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Abstract: Epigenetics is a kind of heritable change that involves the unaltered DNA

sequence and can have effects on gene expression. The regulatory mechanism mainly

includes DNA methylation, histone modification and non-coding RNA regulation. DNA

methylation is currently the most studied aspect of epigenetics. It is widely present in

eukaryotic cells and is the most important epigenetic mark in the regulation of gene

expression in the cell. DNA methyltransferase inhibitors (DNMTi) have been increasingly

recognized in the field of cancer immunotherapy, have been approved for the treatment of

acute myeloid leukaemia (AML) and are widely being used in clinical trials of cancer

immunotherapies. DNMTi promote the reactivation of tumour suppressor genes, enhance

tumour immunogenicity, and stimulate a variety of immune cells to secrete cytokines that

exert cytotoxic effects, promote tumour cell death, including macrophages, natural killer

(NK) cells and CD8+ T cells, and upregulate major histocompatibility complex (MHC) class

I expression levels. Here, we mainly summarize the epigenetics related to DNMTi and their

regulation of the antitumour immune response and DNMTi combined with immuno-ther-

apeutics or histone deacetylase inhibitors to demonstrate the great development potential and

clinical application value of DNMTi.
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Introduction
In recent years, the epigenetic therapies used in cancer have made significant

progress, mainly due to the rapid development of genome-wide high-throughput

sequencing technology. Investigators can use sequencing technology to detect all

changes in gene expression associated with epigenetic modifications, and these

technologies are rapidly translating into tools for cancer treatment and prevention.1

Epigenetic regulation of genes can modulate gene expression, the alterations of

which can be used by tumour cells to disrupt immunogenic and immune recognition

mechanisms, thereby acquiring an immune escape phenotype.2–5

Immune escape is an important factor in the development and evolution of

tumours.6 One of the most effective escape strategies adopted by cancer cells is

disruption of the antigen presentation process. Epigenetic silencing affects almost

all antigen processing and presentation processes.7 The important role of epige-

netics in tumour immune escape provides a solid theoretical foundation for the use

of epigenetic-related drugs to improve the immune targeting of tumour cells.

Some studies have found that tumour epigenetic drugs can improve the antitumour

immune response, and DNA methyltransferase inhibitors (DNMTi) can upregulate the
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expression level of MHC class I molecules, increase the

presentation level of tumour-associated antigens, and ulti-

mately enhance the immunogenicity of tumours by removing

DNA hypermethylation modifications in the promoter region

of MHC class I molecules.8,9 DNMTi can induce the expres-

sion of tumour-associated antigens and regulate the activity

of immune cells to improve the antitumour immune

response. In this review, we introduce epigenetic and DNA

methyltransferase inhibitors and summarize the effects of

DNMTi on regulating antitumour immunity and improving

the efficacy of immunotherapy.

Tumour Epigenetics And DNA
Methylation
Epigenetics can regulate gene expression by abnormally

modifying and controlling the spatial structure of genomic

DNA sequence and participates in the process of tumorigen-

esis and development. These epigenetic abnormalities are

reversible because they do not alter the properties of the

genomic DNA sequence, thus providing a basis for epige-

netic therapy in cancer. DNA methylation usually refers to

the addition of a methyl group to the base of a DNAmolecule

by the action of DNA methyltransferases (DNMTs), most

commonly provided by S-adenosyl methionine (SAM), and

the hydrogen at the 5ʹ position of cytosine is replaced by a

methyl group to become 5-methylcytosine.10,11 DNAmethy-

lation, which exists widely in eukaryotic cells, is the most

important epigenetic mark for regulating gene expression.

DNA methylation plays a key role in gene silencing, X

chromosome inactivation, genome stability, and imprinting,

and it is a chromatin modification that has been extensively

studied.12–14 (Figure 1 summarizes the components of epi-

genetic modulation.)

Abnormalities in DNA methylation play an important

role in processes such as cancer initiation, progression,

invasion, and metastasis.15–17 The relationship between

DNA methylation and cancer was first discovered in

1983: DNA methylation levels in cancer cells have been

found to be significantly reduced genome-wide.18

Detection of genome-wide hypomethylation levels in per-

ipheral blood has been reported in many tumorigenic dis-

eases; for example, in patients with brain tumours, gastric

cancer, liver cancer, and breast cancer, the genome-wide

DNA in peripheral blood is hypomethylated.19 The main

cause of reduced methylation levels in cancer cells is

demethylation of repetitive sequence regions of the

Figure 1 Basic composition of epigenetics.

Notes: Epgenetics includes: DNA methlation, histone modification, chrosome remodeling, gene imprint, non-coding RNA.The changes of DNA methylation in tumors are

manifested in the decrease of global methylation level of the genome and the increase of methylation level of CpG islands in the promoter regions of some genes.
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genome.20 However, it has been shown that both low and

high levels of DNA methylation coexist in cancer cells.

Low levels of DNA methylation are associated with the

activation of proto-oncogenes, which leads to genomic

instability, while high levels of DNA methylation silence

the promoters of tumour suppressor genes, which results in

the inactivation of tumour suppressor genes.21,22

Studies have shown that the proportion of methylated

CpG islands in clear cell renal cell carcinoma (ccRCC)

and papillary renal cell carcinoma (pRCC) is as high as

31%23 and 7%24 respectively. The WNT pathway is one of

the key pathways in cancer. Through this pathway, the

expression of its downstream target, β-catenin, is sup-

pressed, and the expression of some proto-oncogenes is

inhibited.25 Therefore, inhibiting the activity of DNMTs

and blocking the hypermethylation of DNA in cancer cells

can inhibit the growth of tumour cells or kill tumour cells,

which may stimulate new ideas for cancer therapy.26 The

study of DNMTi has also become a hot topic in cancer

drug development.

DNA Methyltransferase Inhibitors
The two most classic drug classes used in epigenetic

therapy are DNMTi and histone deacetylase inhibitors

(HDACi).27 DNMTs are key enzymes that catalyse DNA

methylation, mainly DNMT1, DNMT3A, and DNMT3B.

These three enzymes catalyse the formation of 5mC from

cysteines in DNA CpG islands and ultimately suppress

gene expression.28 DNMTi constitute a class of cytidine

analogues that are divided into two classifications; in one

class, a nucleotide analogue binds to DNA to form a

covalent complex that promotes the degradation of

DNMT.29 In the other class is the non-nucleotide analogue

DNMTi, which binds directly to the methylated region of

the DNMT.30 Representative nucleic acid analogues are

decitabine (DAC) and azacitidine (AZA). They are cur-

rently approved by the US Food and Drug Administration

(FDA) and the European Medicines Agency (EMA) for

the treatment of acute myeloid leukaemia (AML), chronic

myelomonocytic leukaemia (CMML), and myelodysplas-

tic syndromes (MDS).31–33 Due the severe cytotoxicity

induced by these drugs, several research teams have suc-

cessively found that such drugs can exert their demethyla-

tion-related antitumour effects only at low doses, a finding

that has pioneered epigenetic therapy.34 Non-nucleoside

analogues such as procainamide, SGI-110 and quinazoline,

propiophenone, pyrrolopyridine derivatives, and other

similar drugs are still under development.35

DNMTi can restore the expression activity and func-

tion of tumour suppressor genes by inhibiting the activa-

tion of DNA methylation, thereby inhibiting the growth of

tumour cells and inducing their apoptosis; thus, DNMTi

can be used as potential anticancer drugs in cancer

therapy.36–38 Further studies39 found that, although

DNMTi exhibit great clinical promise in blood-borne

tumours, they are less effective as treatments for solid

tumours. Compared with first-generation DNMTi, sec-

ond-generation DNMTi such as SGI110 were confirmed

to have greater stability and to induce less toxicity in

normal tissues in vivo.40,41 For example, SGI-1027 is a

novel small molecule inhibitor of DNMT42,43 that does not

inhibit DNMT activity by binding to either RNA or DNA

but rather achieves demethylation by inducing the degra-

dation of DNMT. Targeting DNA hypermethylation using

nucleoside analogues is an effective way to reprogramme

the epigenome of cancer cells, thereby inhibiting cancer

cell proliferation, promoting cancer cell differentiation,

enhancing immune system recognition of cancer cells,

and ultimately leading to cancer cell death, providing a

new theoretical and experimental basis for the future appli-

cation of demethylation drugs in the treatment of cancer.

(Common DNA methyltransferase inhibitors and their

mechanisms of action are summarized in Table 1.)

DNA Methyltransferase Inhibitors
Regulate Tumour Immunity
The interaction of anticancer drugs with the host immune

system has been implicated in therapeutic response.44 The

major histocompatibility complex (MHC) class I is at the

core of antigen presentation, and the expression of MHC

class I molecules in tumour cells is often inhibited by irre-

versible mutations or reversible hypermethylation, resulting

in downregulation.45 DNMTi can upregulate MHC class I

levels in a variety of cancer tissues, as has been demonstrated

in breast, lung, colon, and thyroid histotypes, as well as in

human papilloma virus (HPV)-related cancers, sarcomas,

and gliomas,46–50 and they promote the release of inter-

feron-γ from tumour-specific cytotoxic T lymphocytes

(CTLs), which kill target cells.51 In addition, similar results

have been observed in ovarian cancer cells and xenograft

melanoma models.52 In addition to promoting MHC class I

expression in tumour cells, DNMTi can also induce the

expression of tumour-associated antigens. Experiments

have shown that DNMTi can upregulate almost all antigen

processing and presentation machinery components in
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mouse and human tumour cells, including the expression

level and intra-tumoural distribution of the tumour-asso-

ciated antigens (TAA) and LMP2 and LMP7 proteasome

subunits. In addition, DNMTi can also improve the costimu-

latory properties of tumour cells by upregulating the expres-

sion of surface molecules such as CD40, CD80, CD86, and

ICAM1, as well as by restoring the sensitivity of tumour cells

to the apoptosis triggered by immune cells using the

enhanced expression of death-inducing receptors such as

FAS.53–56 After treatment with AZA, non-small cell lung

carcinoma (NSCLC) cells showed significantly enhanced

expression of antigen presentation-related genes and inter-

feron signalling; additionally, the apoptosis rate and the viral

defence protein and immune-related transcription factor

expression levels were significantly increased.57,58

Cancer-testis antigens (CTAs) constitute a family of anti-

gens that are closely related to tumour development. CTAs

are expressed in testis, placenta and tumour tissues and are

mainly regulated by DNA methylation levels. DNMTi are

able to promote the overexpression of CTAs by tumour cells,

thereby assisting host CTL in distinguishing tumour cells

from healthy cells while being able to upregulate the levels

of multiple oncogenes of various CTAs, including the extre-

mely immunogenic oesophageal squamous epithelial

tumour-testis antigen 1B (CTAG1B/NY-ESO1), thereby

intensifying the antigen presentation process.59 Elevation in

CTA level can be found in most cancers,47,48,60 such as

mesothelioma,61 renal, oesophageal, pleural, and liver

cancers.62 In addition, the hypomethylating agent SGI-110

was found to induce hypomethylation and CTA gene expres-

sion and enhance the expression of MHC I and intercellular

cell adhesion molecule 1 (ICAM-1).63

Rouloisan et al found that DNMTi activates the classical

IFN signaling pathway in ovarian cancer cell lines,which

activates the cytosolic dsRNA sensors TLR3 and MDA5

through an increase in dsRNA, thereby inducing IFNB and

JAK/STAT signalling. One RNA that triggers this response

is transcribed from hypermethylated endogenous retro-

viruses (ERVs).64 The involvement is similar for dsRNA

and MDA5 sensors in colon cancer cells, and the canonical

IFN response is critical for the suppression of colon cancer

stem cells by DNMTi.65 Decitabine can activate the

NOTCH1 signalling pathway, which in turn inhibits cancer

cell proliferation and affects the immune system in patients

Table 1 Representative DNA Methyltransferase Inhibitors

Therapeutic

Agent

Nth Generation Drug Name Mechanism Of Action

Nucleosides First-generation Azacitidine It is involved in the synthesis of RNA or DNA at high concentrations

Inhibition of DNMT blocks methylation.

Decitabine At high concentrations it can lead to blocked DNA synthesis and

cytotoxicity; at low concentrations it leads to changes in gene expression

profiles.

Second-generation Guanosine decitabine It enhances stability in the aqueous phase, improves resistance to cytidine

deaminase (CDA) degradation, and prolongs half-life

Zebularine It forms a covalent complex with DNMT to inhibit DNA methylation

Non-nucleoside First-generation Procainamideandprocaine It binds tightly to CpG island dense regions of DNA,thereby interfering with

the binding of DNMT to DNA.

RG108 Non-covalent binding to the DNMT1 active site to achieve a block to DNA

methylation.

EGCG It binds non-covalently to the catalytic active site of DNMT to inhibit the

methylation catalytic activity of DNMT.

MG-98 Acts on the mRNA of DNMT1 and radically inhibits the expression and

synthesis of DNMT1.

SGI110 The constitutive methylation level of the CTA promoter in cancer cells

treated for treatment induction was significantly reduced

SGI1027 Induction of Degraded DNMTs for Demethylation.
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with muscle-invasive bladder cancer.66 DAC and AZA not

only kill targeted cells directly through their cytotoxic

effects but also affect antigen presentation in blood cells:

on the one hand, DAC promotes the expression of MHC

class I and II molecules for the treatment of chronic lym-

phocytic leukaemia (CLL);67 on the other hand, AZA is

used for the treatment of Hodgkin lymphoma (HL), which

can generate more abundant antitumour T cells than are

generated in patients treated with HDACi, indicating that

AZA can effectively activate the antigen presentation

process.68

DNA Methyltransferase Inhibitors
Are Regulators Of Immune Cells
Maturation and activation of immune cells are regulated at

the epigenetic level. From the onset of lineage formation,

immune cells are regulated by DNA methylation.69 (The

regulation of immune cells by DNMTi is summarized in

Figure 2.) For example, epigenetic changes are closely

associated with lymphocytes, macrophage polarization,

myeloid-derived suppressor cell function, and regulatory

T cell (Treg cell) development and function.70–73 The

effects of DNMTi on multiple immune cell functions are

addressed below.

CD8+ And CD4+ T Cells
The generation of memory T cells against cancer-specific

neoantigens is a key factor in achieving sustainable responses

to immunotherapy. Memory Tcells are usually multipotent T

cells that maintain long-term plasticity and survival. In con-

trast, effector Tcells have limited survival times; they heavily

depend on the presence of antigen but are prone to exhaustion

after prolonged exposure to antigen. The lineage of effector

Figure 2 The regulation of DNMTi on immune cells.

Notes: While enhancing the cytotoxicity of CD8 + T cells, DNMTi can assist CD4 + T cells by inducing the expression of key immunostimulatory cytokines. DNMTi inhibits

the expression of Treg cells; it can inhibit M1 and promote M2 to regulate macrophages. Promotes KIR expression on NK cell surface, binds to MHC class I molecules to

recognize abnormal cells, and increases NKG2D-dependent NK cell-mediated killing of these cells in vitro.
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or memory T cells is tightly regulated by histone

modification-promoting memory gene silencing or DNA

methylation.74,75 The role of DNA methylation in T cell

status is as follows: in terms of their developmental trajec-

tory, CD8+ T cells can be broadly classified as “naive” prior

to exposure to antigen and, following exposure to antigen, as

“effectors” that mount a response against cells bearing the

cognate antigen.76 Sustained expression of some checkpoint

inhibitors, such as PD-1 and TIM3, and exhaustion markers,

which deplete T cells, is associated with specific epigenetic

profiles.77,78

Interestingly, pretreatment with DNMTi rejuvenates

tumour-infiltrating CD8+ T cells and reverses drug resis-

tance in an ICB-resistant model.79 DNMTi are capable of

promoting CTL action by mediating the transcription of

antitumour cytokines. In non-proliferating T lymphocytes,

interleukin 2 (IL2) transcription has been closely linked to

the enhanced effects of demethylation at the promoter,

specifically in the enhancer region of IL2.80 When CD8+

T cells are exposed to antigen, the IL2 locus is significantly

demethylated, which results in the expression of large

amounts of IL2.81 In immature CD8+ T cells, there are

three highly methylated CpG islands in the upstream reg-

ulatory sequence of IFN-γ; in effector T lymphocytes, these

three CpG islands are demethylated, enabling T cells to

produce large amounts of IFN-γ. In addition, in memory T

cells, these sites are partially methylated and rapidly

demethylated upon certain types of stimulation. These phe-

nomena suggest that DNMTi enhance the function of CTLs

by mediating demethylation to enhance and maintain the

expression levels of IL2, IFN-γ, and other antitumour cyto-

kines during tumour immunity. DNA methyltransferase 1

(DNMT1)-mediated DNAmethylation inhibits tumour pro-

duction of the T helper 1 (TH1)-type chemokines CXCL9

and CXCL10, which in turn affect the transport of effector T

cells to the tumour microenvironment.82 These processes

further define the pathway by which epigenetic therapy may

remodel the TME to induce an antitumour state.

Epigenetic therapy with HDACi and DNMTi has been

demonstrated to regulate the expression of the chemokine

CCL5 by reducing Myc levels,83 possibly through the

demethylation of gene bodies,84 and a key requirement

for an immune response driven by CD8+ T cells is antigen

presentation via MHC class I. Without this step, binding

between the TCR and the cognate antigen on the CD8+ T

cells cannot occur. Differences in chromatin accessibility

also distinguish dysfunctional T cells from functional

memory T cells, suggesting that epigenetic programmes

also mediate cellular exhaustion.77 CD4+ T cells comprise

a diverse family of helper T cells with opposing activities

against tumour cells: Th1 CD4+ T cells have antitumour

properties, whereas Th2 CD4+ T cells have pro-tumori-

genic function.85 The functional relevance of the epige-

netic pathways involved in the differentiation and

maturation of cell subsets remains unclear, and it has

been found experimentally that CD4+ T cells isolated

from 68 patients with MDS were able to secrete large

amounts of IL17 after AZA treatment.86 Furthermore, the

number of IL17A-secreting CD4+ T cells in the peripheral

blood of AML and MDS patients was significantly

increased after AZA treatment.87 These results suggest

that DNMTi can enhance the cytotoxic effect of CD8+ T

cells and help CD4+ T cells by inducing the expression of

key immune-stimulatory cytokines.

Regulatory T Cells
Regulatory T cells (Treg cells) can be divided into natural

regulatory T cells (nTerg cells) and inducible regulatory T

cells (iTreg cells), according to different sources, and they

can be divided into resting Tregs (rTreg cells), activated

Tregs (aTreg cells) and cytokine-secreting Treg cells,

according to different functions.88–90 As regulatory T

cells in cancer immunosuppression-implants for anticancer

therapy, Treg cells are characterized by the expression of

the FOXP3 transcription factor, which plays an essential

role in immune suppression.91,92 Epigenetic modification,

as an important way to regulate FoxP3 gene expression,

plays an important role in its stable expression, including

through DNA methylation and histone phthalation.93 It

was found that the number of Tregs was significantly

reduced in the AZA-treated group compared with the

control group after AZA treatment using peripheral blood

samples from 68 MDS patients containing regulatory T

cells (Treg), indicating that DNMTi can inhibit the expres-

sion of Treg cells.94

Macrophages
As heterogeneous innate immune cells, macrophages have

important theoretical research and clinical application pro-

spects. M1 macrophages display antitumour phagocytic

properties, whereas M2 macrophages have pro-tumori-

genic properties.95 These dual roles have also been

described in tumours.96 Experimentally, it has been found

that DNMT3b is aberrantly expressed in obese mice, caus-

ing an increase in DNA methylation in the promoter

region of peroxisome proliferator-activated receptor
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gamma 1 (PPARγ1, a nuclear receptor and a key transcrip-

tion factor involved in M2 polarization whose promoter

region is rich in CpG and prone to epigenetic regulation),

which suppresses its expression, leading to restricted

macrophage polarization to M2 and chronic inflammation

in adipose tissue; knocking down DNMT3b shows the

opposite trend.97 It has also been shown that DNMT1

causes an increase in the methylation level of the suppres-

sor of the cytokine signalling 1 (SOCS1) promoter,

enabling its continual suppression. After DNMT1 silen-

cing using the DNMT inhibitor 5-azadC, the degree of

methylation in the promoter region of the SOCS1 gene

was reduced, thereby blocking the LPS-induced activation

of the JAK2/START3 pathway in macrophages and redu-

cing the pro-inflammatory phenotype.98 Thus, the use of

DNMTi targeting DNMT can be used to control the pro-

inflammatory M1 phenotype and promote an anti-inflam-

matory M2 response. In summary, the effects of reducing

M1 and promoting M2 can be achieved by applying

HDACi and DNMTi alone or in combination. This finding

lays the foundation for the future discovery and applica-

tion of new epigenetic modifying drugs. These examples

support epigenetic strategies that may allow modulation of

the state of macrophages and thus antitumour immunity.

Myeloid-Derived Suppressor Cells

(MDSCs) And Dendritic Cells (DCs)
The important function of various myeloid cells, including

MDSCs and DCs, is antigen presentation, and their antitu-

mour potential is largely determined by their ability to acti-

vate T cells. Maturation of DCs is also controlled by

chromatin regulators, such as special AT-rich binding protein

1 (SATB1), which regulates MHC class II expression and

modulates its antitumour potential.99 Epigenetic modifiers,

such as HDACi and DNMTi, have been shown to directly

increase MHC II and costimulatory molecule (CD40 and

CD86) expression in peripheral MDSCs from breast and

lung cancer patients.100–102 The percentage of MDSCs in

the tumour microenvironment and spleens of mice bearing

TRAMP-C2 prostate cancer cells or TC1/A9 primary lung

epithelial tumour cells was significantly reduced after the

mice were subcutaneously injected with AZA, and the num-

ber of cyclophosphamide-induced MDSCs in the mice accu-

mulated with increasing doses of AZA. The percentage of

CD11b+/Gr1+ MDSCs was significantly reduced and

accompanied by an increase in the percentage of CD11c+

and CD86+/CD8+ DCs after AZA treatment in vitro cultured

tumor-infiltrated CD11b myeloid cells. indicating that

DNMTi could partially induce MDSCs to differentiate into

dendritic cells (DCs);100 thus, DNMTi can inhibit the nega-

tive regulatory cells of tumour immunity.

NK Cells
Killer cell immunoglobulin-like receptors (KIR) on the

surface of NK cells recognize abnormal cells by binding

to MHC class I molecules. In the tumour microenviron-

ment, modification of the DNA regulatory sequences of

KIR by hypermethylation is a common tumour escape

mechanism. Therefore, promoting the expression of KIR

using DNMTi would be an effective approach for cancer

immunotherapy.103 Some studies104 have shown that the

development and function of immune cells are regulated

by DNA methylation. Different concentrations of the

DNMT inhibitor decitabine on NK cells affect cell viabi-

lity, proliferation, cytotoxicity and activation performance.

Demethylation agents can be used to treat acute myeloid

leukaemia (AML) by modulating NK cell activity. NK

cells directly kill tumour cells, and in the presence of

IFNγ, NK cells are usually activated and are relatively

more cytotoxic.105 Although DNA methylation is an epi-

genetic mechanism regulating KIR expression in NK cells,

the effects of hypomethylating agents on NK cell function

have not been well characterized. Decitabine has been

shown to increase cell surface expression of recombinant

UL16 binding protein (ULBP)106 and MHC class I-related

molecule B (MICB)107 in AML cells, increasing natural-

killer group 2 member D (NKG2D)-dependent sensitivity

of these cells to NK-mediated killing in vitro. When

applied to NK cells under non-proliferative conditions, 5-

azacytidine increases KIR expression, which results in

reduced NK cytolytic activity,108,109 whereas decitabine

was shown to improve the responsiveness of human NK

cells in vitro. However, it has been found that low-dose

decitabine in tumour-bearing mice reduced the antitumour

response of NK cells.110 How DNMTi affect NK cell

activity requires further basic experimental studies in the

future.

DNMTi: Contributor To Cancer
Immunotherapy
Epigenetic therapies show advantages when used in con-

cert with novel immunotherapies. In a phase I dose-escala-

tion experiment of 5-AZA-CdR in 12 patients with

recurrent epithelial ovarian cancer, Odunsi et al observed
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increased T cell responses in most patients.111 The mRNA

expression of testicular cancer antigens involved in NK

and T cell signalling and recruitment, immune checkpoint

blocking molecules, immunostimulatory cytokines, and

genes involved in the interferon pathway was higher

after treatment with guadecitabine(SGI-110) and DAC

compared with the immunomodulatory effects of AZA

treatment.112 In addition, this combination reduced the

number of MDSCs, indicating that the immunomodulatory

effects of DNMTi may be useful for immunotherapy.113 In

melanoma, 5-azacytidine can induce specific double-

stranded RNA production for host viral defence mechan-

isms, upregulate the transcription of interferon-β and ele-

vate malignant cell sensitivity to CTLA-4 inhibitors.114

However, in the melanoma B16 mouse model, low-dose

5-azacytidine with anti-CTLA4 showed the same effect in

controlling tumour growth in vitro and in vivo.64 5-AZA-

CdR has been reported to regulate the expression of CTA

and class I human leukocyte antigen (HLA), thereby

improving tumour cell immunogenicity.115 5-AZA has

been found to upregulate PD-L1 in EOC and NSCLC

cell lines and can activate cytosolic dsRNA sensing in

colorectal cancer, ultimately activating the viral/IFN

response,65,116 which demonstrates that DNMTi can

induce cancer cells to behave as virus-infected cells and

trigger dsRNA sensing. Importantly, improved viral

defence pathway signalling levels correlate with improved

immune checkpoint inhibitor treatment response and long-

term survival of cancer patients.117 SGI-110 has been

found to reactivate ERVs to stimulate cancer cell immune

response pathways, which provides the rationale for com-

binatorial therapy with immune checkpoint therapies.118

Figure 3 Advantages of Combining DNMTi with immune checkpoint inhibitors.

Notes: T cell stimulation is driven by antigen and requires the coordinated engagement of several other receptors and molecules expressed on the T cell surface as well as

antigen-presenting cells (APCs) or tumor cells. DNMTi can inhibit different signaling pathways involved in adaptive immune responses and enhance antitumor effects by

combining with immune checkpoint inhibitors.

Dan et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2019:1210910

http://www.dovepress.com
http://www.dovepress.com


(The advantages of combining DNMTi with immunother-

apy are summarized in Figure 3).

Notably, DNMTi-resistant patients were found to have

elevated levels of PD-L1, PD-L2, and CTLA-4. The com-

bination of DNMTi and PD-1/PD-L1 inhibition may solve

the problem of resistance to AZA or DAC. Regarding the

addition of immune checkpoint therapy to a small number

of patients with advanced NSCLC who progressed after

low-dose DNMTi therapy, approximately 20% of patients

responded to immune checkpoint therapy, did not progress

at 24 weeks, and, in general, achieved a standard

response,113 which was a surprising result. In a single-

centre trial of azacitidine in combination with nivolumab

in relapsed/refractory acute myeloid leukaemia (AML),

the overall response rate (ORR) to treatment was 33%,

including 15 (22%) complete responses, 1 partial response,

7 haematologic improvements maintained for > 6 months,

and 6 patients (9%) with stable disease for > 6 months, and

the response rate and OS results of the azacitidine and

nivolumab regimens were also encouraging.119 In addition,

a randomized clinical trial compared pembrolizumab plus

azacitidine with pembrolizumab plus placebo in patients

with advanced non-small cell lung cancer, but no signifi-

cant difference in PFS was observed.120 When idarubicin,

cytarabine and nivolumab are used to treat newly diag-

nosed AML or high-risk MDS, the median relapse-free

survival time of the responders was 18.54 months, and

the median overall survival time was 18.54 months. The

rationality of the combined medication has been shown,

and the study is still in progress (NCT02464657). We

expect positive clinical results.121 At present, clinical

experimental data from the use of DNMTi combined

with immunotherapy are limited, and such studies are

still in progress. The advantages of combination therapy

have been initially shown, but there are still some uncer-

tainties. This makes us wonder whether the sample size is

too small to show experimental deviation. What is the best

time to use combination drugs? Are there any other poten-

tial therapeutic molecular biomarkers? DNMTi combined

with immunotherapy still presents many challenges, and a

large number of preclinical or clinical experiments are

required.

DNMTi Combination HDACi
Therapy
Histone deacetylase inhibitors (HDACi) induce cell

cycle arrest, differentiation and cell death in cancer

cells, reduce angiogenesis, and modulate the immune

response.122 The activity of HDACs can affect the

expression of MHC (major histocompatibility complex)

and co-stimulatory molecules.123,124 Histone acetylation

may play an important role in regulating T cell devel-

opment, differentiation, and cell function125 and, in

combination with DNMTi, can also increase the

response of antitumour CD8+ T cells.126 Class I/IIa

HDACi combination enhances class I MHC cell surface

expression and the expression of co-stimulatory mole-

cules CD40 and CD86 in tumour cells.127,128 In addi-

tion, we found that class II HDACi enhance Treg cell

number and function, and class I HDAC inhibitors

enhance the function of NK cells and CD8 T cells.129

However, the molecular mechanisms by which HDACi

regulate genes involved in immune recognition are not

fully understood. Upregulation of MAGE-A gene in

cancer cells by 5-AZA-CdR/TSA combination has been

reported.130 While the use of a combination of decita-

bine/HDAC inhibitors can induce an increase in CTA

and PD-L1 expression, the results suggest that the CTA

expression and the epigenetic regulation of PD-L1 may

be correlated. In the future, anti-PD-1/PD-L1 combina-

tion therapy with decitabine and HDACi will be con-

sidered to overcome the possible induction of PD-L1

expression. DAC and HDACi (panobinostat or valproic

acid) downregulate the expression of epigenetic modi-

fiers (e.g., KDM2B and SUV39H1) when used in com-

bination to treat acute myeloid leukaemia cells.131 These

findings are beneficial for understanding the mechanism

of action in combined epigenetic drug therapy.

In a randomized clinical study in which 184 patients

with HR-MDS or CMML were randomly assigned to

AZA ± vorinostat or AZA monotherapy with a median

follow-up of 23 months, the ORR was 38% in patients

treated with AZA monotherapy compared with 27% in the

AZA plus vorinostat arm,132 showing no advantage.

Panobinostat in combination with AZA was used for pre-

viously untreated AML or high-risk MDS, and 27.5% of

patients treated with PAN + AZA were in CR, compared

with 14.3% of patients receiving AZA, but there was no

significant difference in the 1-year OS rate.133 AZA plus

pracinostat improved OS compared with AZA monother-

apy. In contrast, AZA monotherapy in HR-MDS patients

showed no improvement in overall patient survival after

treatment with VS AZA plus pracinostat.134 It remains

unclear whether the combination of HDACi and HMA is

beneficial in patients with MDS and AML. In addition,
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studies have demonstrated that the addition of vorinostat

does not improve the efficacy of azacitidine in the treat-

ment of acute myeloid leukaemia; when 217 adults with

AML were randomly selected to receive AZA monother-

apy or AZA plus vorinostat (VOR), there was no improve-

ment in overall response rate or overall survival.135 There

is still some uncertainty regarding HDACi combined with

DNMTi, which we intend to further explore in the future.

Summary
Research on DNMT inhibitors has become a hot topic in

the field of anticancer drug research. Recently, some

DNMT inhibitors were in the preclinical and clinical

research evaluation stage, and their inherent cellular toxic

side effects limited the clinical application of demethylat-

ing drugs. Big data show that DNMTi can effectively

stimulate the expression of the major histocompatibility

complex (MHC), significantly improve the immunogeni-

city of tumours, and enhance the killing of tumours by

effector T cells. Preclinical studies have confirmed that

both decitabine and azacitidine promote the expression of

genes involved in the immune system,9,136 and DNMTi

can regulate a variety of immune cells, such as lympho-

cytes, NK cells, macrophages, dendritic cells and so on.

DNA methyltransferase inhibitors are expected to play an

important role in cancer immunotherapy. However,

DNMTi modulation of immune cells is closely related to

the state of cell activity, and the drug dose and regulatory

mechanism need to be further elaborated in basic

experiments.

In addition, the combination of methylase inhibitor

and immune checkpoint inhibitor has initially shown

advantages, and the combination of these with HDACi

is uncertain. Currently, the experimental clinical data on

combined drugs are lacking, and the clinical sample

sizes are small; therefore, the findings cannot be gener-

alized. Further research is needed. We found that

DNMTi are also synergized with other classes of epige-

netic drugs. For example, dual inhibition of DNMT and

LSD1 was shown to synergistically reactivate epigeneti-

cally silenced genes in cancer cells.137 DNMTi are also

used in combination with isocitrate dehydrogenase

(IDH) inhibitors, lenalidomide (LEN), nucleoside analo-

gues sapacitabine, venetoclax, and other combinations to

treat tumours.138 Do these novel therapeutic strategies

also have an impact on the body’s antitumour immu-

nity? Ways they may be applied more widely in the

clinical treatment of cancer are directions for follow-up

research. More epigenetic drugs will be approved for

marketing in the next few years. Such emerging drugs

are expected to inject new vitality into the treatment of

cancer and have bright prospects for development.
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