutamine expansion
forms aggregates in yeast upon entry into stationary phase,
which supports the use of stationary phase cells as a reasonable
model for aged neuronal cells (Cohen et al., 2012). Models with
longer expansions, such as Htt103Q, have different patterns of
localization, ranging from on major focus per cell to multiple
foci, that depend on expression levels and the regions flanking
the polyglutamine expansion (Krobitsch and Lindquist, 2000;
Duennwald et al., 2006; Wang et al., 2009; Song et al., 2014;
Berglund et al., 2017).

Alzheimer’s Disease
β-Amyloid
Alzheimer’s disease (AD) models focus on one of the proteins
implicated in the pathology of AD, the amyloid-β peptide
(Aβ), as extracellular amyloid plaques containing Aβ appear
in affected individuals. The Aβ peptides arise through cleavage
of the amyloid precursor protein (APP) via the amyloidogenic
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pathway, resulting in different sizes of Aβ, mostly Aβ40 and
Aβ42 (O’Brien and Wong, 2011). The latter is more aggregation-
prone and nucleates plaques in diseased individuals and is
therefore often selected as a model. A GFP-Aβ42 fusion protein
was shown to form aggregates and induced a stress response
(Caine et al., 2007). Toxicity models expressing the Aβ peptide
were established later by targeting Aβ to the secretory pathway
(Treusch et al., 2011; D’Angelo et al., 2013). Expression via an
inducible promoter caused cytotoxicity without extensive cell
death compared to a less toxic Aβ40 peptide control (Treusch
et al., 2011).

Parkinson’s Disease
Alpha Synuclein
Alpha synuclein (aSyn) is a lipid-binding protein and the
main constituent of Lewy Bodies, which are protein deposits
occurring in diseased neurons that are affected by Parkinson’s
Disease (PD) and other disorders. aSyn and derivatives
were first investigated in mammalian cells (McLean et al.,
2001) and later used to develop a PD model in yeast
(Outeiro and Lindquist, 2003). While several PD models
have been established in yeast [reviewed in (Menezes et al.,
2015)], aSyn is the most commonly used model protein.
Expression of aSyn in yeast causes dose-dependent cytotoxicity,
a phenotype reminiscent of what is seen in human cells.
Toxicity can therefore be modified by inducing different levels
of expression by regulatable promoters or by changing plasmid
copy number. As with human cells, aSyn has been reported to
localize mainly to the plasma membrane and partially to the
cytoplasm. However, overexpression causes visible aggregation
of aSyn into cytosolic inclusions (Outeiro and Lindquist,
2003).

Amyotrophic Lateral Sclerosis (ALS)
FUS, TDP-43, OPTN
Mutations associated with amyotrophic lateral sclerosis (ALS)
appear in the proteins SOD1, FUS, TDP-43, and OPTN which
become misfolded and aggregate. Yeast studies have focused on
FUS and especially TDP-43. Both proteins act as DNA/RNA-
binding proteins and are found in neuronal inclusions of
affected individuals. A TDP-43 model in yeast mimics several
disease characteristics. Expression from an inducible plasmid
causes it to form nuclear inclusions, while higher expression
induces mislocalization to the cytoplasm where it forms visible
inclusions (Johnson et al., 2008). These cytoplasmic aggregates
are toxic to the cell. Similarly, FUS models have shown that
expression in yeast is also cytotoxic (Fushimi et al., 2011;
Kryndushkin et al., 2011; Sun et al., 2011). The model protein
forms numerous cytoplasmic aggregates, which co-localize with
and cause formation of RNA processing sites (P-bodies and
stress granules) as observed in human cells (Kryndushkin et al.,
2011). Another protein known to form inclusions in ALS-affected
individuals is optineurin (OPTN). In a recently developed
yeast model, wild type OPTN was shown to be toxic, as were
versions with disease-causing mutations (Kryndushkin et al.,
2012).

QUALITY CONTROL OF HUMAN
DISEASE PROTEINS

The disease proteins summarized above do not require stress
conditions such as heat shock or proteasome inhibition to
induce aggregate formation since they aggregate autonomously.
Therefore, they are most commonly expressed using inducible
promoters (Table 1). Additionally, it should be noted that none
of the human misfolding proteins discussed here have orthologs
in yeast.

The spatial quality control mechanisms handling several
disease model proteins in yeast have not yet been extensively
studied, however, it appears that amyloidogenic proteins in
general are targeted to the IPOD compartment, which has been
shown using Htt mutant proteins (Kaganovich et al., 2008;
Escusa-Toret et al., 2013). The aggregates formed by aSyn are
likely neither localized to JUNQ nor IPOD, as they did not co-
localize with any of the commonly used markers for these quality
control compartments (Outeiro and Lindquist, 2003; Tenreiro
et al., 2014). In contrast to the other disease model proteins,
TDP-43, FUS, and OPTN form non-amyloid aggregates. The
spatial quality control mechanisms involved in the transport and
processing of TDP-43, FUS, and OPTN have not been extensively
investigated in yeast. A study using a mouse cell line concluded
that the inclusions visible for TDP-43 and FUS might be
distinct from several of the known quality control compartments:
aggresome, JUNQ and IPOD (Farrawell et al., 2015). However,
both TDP-43 and FUS have been reported to co-localize and
physically interact in yeast (Kryndushkin et al., 2011), suggesting
involvement of similar spatial PQC mechanisms for both model
proteins. Furthermore, a GFP tagged version of FUS localizes to
the IPOD while OPTN also shows only partial localization to this
quality control site (Kryndushkin et al., 2012). OPTN forms non-
amyloid cytoplasmic aggregates, which are distinct from FUS
and TDP-43 foci, as they do not exclusively co-localize. OPTN
appears to be handled in a unique way by the cell in that a single
focus appears early after induction of expression, while upon
later time points several small additional foci become visible. The
foci only partially overlap with previously characterized model
proteins reported to localize to the IPOD, further indicating that
additional deposition sites may exist in the cytoplasm.

GENERAL CONSIDERATIONS FOR
MODEL SELECTION

When selecting a candidate model misfolding protein, it is
useful to consider what type of misfolding is to be modeled,
the temperature sensitivity, whether a properly folding control
is available, the promoter used for expression and the effects
of the fluorescent tag. The categories are listed in Table 1 and
summarized below.

Yeast vs. Non-yeast
Both mutated yeast proteins and non-yeast proteins have been
used to study spatial quality control in S. cerevisiae. Use of
mutated native proteins, such as the frequently used Ubc9ts, has

Frontiers in Molecular Neuroscience | www.frontiersin.org 8 July 2018 | Volume 11 | Article 249

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-11-00249 July 19, 2018 Time: 16:26 # 9

Schneider et al. Model Misfolding Proteins

the general advantage that it most closely mimics a typical error
during protein production. The yeast spatial PQC machinery
is more likely to properly recognize a misfolded endogenous
protein compared to a non-native protein and it is therefore more
likely to be sequestered to an “authentic” deposition site in the
cell. However, mutated yeast proteins may also cause dominant
negative effects, particularly when overexpressed, for example by
sequestration of native binding partners. Non-native proteins,
particularly those lacking yeast homologs, are less likely to bind
endogenous proteins and can therefore be useful alternatives in
this regard.

Mutant Model
Aberrant folding of proteins in wild-type cells can happen
for several reasons. It is a major consequence of stress,
such as with heat-induced denaturation. It can also be a
consequence of mutations or a result of errors during protein
production. Additionally, changes in expression can also result
in a lack of binding partners necessary for proper folding. Model
misfolding proteins have been engineered or selected to mimic
the misfolding that occurs in these instances so that specific
responses by the PQC machinery can be elucidated.

Temperature-Sensitive vs. Continuously
Misfolding Reporters
Ts substrates are useful as unfolding can be triggered easily and
rapidly by temperature shift so that the immediate response
to unfolded proteins can be studied. In the case of TL
substrates, it also allows decoupling from translation as one can
terminate translation using cycloheximide before temperature
shift. However, this temperature shift will also trigger the general
heat shock response, which upregulates a range of chaperones.
Non-thermolabile proteins do not require this temperature shift;
therefore, while chaperones may be induced in response to the
continuously misfolding substrate, temperature-induced changes
in the levels of molecular chaperones are avoided.

Normally Folding Controls
Negative controls play an important role in studies on PQC
as it is important to assess whether observable effects on PQC
can be actually attributed to the misfolding protein itself and
not to other factors such as their fluorescent tag or dominant
negative effects. Negative controls exist for a subset of the
human disease models. The Huntingtin models expressed in
yeast, Htt103Q or other variants with expanded polyQ stretches,
can be compared to a diffusely distributed cytosolic version,
Htt25Q, which serves as a wild type control. Similarly, there are
comparably less toxic variants of the amyloid beta peptide, which
can be used as controls in some experimental setups. Alpha-
synuclein aggregation depends on the level of expressed protein.
While high expression levels result in aggregation, expression
from a low copy number plasmid leaves the protein localized
to the plasma membrane and the cytoplasm. A similar principle
applies to TDP-43.

Several misfolding proteins can be directly compared to
a wild-type control. For example, Ubc9 is used as a control

for ubc9-2 (Kaganovich et al., 2008). Corresponding wild-type
alleles are also available for guk1-7, gus1-3, pro3-1, and ugp1-
3 (Khosrow-Khavar et al., 2012). Wild-type Gnd1 is used as a
control for the truncated misfolding tGnd1 (Heck et al., 2010).
However, the majority of the continuously misfolding proteins
including VHL, actin(E364K), 1ssCPY∗, and DegAB do not have
obvious normally folding controls.

Promoter
Misfolding substrates have generally been placed behind strong
promoters, such as TDH3, with the intent of overloading the
temporal quality control system in order to easily visualize
aggregates and inclusions. If the model protein of choice is not
obviously cytotoxic, constitutively active promoters are useful in
that they require no change in experimental conditions (such as a
change in carbon source) to induce expression.

Inducible promoters have been commonly used when working
with misfolding proteins that are cytotoxic, such as alpha-
synuclein (Table 1). Thereby, cytotoxic effects of the misfolding
protein can be avoided during strain construction and limited
to the experiment itself. Additionally, inducible promoters can
be useful for misfolding proteins that show a dose-dependent
cytotoxicity, as it is easy to compare cytotoxicity when the
expression of the misfolding protein is tightly regulated. It is also
possible to shut off translation of the misfolding protein at a
specific time point without interfering with translation of other
proteins with agents such as cycloheximide. This is especially
important when the cellular response to any particular misfolding
protein is partially or fully dependent on a functional translation
machinery.

One major limitation of the constitutive and inducible
promoters used for the vast majority of the models covered
in this review, is that they are among the strongest promoters
characterized in S. cerevisiae (Peng et al., 2015). While inclusions
can easily be visualized as a result, the high concentration of
protein can cause toxicity unrelated to protein misfolding. For
example, it can lead to sequestration of native and non-native
binding partners and it may result in transport into non-native
cellular compartments or organelles. Normally folding controls
may mitigate this problem, as they can be used to identify the
abnormal or toxic effects of overexpression.

Fluorescent Tagging
Fluorescent tags should, ideally, minimally affect protein function
and are therefore generally placed accordingly. Practically,
however, the tag will always have some effect regardless of
whether it is placed N-terminally, C-terminally, or at an internal
site. Even though the proteasome can process N-terminally
or C-terminally tagged substrates (Liu et al., 2003), tagging
can stabilize certain mutants (Mikalsen et al., 2005; Khosrow-
Khavar et al., 2012), perhaps due to shielding of the unfolded
domain recognized by the quality control machinery. Tag
location will also determine if the misfolding protein exits
the ribosome before or after folding of the fluorescent tag
can begin, which can affect stability of the model protein or
have an effect on the fluorescent tag itself. In fact, certain
misfolded proteins have been shown to significantly affect GFP
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chromophore formation. This effect was taken advantage of to
develop a protein folding assay (Waldo et al., 1999). In this
study, fluorescence of GFP tagged test substrates correlated with
solubility, indicating that aggregation of their test substrates
affected chromophore formation. Therefore, for any substrate,
it is important to determine whether the fluorescent signal
observed is proportional to the amount of protein present. Along
the same lines, the fluorescent signal may not reflect the presence
of a misfolded protein as the proteasome can degrade it while
leaving the fluorophore intact (Liu et al., 2003). Finally, the tag
itself has been shown to influence toxicity of misfolding proteins.
Tagging affected toxicity of different huntingtin constructs (Jiang
et al., 2017) and the location of the GFP-tag and the design of the
linker on FUS and OPTN was shown to influence toxicity and the
constructs’ aggregation propensities (Kryndushkin et al., 2012).

CONCLUDING REMARKS

Deposition into quality control sites is a common, if not
universal, response to misfolding proteins as these sites have
been described in a wide range of organisms. Model misfolding
proteins have been key tools used in the identification of, and
distinction between, these quality control sites. Importantly, the
use and characterization of a range of different misfolded proteins
in yeast has made it clear that while many are handled similarly,
there are often notable differences. For example, several models
vary in their dependence on the San1 and Ubr1 E3 ubiquitin
ligases for proteasomal degradation, while others do not depend
on the proteasome but are degraded or removed in an undefined
manner (Table 2). Furthermore, human disease models appear
to be even more distinct in their processing. The huntingtin
model, along with other amyloid aggregates, does not obviously

sort to the JUNQ deposition site and ALS model proteins appear
to deposit at sites that are distinct from both the JUNQ and
IPOD. Similarly, aggregates of the Parkinson’s disease model,
aSyn, did not colocalize to these defined sites (Tenreiro et al.,
2014). Taken together, the evidence points toward the existence
of uncharacterized spatial quality control pathways or, at the very
least, modifications of defined pathways that have not yet been
well characterized. Continued use of model misfolding proteins
under varying conditions alone, and in combination, will do
much to further define these spatial quality control pathways that
play such an important role in the maintenance of proteostasis
and prevention of disease progression.
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