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Abstract: The present investigation aims to improve the antimicrobial influence of certain antibacterial
drugs, namely, neomycin (NEO), exploiting the benefits of natural oils such as tea tree oil (TTO).
Therefore, a distinctive nanolipid formulation, namely, a nanoemulsion (NE), was developed using
a Central Composite Factorial Design (CCD) approach depending on the amount of TTO and
tween 80 as surfactant. The optimized NEO-NE formula exhibiting minimum globular size and
maximum in vitro release was selected. For efficient topical delivery, NEO-NE was incorporated
into a pre-formulated hydrogel. The developed NEO-NE-hydrogel was characterized by its physical
characteristics such as pH, viscosity, and spreadability. Next, it was tested for stability under different
conditions for 3 months. Ultimately, an irritation test was conducted followed by an antibacterial
examination. The preparation demonstrated acceptable properties to be successfully applied topically.
It showed non-significant changes in stability in both conditions up to 3 months storage when
compared to a fresh preparation. It exhibited no irritation when applied on hairless animal skin.
Finally, TTO revealed a good inhibition for the bacterial growth that could improve the influence of
NEO antibacterial activity, indicating the efficiency of NE containing NEO prepared with TTO to be a
promising antibacterial nanocarrier.

Keywords: nanoemulsion; tea tree oil; neomycin; optimization; antibacterial; topical delivery

1. Introduction

Skin is one of the mechanical defense systems in the human body that acts as a barrier
against pathogen invasion [1]. However, it can be exposed to microbial infections that
require certain treatments via topical application. The strategy of applying drugs over the
skin and providing their effectiveness directly to the target site is termed a topical drug
delivery system [2]. Topical delivery is a more desirable and convenient strategy than other
routes of administration owing to its great advantages [3], since it can overcome the first
pass mechanism and the problems associated with swallowing [4]. Topical drug delivery
systems can be used for treating a wide variety of disorders where they are available
as analgesic [5], antifungal [6], anti-inflammatory [7], anticancer [8], antioxidant [9] and
antibacterial formulations [10]. Ointments and creams are different conventional dosage
forms that are broadly used topically; however, certain problems could limit their formu-
lation. Mostly, inadequate drug loading capacity, poor spreadability, and certain stability
problems are the most challenging complications. Therefore, it was necessary to overcome
these weaknesses to reach a more comfortable and reproducible activity [11].
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In light of that, an advanced approach termed nanotechnology has critically attracted
attention. Nanotechnology is the science of developing different nanosystems with a
nanoscale range of size, hiding the unrequired properties of active constituents and maxi-
mizing their therapeutic actions [12]. Nanosystems are formed by nanocarriers carrying the
active moiety of the drug. These nanocarriers are numerous, such as liposome, ethosome,
niosome, nanoparticles, and nanoemulsion [13].

Nanoemulsion (NE) is one of the currently settled nanocarriers that are colloidal
systems of tiny globular size and, consequently, large surface area, which can enhance
drug absorption and bioavailability as well [14]. Additionally, NE can offer controlled drug
release and protect the formulation against degradation [15]. NE can be used for delivering
drugs via different ways of drug administration, oral [16], parenteral [17], transdermal [18],
and topical routes [19]. Though, for topical medication delivery, it is more appropriate
for the drug to be incorporated into a more viscous preparation such as hydrogel base
providing the NE-hydrogel base formulation.

From the extensive spread of skin disorders, the prevalence of bacterial infections
has appeared widely and should be handled wisely using antibacterial agents named
antibiotics [20]. Neomycin sulfate (NEO) is one of the antibiotics that has revealed a broad-
spectrum activity against Gram-positive and Gram-negative bacterial strains [21]. It is a
2-deoxystreptamine-containing aminoglycoside antibiotic exhibiting nephrotoxicity and
ototoxicity problems upon long-term treatment, which explains its limited therapeutic
range [22]. Despite that, its use was approved by the United States Food and Drug Ad-
ministration [23]. Meanwhile, it was reported that the toxicity of the antibacterial agents
is greatly minimized upon topical application [24,25]. Therefore, it was recommended
to develop a topical formulation incorporating NEO rather than other routes. However,
NEO was discovered long ago; thus, it could exhibit some kind of bacterial resistance [26].
Several investigations were explored in order to overcome bacterial resistance against NEO
by producing a new derivative and applying structural modification [27,28]. Another strat-
egy focused on combining NEO with other antibacterial agents that provided a superior
influence than each one alone and helped in reducing the burden of bacteria, which is
renowned as a combination therapy [29]. Given that there is a lack in the development of
new antibiotics to face antimicrobial resistance, a combination therapy was an alternative
way of choice for managing such complications that threaten the medicinal field [30].

The best category to be combined with these antibiotics is natural products owing
to their excellent efficacy and safety [7]. Tea tree oil (TTO) is an essential oil of the Aus-
tralian native plant Melaleuca alternifolia, a well-known genus derived from the Myrtaceae
family [31]. With regard to its origin, it is well-known as melaleuca oil. TTO showed a
broad-spectrum activity, namely, antiprotozoal, antifungal, and antiviral effects [32]. In
addition to its antibacterial influence, which can be attributed to its cyclic monoterpenes
structure from which terpoen-4-ol is responsible for such behavior [33], it also exhibits
antioxidant and anticancer activity, which has formerly been proven, in addition to its
established antiseptic and disinfectant influence [34].

In light of the previous facts, our target in the study has been raised. It is an attempt to
formulate NE using TTO containing NEO. As far as we know, this is the first combination
of TTO and NEO into a nanoemulsion formulation intended for topical application. CCD
strategy as a tool for quality by design approach was run employing a 22 full factorial
design to obtain a high-quality product and selected the optimized NE formulation. The
optimized formula was characterized, incorporated into a hydrogel base, and inspected for
its antibacterial activity.

2. Materials and Methods
2.1. Material

Neomycin was obtained from (Sisco Research Laboratories Pvt. Ltd., Taloja, Maharashtra,
India). Tea tree oil was acquired from NOW® Essential Oils (NOW Foods, Bloomingdale,
IL, USA). Diethylene Glycol Monoethyl Ether (Transcutol® P) was bought from Gatte-
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fosse SAS (Saint-priest Cedex-France). Tween 80 and Carboxymethylcellulose Sodium
(NaCMC) were purchased from Sigma-Aldrich Co. (St Louis, MO, USA). Distearoyl
phosphatidylethanolamine-N-[methoxy poly (ethylene glycol)-2000] (PEG-DSPE) was
bought from Lipoid LLC., (Newark, NJ, USA). All other chemicals were of the finest
grade available.

2.2. Designing the Experiment

QbD approach was exploited to maximize the desirable characteristics of the for-
mulations via implementing CCD in which two factors, 2 level (22) factorial design was
constructed. In that design, two independent factors were selected, amount of TTO and
tween 80 with symbols, A and B, respectively. They were inspected at two levels to show
their influence on two different dependent responses, namely, globule size (Y1) and in vitro
release (Y2). The strategy was implemented using Design-Expert version 12.0 software
(Stat-Ease, Minneapolis, MN, USA) since it helps in data interpretation via analyzing the
results using the Analysis of variance (ANOVA) test. The data were illustrated further
by constructing certain modeling graphs such as a 3D response surface plot, one-factor
graph, and perturbation plot. The linearity between the actual and observed response could
be demonstrated by predicted versus actual plot. Moreover, mathematical polynomial
equations provided by the design could as well establish the influence of the nominated
independent factors on the studied response [35].

2.3. Development of NEO-NE

Different NE formulations were prepared using TTO and including NEO; a method
lately reported by Shehata et al. was followed and data were displayed in Table 1 [7].
Fundamentally, the aqueous phase was prepared by dissolving 50 mg of NEO in distilled
water containing a specified amount of tween 80. On the other side, 0.5 g of transcutol®

P and 50 mg of PEG-DSPE were added to a quantified amount of TTO to provide an
oily phase. Together, the two phases were mixed for 10 min at 15,000 rpm using a high
shear homogenizer (T 25 digital Ultra-Turrax, IKA, Staufen, Germany) after adjusting the
volume to 10 mL with distilled water. The formed NE was exposed to sonication for 30 s in
order to obtain a suitable globule size using probe sonicator (XL-2000, Qsonica, Newtown,
CT, USA).

Table 1. Values of all independent factors and their detected dependent responses for different NE
preparations.

Formula Space Type
Independent Variables Response Values

PDI
A (g) B (g) Y1 (nm) Y2 (%)

F1 Factorial 1.5 1 153 ± 2.0 84.8 ± 4.0 0.29 ± 0.062
F2 Axial 1.5 0.75 172 ± 3.0 83.0 ± 3.6 0.32 ± 0.020
F3 Center 2 0.75 227 ± 4.4 70.2 ± 3.2 0.41 ± 0.011
F4 Factorial 1.5 0.5 190 ± 3.6 80.7 ± 4.1 0.34 ± 0.028
F5 Factorial 2.5 0.5 334 ± 4.5 51.0 ± 3.0 0.28 ± 0.029
F6 Center 2 0.75 229 ± 4.6 72.6 ± 3.2 0.39 ± 0.034
F7 Axial 2.5 0.75 310 ± 4.4 54.4 ± 3.7 0.32 ± 0.020
F8 Axial 2 1 206 ± 3.1 73.5 ± 3.1 0.28 ± 0.014
F9 Axial 2 0.5 232 ± 4.2 68.4 ± 2.9 0.30 ± 0.015
F10 Center 2 0.75 223 ± 3.0 71.1 ± 3.1 0.31 ± 0.014
F11 Factorial 2.5 1 287 ± 3.5 57.9 ± 2.8 0.26 ± 0.012

A: amount of TTO; B: amount of tween 80; Y1: globule size and Y2: In vitro release.

2.4. Characterization of Developed NE
Globule Size and Polydispersity Index (PDI) Determination

One of the essential parameters to be evaluated in NE preparation is their globule size
along with the relative size distribution. For that, Zetasizer apparatus (Malvern Instruments
Ltd., Worcestershire, UK) was used for determining the globule size and the corresponding
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PDI of the preparation. Briefly, about 5 µL of each NE was added to 3 mL distilled water in
a disposable cuvette and measured at 25 ◦C [36].

2.5. In Vitro Study

To detect the percentage of NEO released from the preparation, in vitro release study
was conducted using the ERWEKA dissolution system (ERWEKA, GmbH, Heusenstamm,
Germany) as mentioned previously by Almostafa et al. [10]. Briefly, 1 mL of NEO-NE
sample was added into a glass tube hung into the apparatus and closed from one side with
a cellophane membrane (MWCO 2000–15,000). The tubes were suspended into the acceptor
vehicle composed of 500 mL phosphate buffer pH 5.5 and kept at 32 ◦C to mimic the skin
condition. The system was operated and tubes were allowed, rotating at 50 rpm. Samples
of 3 mL were withdrawn from the media at specified time up to 3 h and replaced with the
same volume of fresh media. The withdrawn sample was analyzed at
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max 277 nm using
UV. Spectrophotometer (JENWAY 6305, Bibby Scientific Ltd., Staffs, UK). Experiment was
performed three times for each sample.

2.6. Zeta Potential

The optimized NEO-NE was evaluated for its surface charge by conducting zeta po-
tential measurements using Zetasizer apparatus (Malvern Instruments Ltd., Worcestershire,
UK). A special electrophoretic cuvette was used at which 5 µL of the sample was diluted
with distilled water and checked for their electrophoretic mobility at 25 ◦C [37].

2.7. Development of NEO-NE-Based Hydrogel

Following validation of the optimization, the optimized NEO-NE formulation was
loaded into a pre-formulated hydrogel base in order to facilitate the formulation topical ap-
plication over the skin. Then, 4% NaCMC hydrogel was prepared simply by dispersing the
gelling agent over 10 mL distilled water and keep stirring using magnetic stirrer (Jeio Tech
TM-14SB, Medline Scientific, Oxfordshire, UK) until the homogenous NaCMC hydrogel
base was obtained. The optimized NEO-NE formulation was added to the hydrogel base
and mixed continuously for 5 min using a mixer (Heidolph RZR 1, Heidolph Instruments,
Schwabach, Germany) in receipt of consistent NEO-NE-based hydrogel formulation [38].

2.8. Characterizing the Developed NEO-NE-Based Hydrogel
2.8.1. Visual Examination

Visual inspection of the developed formula is very important, to follow up on the state
of the preparation. Therefore, the developed NEO-NE-based hydrogel formulation was vi-
sually observed for its physical characteristics such as appearance, color, and homogeneity.

2.8.2. pH Measurement

In order to avoid any probable irritation that could happen due to variation in pH
value between the skin and the applied formula, this measurement was performed. pH
value was determined using a standardized pH meter (MW802, Milwaukee Instruments,
Szeged, Hungary) [39].

2.8.3. Viscosity

Viscosity of the topical formulation is essential in evaluating the preparation. There-
fore, appropriate viscosity evaluates the run-off of the formulation as it is better to stay
adhered to the affected area for a longer time [40]. The viscosity of the examined NEO-NE-
based hydrogel formulation was measured utilizing Brookfield viscometer (DV-II+ Pro,
USA) using spindle 63 and worked at 25 ◦C [41].

2.8.4. Spreadability

Spreadability is a critical parameter that has to be validated in any topical formulations
as it greatly affects their viscosity. Proper spreadability gives an assumption about the
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formulation that would spread easily and evenly over the skin. It was conducted by holding
a certain amount of the examined formulation in between two slides made of glass and of
about (25 cm× 25 cm). Specific load, usually 500 g was added over the slides for 1 min. The
spreadability is calculated by measuring the diameter of the spreading formulation [42].

2.9. Scanning Electron Microscopy (SEM)

Morphology of the fabricated NEO-NE-hydrogel formula could be estimated by a
microscopic technique using scanning electron microscopy (SEM), (JSM-6390LA, JEOL,
Tokyo, Japan). Typically, a sample of the formulation was added on slabs, shielded with
gold using a sputter coater, and scanned. Then, the morphology was identified under a
lower vacuum at an acceleration voltage of 10 kV using different magnifications [43].

2.10. In Vitro Release of NEO from Different Developed Formulations

The same method mentioned in Section 2.5 was followed to detect the in vitro release
of NEO from the developed NEO-NE based hydrogel compared to the optimized NEO-NE
formula.

2.11. Kinetic Study

Kinetic studies explain the mechanism by which the drug could be released from
the developed formulation. It could take place by one of the kinetic modeling systems,
namely, zero-order reaction, first-order, Higuchi, and Korsmeyer–Peppas modeling. Each
mechanism illustrates a relation between drug concentration and the time, in a special
way to provide the most fitted model with the highest correlation value R2. Meanwhile,
zero-order kinetics demonstrates a relationship between the drug concentrations against
time, while first-order kinetics clarifies the relation between Log concentrations against
the time. Regarding the Higuchi equation, it illustrated the relationship between drug
concentrations against the square root of time (t0.5). However, if the relation was among
Log concentration against Log time, the model seemed to obey the Korsmeyer–Peppas
equation [44].

2.12. Stability Test

The developed NEO-NE-based hydrogel preparation was checked for its capability
to stay unchanged upon storage in different conditions and for a definite period of time.
The study was performed according to the guidelines of the International Conference
on Harmonization (ICH) to evaluate different criteria of the formulation such as pH,
viscosity, spreadability, and in vitro drug release. The study was conducted after storing
the formulation at 4 ± 1 ◦C and at 25 ± 1 ◦C for a period of 1 and 3 months [45].

2.13. Animal
2.13.1. Animals

Male Wister rats were required for the present investigation from the Experimental
Animal Research Center at King Saud University, Riyadh, KSA; with an average weight of
220–250 g. The rats were housed in an appropriate environmental condition with a 12 h
dark/light cycle and free access to water and food.

2.13.2. Statement of Animal Ethics

Handling of animals and the entire in vivo experiments implemented were performed
in accordance with the regulations of ethical conduct for animal use at King Faisal Univer-
sity. The protocol of the experiment was issued by the Research Ethics Committee (REC) of
King Faisal University approval number (KFU-REC/2022-May–ETHICS17).

2.13.3. Skin Irritation Test

The study provides an indication about the safety of the formulation. Primarily, one
day before proceeding with the test, the hair from the dorsal part of the animal was shaved
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using clippers. The inspected formulation was uniformly distributed over the shaved
area. Rats were kept under observation for 7 days following topical application of the
formulation. Rats were checked for any abnormal signs such as irritation, edema, or
erythema (redness). The reactions were determined by applying a sensitivity scale ranging
as 0, 1, 2, or 3, which represents no reaction, minor, moderate, and severe erythema with or
without edema, respectively [46].

2.14. Microbiological Study

A microbiological examination was conducted to determine the antibacterial activity
of the NEO-NE-based hydrogel using the disk diffusion method. The study was carried
out using different bacterial strains provided by the American Type Culture Collection
(ATCC). Consequently, Bacillus subtilus (ATCC 10400), Staphylococcus aureus (ATCC 29213),
Klebsiella pneumoniae (ATCC 10013), and Escherichia coli (E. coli) (ATCC 25922) were used
in the study as representative microorganisms. Simply, a disk of about 12 mm diameter
was made by a sterile cork borer in a Petri dish containing Moller–Hinton Agar, which is a
media for bacterial culturing. Small amounts of the preparation were added in each disk
in order to evaluate the inhibition zone made by NEO-NE-based hydrogel and blank NE,
compared with NEO solution as a control. The experiments were carried out in triplicate
for each bacterium with a mean value ± SD and the plates were incubated for 24 h at 37 ◦C.
Afterward, the zone of inhibition was measured in each plate and recorded.

2.15. Statistics

Results were regarded as significant when p value being < 0.05. All studies were
performed in triplicate. To compare results between two groups, Student’s t-test was
followed. Analysis of variance (ANOVA) followed by the least significant difference (LSD)
as a post hoc test was conducted when comparing between groups. The analysis was
carried out using SPSS statistics software, version 9 (IBM Corporation, Armonk, NY, USA).

3. Results
3.1. Model Fitting and Statistical Data Analysis

As displayed in Table 1, 11 experimental formulations were generated by CCD explain-
ing the influence of TTO and tween 80 amounts as independent variables on the globule
size and in vitro release responses. The formulations were divided into four factorial, four
axial, and three central points. The constructed design offered a statistical analysis of the
data, which is very necessary for model identification. It was observed that the quadratic
model was the best fitting one for both responses as it possessed R2 values of 0.9957 and
0.9976 for Y1 and Y2, respectively. Regarding the model F-value, it was 229.65 and 415.48
for both Y1 and Y2, respectively, indicating that model is significant as seen in Table 2.
Additionally, p-values of Y1 and Y2 are less than 0.05, signifying that the model terms
A, B, and A2 are significant. The lack of Fit F-value is another parameter that should be
non-significant in order to fit the model. In the current design, the Lack of Fit was 4.27
and 0.0278 with corresponding p-values of 0.1955 and 0.9920 for Y1 and Y2, respectively,
denoting non-significant values.

Table 2. Statistical analysis of responses.

Source
Y1 Y2

F-Value p-Value F-Value p-Value

Model 229.65 <0.0001 * 415.48 <0.0001 *
A 1042.77 <0.0001 * 1975.05 <0.0001 *
B 72.91 0.0004 * 70.53 0.0004 *

AB 0.9038 0.3854 3.20 0.1337
A2 31.44 0.0025 * 25.20 0.0040 *
B2 1.11 0.3413 0.1973 0.6755

Lack of Fit 4.27 0.1955 0.0278 0.9920

A, amount of TTO (g); B, amount of tween 80 (g); Y1, globule size (nm); Y2, In vitro release (%); *, significant
p < 0.05.
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3.2. Characterization of Developed NEs
3.2.1. Effect of Variables A and B on Y1

The globule size of the formulation is a valuable parameter to be evaluated [47]. As
presented in Table 1, the globule size of all NE formulations appeared to range from
(153 ± 2.0 to 334 ± 4.5). With careful observation of the results, it was perceptible that
the larger globule size of NE was obtained upon using a higher amount of TTO due to
an increase in the dispersed phase [48]. Contrariwise, a smaller globule size of NE was
attained upon using a higher amount of tween 80 while keeping the TTO amount constant.
This could be accredited to using a higher amount of surfactant would lower the interfacial
tension at the interface of the NE and, consequently, alter the probability of forming
aggregates, keeping the globules small [49]. In addition, a higher amount of surfactant
helps in maintaining the kinetic stability of the NE. The effect of both independent variables
A and B on the globule size can be further illustrated by the following mathematical
equation.

Y1 = 224.789 + 69.3333 A − 18.3333 × B − 2.5 AB + 18.5263 A2 3.4736 B2

From this equation, it is clear that the positive sign in front of factor (A) indicates its
matching synergistic influence on the Y1 response; however, the negative sign appearing
anterior to factor (B) implies an opposite influence on the same response. For extra clarifica-
tion of the result, some graphical depictions were created such as an all-factor graph, as
seen in Figure 1a, where the globule size was revealed to be increased by increasing the
TTO amount, while in Figure 1b, it was noticed that there was a diminishing in the globule
size by increasing the tween 80 amount.
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As well, it was listed in Table 3, the values of adjusted and predicted R2 for the Y1
response were 0.9913 and 0.9633, respectively. Both values seemed to be very near to
each other, too close to 1, and the difference between them is less than 0.2, indicating
that they were extremely correlated and fit the model. In addition, the value of adequate
precision (45.1400) is presumed to be greater than four, which is desirable and could
navigate the design.



Life 2022, 12, 1011 8 of 18

Table 3. Regression analysis and fit model summary statistics for the final suggested model that
maximize the Adjusted and the Predicted R2.

Dependent
Variable Source R2 Adjusted R2 Predicted R2 SD Adequate

Precision Remark

Y1

Linear 0.9674 0.9593 0.9321 11.39 - -
2FI 0.9682 0.9546 0.8773 12.03 - -

Quadratic 0.9957 0.9913 0.9633 5.26 45.1400 Suggested
Cubic 0.9984 0.9945 0.8636 4.19 - -

Y2

Linear 0.9823 0.9779 0.9654 1.68 - -
2FI 0.9839 0.9769 0.9419 1.72 - -

Quadratic 0.9976 0.9952 0.9949 0.7827 58.4163 Suggested
Cubic 0.9977 0.9922 0.9918 0.9966 - -

3.2.2. Effect of Variables A and B on Y2

The second dependent variable that was evaluated is the in vitro release experiment
to outline the amount of NEO released from the developed NE formulation over a period
of 12 h. It was obvious in Table 1 that the percentage of NEO released varied between
51 ± 3.0 and 84.8 ± 4.0%. These results disclosed that increasing the TTO amount from 2.5
to 3.5 g would result in a relative decrease in the formulation in vitro release pattern. The
reason behind this returned to the globule size, whereas a higher amount of oil leads to
a larger globule size with a corresponding small surface area that allowed the release of
a small percentage of the drug from the formulation [49]. Contrariwise, the data showed
that by applying the same amount of oil, the in vitro release would be enhanced by using a
higher amount of surfactant. The developed mathematical equation could also verify the
action of the independent variables A and B on the response of Y2. It was obvious from
the equation that the negative impact of variable A on Y2 was confirmed with the negative
sign; however, the direct positive effect was explained by the positive sign. The following
is the mathematical equation generated by the design:

Y2 = 71.2474 − 14.2 A + 2.68333 B + 0.7 AB − 2.46842 A2 − 0.218421 B2

Furthermore, the effect of variables A and B on Y2 was certified through particular
model graphs designed by CCD, such as the all-factor graph, as exemplified in Figure 2.
The influence of decreasing the in vitro release by increasing the TTO amount is displayed
in Figure 2a, while Figure 2b displays the increase in that response upon increasing variable
B. Moreover, the data shown in Table 3 present the value of the predicted and adjusted
R2 (0.9949 and 0.9952), respectively, which were close to each other with a difference of
less than 0.2, which means that they were in a reasonable agreement with each other.
This would emphasize the linear correlation between actual and predicted values. In
addition, the adequate precision value was 58.4163, indicating that such a model could
navigate the design space. It was stated that an adequate precision ratio greater than four
is desirable [50].

3.3. Optimization and Validation of Variables

The process of optimizing the formulations depends on certain criteria related to the
independent variables and their responses. Likewise, the optimization process depends
on numerical optimization and the model graphs generated by the design software. The
independent variables were adjusted to be in range; however, the dependent responses
were oriented to provide the minimum globule size and the maximum in vitro release.
Accordingly, a number of solutions were produced with corresponding desirability func-
tions. The highest desirability value was (0.995) proposing the amount of TTO to be 1.5 g
and that of tween 80 to be 1 g. Figure 3A shows a 3D plot for the overall desirability that
investigated the desirable response, and Figure 3B illustrates the desirability for combined
optimization. Based on the previous suggested data, a new formula that was expected to
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be the optimized one was formulated and the resultant responses were compared to the
predicted values. Remarkably, the predicted and the observed values were very close to
the extent that recommends the formula to be optimized, as displayed in Table 4.
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Table 4. Predicted and observed values of the optimized NEO-NE formulation.

Independent Variable Symbol Criteria

Amount of TTO A In range
Amount of tween 80 B In range

Dependent response Predicted values Observed values

Y1 (nm) 154.675 ± 5.25 161.3 ± 3.2
Y2 (%) 84.743 ± 0.78 82.63 ± 2.41

3.4. Zeta Potential

Zeta potential is a very important parameter to be evaluated for detecting the stability
of the formula. According to Figure 4A, the zeta potential of the optimized NEO-NE was
determined and found to be 0.201, which leans towards neutral. The rationale behind this
retuned to modifying the surface of the NE preparation with a hydrophilic polymer such as
PEG-DSPE. This modification caused the overall charges on the surface of the formulation to
be reduced since PEG helps to increase the hydrophilicity of the formula and, subsequently,
prevent the clumping of their globules, providing higher stability [51]. This came in
accordance with numerous investigations that supported the electrical neutrality of PEG
and its role in improving the stability of the nanosystems [52,53]. Therefore, our findings
propose the physical stability of the NEO-NE formulation that could be confirmed through
stability testing. Furthermore, the globule size of the optimized NEO-NE was detected to
be 161.3 ± 3.2 with relative PDI 0.145, as seen in Figure 4B.
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3.5. Characterizing the Developed NEO-NE-Based Hydrogel

Based on the former data obtained, and for achieving a more efficient topical prepara-
tion, the optimized NEO-NE formulation was incorporated into a pre-prepared hydrogel
formulation. The NE and hydrogel base were mixed together via gentle stirring until
NEO-NE-hydrogel was attained and kept for the next studies.

3.5.1. Visual Examination

The prepared NEO-NE-hydrogel was evaluated visually for its final appearance and
found to be consistent and homogenous without phase separation.

3.5.2. pH Measurement

The pH of the developed hydrogel base formulation was 6.34 ± 0.18, which seemed
to be in great similarity with human skin pH, which guarantees its safety upon topical
application [54].
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3.5.3. Viscosity

NEO-NE-hydrogel preparation was examined for the viscosity parameter. It was
14,680 ± 1045.9 cP. The result was satisfactory in regard to topical formulations and seemed
to be consistent and would not run off easily when applied over the skin [55].

3.5.4. Spreadability

Spreadability measurements were implemented to assess how easily the formulation
would spread upon application. It is 55.7 ± 1.5 mm, which is adequate for any topical
preparation [7].

3.6. SEM

The surface morphology and shape of the developed NEO-NE-hydrogel formulation
were visualized utilizing SEM apparatus, as is apparent in Figure 5. It was distinguished
from SEM analysis that the hydrogel base appeared as a network through which dis-
crete spherical vesicles were dispersed without aggregation, suggesting the nanoemulsion
preparation.
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3.7. In Vitro Release of NEO from Different Developed Formulations

The release of NEO from the prepared NE hydrogel formulation was investigated over
6 h; comparable to NEO released from NE itself, and the outline of the release was depicted
in Figure 6. It was observed that the percentage of NEO released from NE was 82.6 ± 2.8%,
which is greatly higher than that released from NE hydrogel (62.5 ± 5.1%). It is well known
that the presence of a gelling agent in the formulation plays a key role in the viscosity of
the formulation and the in vitro release as well [56]. Highly viscous formulations regularly
exhibited a lower percentage of drug release [57]. It is highly noted that the NEO-NE-
hydrogel formulation demonstrated higher viscosity when compared to the NEO-NE
formulation as a result of integrating NaCMC. Interestingly, while NEO-NE revealed better
in vitro release behavior, the NE-hydrogel formulation still being more recommended for
topical application since it demonstrated good physical properties adequate for topical
preparations [58].
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Figure 6. In vitro release of NEO from NEO-NE and NEO-NE-hydrogel in phosphate buffer pH 5.5
at 32 ◦C. Results are expressed as mean ± SD of three experiments.

3.8. Kinetic Study

Different kinetic modeling was investigated in order to specify the mechanism by
which NEO was released from NEO-NE and NEO-NE-hydrogel. In view of this, and as
portrayed in Table 5 and Figure 7, it was clear that NEO release from NEO-NE formulation
obeyed Higuchi kinetic modeling, since it provided the most linear correlation along with
the highest value for R2, 0.9989. The release of the drug from the formulations is said to
follow Higuchi kinetic modeling, once the diffusion of the drug is from lipid matrix type
and under a controlled process [59,60]. On the other hand, the kinetic of NEO release from
hydrogel base formulation is best explained by Korsmeyer–Peppas kinetic since it was a
diffusion mechanism. This model provided the greatest R2 value (0.9856) when compared
to the values of other models. It is well known that Korsmeyer–Peppas kinetic refers to the
drug release from a polymer system such as a hydrogel base [61].

Table 5. Different kinetic modeling for demonstrating NEO release from NE and NE hydrogel-based
formulations.

Kinetic Model NEO-NE NEO-NE-Hydrogel Base

Zero-order kinetic (R2) 0.9533 0.9765
First-order kinetic (R2) 0.8548 0.9409

Higuchi kinetic (R2) 0.9989 0.9533
Korsmeyer–Peppas kinetic (R2) 0.9924 0.9856

3.9. Stability Test

The stability of the preparation is a highly required parameter to be investigated for
determining the ideal storage condition and assuring the overall quality of the product [62].
The stability of NEO-NE-hydrogel formulation was conducted by storing at two different
conditions for a period of 1 and 3 months, as shown in Figure 8. It was highly obvious that
a non-significant difference was detected in the formulation upon storage at 4 ± 1 ◦C and
at 25 ± 1 ◦C for the whole specified time of storage in terms of all examined parameters
(p < 0.05). The previous outcomes could be returned to comprising PEG-DSPE in the
formulation as a stabilizer.
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3.10. In Vivo Study
In Vivo Skin Irritation Test

Rats treated with NEO-NE-hydrogel were checked for any irritation that could be
noticed on their skin. Notably, no irritation, erythema, or edema was distinguished on
the examined area throughout the whole investigation, which confirmed the safety of the
formulations.

3.11. Microbiological Study

The efficiency of NEO-NE-hydrogel formulation against certain Gram-positive and
Gram-negative bacteria was evaluated by performing the disk diffusion method. The
study was conducted using different formulations, namely, NEO-NE-hydrogel, blank NE-
hydrogel, and NEO solution. It depends on measuring the inhibition zone diameter caused
by the examined formulation against the bacteria, as shown in Figure 9 and Table 6. It was
highly noted that there was a significant antibacterial effect detected by NEO-NE-hydrogel
against the cultured bacteria, Bacillus subtilis, Staphylococcus aureus, klebsiella pneumonia, and
E-coli. This is actually because the inhibition zone diameter caused by NEO-NE-hydrogel
formulation was significantly higher than that caused by blank NE-hydrogel and NEO
solution (p < 0.05). It was worth mentioning that the blank NEO-NE formulation containing
TTO exhibited a considerable inhibition for the bacterial growth, which was definitely owed
to the antibacterial behavior of the TTO. The antimicrobial activity of TTO against a wide
range of bacteria was previously confirmed [33,63] and presumed to be principally due to
its main content, terpinen-4-ol [64]. With regard to our findings, the greater antimicrobial
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activity revealed by the NEO-NE-hydrogel formula could be attributed to combining NEO
and TTO, which resulted in the enhancement of the antibacterial activity of NEO.
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Table 6. Microbiological activity of examined formulations counters to different bacterial strains.

Inhibition Zone
Diameter (cm)

Bacterial Type

Bacillus subtilis Staphylococcus
aureus

klebsiella
pneumoniae E. coli

NEO-NE-hydrogel 4.42 ± 0.13 * # 4.26 ±0.11* # 4.54 ± 0.11 * # 4.38 ± 0.11 * #

Blank NE-hydrogel 2.86 ± 0.12 * 3.09 ± 012 * 3.02 ±0.14 * 2.95 ± 0.13 *
NEO solution 4.14 ± 0.11 # 4.01 ± 0.11 # 4.29 ± 0.12 # 4.12 ± 0.12 #

Values are expressed as mean ± SD, n = 3. * (p < 0.05) compared to blank NE-hydrogel; and # (p < 0.05) compared
to NEO solution.
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4. Conclusions

In the present study, the effectiveness of neomycin as an antibacterial drug was en-
hanced via integrating it into a nanoemulsion prepared using Tea tree oil. A number of
formulations were developed using Quality by Design technology based on tea tree oil
and tween 80 amounts as independent variables. The influence of these factors on the
globule size and in vitro release was investigated to determine the optimized formula.
The optimized NEO-NE was incorporated into the gel formulation for convenient topical
application. The developed hydrogel formulation showed good physical characteristics
to be suitable for topical application. The formulation was stable over 3 months and did
not show any sign of irritation. Tea tree oil prominently exhibited a considerable antibac-
terial activity that improves the action of NEO in inhibiting bacterial growth. Decisively,
the nanoemulsion combined with a hydrogel base can be suggested as a topical drug
delivery system.
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