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Abstract
Molecular and cellular interactions among spinal dorsal horn neurons and microglia, the resident macrophages of the central
nervous system, contribute to the induction and maintenance of neuropathic pain after peripheral nerve injury. Emerging evidence
also demonstrates that reciprocal interactions between macrophages and nociceptive sensory neurons in the dorsal root ganglion
contribute to the initiation and persistence of nerve injury-induced mechanical hypersensitivity (allodynia). We previously reported
that sensory neuron-derived colony-stimulating factor 1 (CSF1), by engaging the CSF1 receptor (CSF1R) that is expressed by both
microglia and macrophages, triggers the nerve injury-induced expansion of both resident microglia in the spinal cord and
macrophages in the dorsal root ganglion and induces their respective contributions to the neuropathic pain phenotype. Here, we
review recent research and discuss unanswered questions regarding CSF1/CSF1R-mediatedmicroglial andmacrophage signaling
in the generation of neuropathic pain.
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1. Introduction

Persistent pain, including neuropathic pain, has a profound social and
economic impact on society.26 A particularly active area of research
into the mechanisms that contribute to the transition from acute to
chronic pain after peripheral nerve injury focuses on the interactions
between neurons and immune cells in both the central and peripheral
nervous system.2,52 Microglia and macrophages, which are, re-
spectively, the principal immune cells in the central nervous system
(CNS)27 and peripheral nervous system,83 rapidly expand after
peripheral nerve injury. Furthermore, many recent studies demon-
strated that complex molecular and cellular interactions between
microgliaandspinaldorsal hornneuronscontribute to thedevelopment
of neuropathic pain after peripheral nerve injury.25,27 Cross-talk
betweenmacrophages and nociceptive sensory neurons in the dorsal
root ganglion (DRG) has similarly been implicated in the initiation and
persistence of nerve injury-induced mechanical hypersensitivity, a
hallmark of the neuropathic pain phenotype.5,41 With an

understandable interest in identifying the cellular basis of injury-
induced expansion of immune cells, we recently reported that sensory
neuron-derived expression of colony-stimulating factor 1 (CSF1) after
nerve injury triggers theactivationof both residentmicroglia in thespinal
cord16 and resident macrophages in the DRG80 through binding the
CSF1 receptor (CSF1R) that is expressed by these cells. Here, we
review recent research advances and discuss several unanswered
questions regarding CSF1/CSF1R signaling and the regulation of
microglia and DRG macrophages. Of particular interest are male–
female differences that underlie a profound dimorphism in the immune
cell contribution to nerve injury-induced neuropathic pain.

2. CSF1 and its receptor, CSF1R

CSF1, also known as macrophage colony-stimulating factor (M-
CSF), was the first isolated growth factor that stimulates the
differentiation of bone marrow hematopoietic stem cells/progenitors
into the macrophage lineage.68 Other CSFs were subsequently
discovered. These include CSF2, also known as granulocyte-
macrophage colony-stimulating factor (GM-CSF), which stimulates
granulocyte and macrophage colony formation, and CSF3, also
known as granulocyte colony-stimulating factor (G-CSF), which
stimulates granulocyte colony formation.43 Further studies demon-
strated that CSF1 also activates cultured primary microglia.60 The
translational relevance of these findings was significantly increased
after the discovery of a natural mutation, in osteopetrotic (op) mice, of
the gene that encodesCSF1 (Csf1).79Microglia density is significantly
reduced in multiple brain regions of op/opmice,11,33 which suggests
that CSF1 is an essential contributor to the development and/or the
maintenance of microglia in the CNS.

The receptor targeted by CSF1, CSF1R, is a member of the
type III protein tyrosine kinase receptor family.24 An early
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immunohistochemistry (IHC) study reported that CSF1R pro-
tein is expressed in microglia in the brain and spinal cord,55

and a later study in Csf1r-GFP reporter mice found that the
Csf1r gene, in the brain, is expressed in microglia, but not in
neurons, astrocytes, or oligodendrocytes.10 Subsequent
study found that the Csf1r gene is expressed in microglia at
an early embryonic stage in the yolk sac and that expression of
the Csf1r gene is sustained throughout microglia develop-
ment.11 The CSF1R is also critical for microglia development;
microglia are almost completely absent in Csf1r mutant
mice.10,11 Moreover, maintenance of adult microglia requires
CSF1R signaling; pharmacological inhibition of CSF1R in the
adult largely eliminates microglia.9

Somewhat surprisingly, perhaps, the microglia deficit in Csf1r

mutant mice is far more severe than what occurs in Csf1 mutant
op/op mice.11 This finding suggests that CSF1 is not the sole
ligand for microglial CSF1R. In fact, interleukin-34 (IL-34) is a
second cognate ligand of CSF1R.39 Interestingly, the IL-34 gene,
Il34, is expressed at much higher level and in broader regions of
adult brains than Csf1.45,74 As for the Csf1 mutant op/op mice,
Il34mutant mice also have a lower microglia density in the adult,
but again, not as profound as the deficit that occurs in Csf1r
mutant mice.14,73 Unlike CSF1, whose only target is the CSF1R,
IL-34 can also bind receptor-type protein-tyrosine phosphatase
z, a cell surface chondroitin sulfate proteoglycan that is expressed
in multiple brain regions.44

3. De novo induction of CSF1 in sensory neurons

Spinal microglia activation has long been considered a significant
contributor to neuropathic pain after peripheral nerve injury.4

Insight into mechanisms that lead to the neuropathic pain
phenotype, however, came from the appreciation that nerve
damage does not always lead to spinal cord microglia activation.
Thus, although injury to the peripheral axonal branch of primary
sensory neurons reliably produces spinal dorsal horn microglia
activation, denervation produced by dorsal rhizotomy, namely
transecting or ligating the central branch of the peripheral nerve
(dorsal root), between the DRG and spinal cord, produces much
less dorsal horn microglia activation.7,40 This critical distinction
led to the suggestion that injured sensory neurons must send
signals to the dorsal horn of the spinal cord to activate microglia.

Searching for this signal, we performed RNA sequencing (RNA-
Seq) of ipsilateral andcontralateral DRGand lumbardorsal horn from
naive mice and frommice 7 days after sciatic nerve transection. Our
experiments were designed to identify potential communication
signals between the DRG and spinal dorsal horn, signals that might
be the trigger formicroglial activation.16We found that theCsf1gene
was among the most highly enriched genes in the DRG ipsilateral to
the peripheral nerve injury and that the gene encoding the CSF1
receptor,Csf1r, washighly enriched in the ipsilateral dorsal horn after
the injury. Quantitative RT-PCR (qRT-PCR) confirmed the Csf1
induction in the ipsilateral DRG and demonstrated that the induction
occurs within 1 day after nerve injury, and it persists for at least 3
weeks after the injury. Interestingly, although Il34 is expressed in the
DRG, its expression did not change after nerve injury. Finally, by in
situ hybridization and IHC, we demonstrated that both Csf1mRNA
andCSF1 protein are induced in ATF3-positive, ie, axotomizedDRG
neurons of all diameters, and that all the sensory neurons
immunoreactive for CSF1 protein coexpress ATF3. On the other
hand, we found that ;80% of the ATF3-positive DRG neurons are
CSF1(1) 1 day after nerve injury, and the percentage of CSF1
coexpressed ATF3-positive DRG neurons drops to;40% 3 weeks
after nerve injury. Whether it persists for longer periods is not clear.

Most importantly, to determine whether newly synthesized, sensory
neuron-derived CSF1 protein is transported to the lumbar dorsal
horn,we ligated the L4andL5dorsal roots at the timeof sciatic nerve
transection. Although this is a difficult experiment, with immunohis-
tochemistry, we found that CSF1 protein accumulates at the
proximal end of the ligature, which suggests that CSF1 protein is
indeed transported through the dorsal root to the spinal cord.

In parallel studies, the Noguchi laboratory investigated
expression of the CSF family in the DRG.48 These authors found
that Csf1 and Il34, but neither Csf2 nor Csf3, are expressed in rat
DRG. Similar to our findings, they found thatCsf1 is induced in the
DRG 1 day after spared nerve injury (SNI) and persists for at least
to 14 days, whereas the expression of Il34 does not change. By in
situ hybridization, they demonstrated that Csf1 mRNA is
expressed in few DRG neurons in naive rat, but in ;40% of
small,;43%ofmedium, and;60%of largeDRGneurons 2 days
after SNI. By comparison, they found that ;58% of all DRG
neurons are ATF3 (1) at the same time point after the nerve injury.
By combined in situ hybridization and immunostaining, they
found that ;96% of Csf1 mRNA (1) DRG neurons coexpress
ATF3, whereas;63% of ATF3 (1) DRG neurons coexpress Csf1
mRNA 2 days after the injury. The in situ hybridization study also
showed that Il34 mRNA is expressed in non-neuronal cells that
surround the DRG neurons and that its expression is not
influenced by the injury.

Recent studies provided further evidence for the induction of
the Csf1 gene and CSF1 protein in injured sensory neurons, in
both the mouse and rat SNI models. Importantly, these studies
recorded upregulation of Csf1 gene that persisted for at least 6
weeks after the injury.47,75 Of note, Csf1 gene induction is not
limited to the SNI neuropathic pain model. For example, Csf1
gene is upregulated in the rat DRG 7 to 14 days after chronic
constriction injury (CCI),47,69 and CSF1 protein is induced in
;55% ATF3(1) DRG sensory neurons 7 days after the surgery.47

The Csf1 gene is also upregulated in trigeminal ganglion 21 days
after infraorbital nerve CCI.34 Interestingly, although the Csf1
gene is induced in DRG after CCI in both male and female
animals, the Csf1 induction in female animal is greater.34,69 In a
mouse model of lumbar disc degeneration, CSF1 protein is
induced in L3 CGRP-expressing DRG neurons 2 weeks after L3/
L4 disc puncture.77 Moreover, facial tissue injury, without
apparent injury to the facial nerve, can induce Csf1 gene
expression in ATF3 (1) trigeminal ganglion sensory neurons.46

Finally, a single-cell sequencing study of DRG neurons recently
demonstrated that Csf1 induction in injured DRG neurons is
reduced when the Atf3 gene is deleted from sensory neurons,57

suggesting that ATF3 is at least partially responsible for Csf1

induction after nerve injury.
On the other hand, there are reports that CSF1 can be induced

in sensory neurons without concurrent ATF3 induction. That
finding suggests that frank nerve damage may not be required.82

For example, high-frequency stimulation (100 Hz, 10 V) of the
mouse sciatic nerve, which induces long-term potentiation in the
dorsal horn of the spinal cord and long-lasting mechanical
hypersensitivity, induces Csf1 gene and CSF1 protein in sensory
neurons without obvious nerve damage, although at much lower
levels than what occurs in the SNI model.82 Even stimulation of
cultured DRG neurons with 40 mM KCl for 24 hours can increase
CSF1 protein production in the culture medium.82

4. Contribution of CSF1 to neuropathic pain

To investigate the function of neuronally induced CSF1 to
neuropathic pain, we deleted Csf1 genes from DRG sensory
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neurons by crossing Csf1fl/fl mice18 with Adv-Cre mice84 and
monitored nerve injury-induced behavior. We found that mice in
which Csf1 was deleted from sensory neurons do not develop
mechanical hypersensitivity in the SNI model. We concluded,
therefore, that sensory neuron-derived CSF1 is required for the
development of neuropathic pain behavior.16 Importantly, de-
leting Csf1 from sensory neurons is remarkably selective in its
influence on the mice. We found no changes in baseline
mechanical sensitivity, formalin-induced inflammatory pain be-
havior, response to noxious heat stimulation, motor activity, or
body weight of the animal.16 Focusing on the downstream
consequences of CSF1 induction, we next examined the effects
of intrathecal injection of CSF1. By itself, intrathecal CSF1 protein
provokes a significant mechanical hypersensitivity in mice,16 a
finding independently confirmed by other groups, in both the
mouse and rat.48,78,82 Based on these results, we conclude that
intrathecal CSF1 is sufficient to induce pain behavior. Consistent
with this conclusion, althoughAdv-Cre; Csf1fl/fl mutantmice fail to
develop mechanical hypersensitivity after nerve injury, in these
mice, intrathecal CSF1 protein nevertheless provoked significant
mechanical hypersensitivity.16 This finding indicates that CSF1 is
sufficient to induce the neuropathic pain phenotype.

Interestingly, in a pain model in which mechanical hypersen-
sitivity is induced by 10 V, 100-Hz high-frequency stimulation of
the mouse sciatic nerve, without causing obvious injury to DRG
sensory neurons, intrathecal injection of CSF1 antibody blocks
the development of mechanical hypersensitivity.82 Local appli-
cation of CSF1 antibody onto the spinal cord section also blocks
the high-frequency stimulation-induced long-term potentiation in
the spinal cord dorsal horn.82 Based on these diverse findings, we
conclude that induction of CSF1 in sensory neurons is a
necessary contributor to the neuropathic pain phenotype after
peripheral nerve injury, even in conditions in which frank nerve
damage is avoided.

5. CSF1 activates spinal cord microglia and induces
pain behavior through CSF1R expressed in microglia

AsCSF1protein is transported from theDRG to the spinal cord,16 it
is clearly of interest to determine the cell type acted upon by CSF1
in the spinal cord. A variety of studies are consistent with previous
reports that the CSF1 receptor, CSF1R, is expressed only in
microglia, not in neurons, astrocytes, or oligodendrocytes in
brain.10 The confirmation came from studies inCsf1r-GFP reporter
mice, in situ hybridization, and IHC,which all demonstrated that the
Csf1r gene and CSF1R protein are expressed in spinal cord
microglia of both mouse and rat, and that it is upregulated in the
lumbar cord after various nerve injuries, puncture of lumbar disc, or
high-frequency stimulation of the sciatic nerve injury.16,48,77,82

Moreover, deletion of Csf1 from sensory neurons prevents nerve
injury-induced microglia activation,16 suggesting that sensory
neuron-derived CSF1 is required for microglia activation after
nerve injury. Finally, intrathecal injection of CSF1 protein activates
microglia and induces several key microglia marker genes that are
upregulated after peripheral nerve injury,25 including Itgam
(encoding CD11b), Cx3cr1, Bdnf, and Ctss (encoding CatS).16

The latter result is significant because it indicates that CSF1, by
itself, is not only sufficient to trigger mechanical hypersensitivity but
also to activate spinal cord microglia.

The significance of the CSF1-CSF1R connection to the nerve
injury-induced neuropathic pain phenotype is most strongly
supported by antagonist studies. For example, intrathecal CSF1
injection-induced mechanical hypersensitivity can be blocked by
minocycline,16 a nonselective microglial inhibitor. Furthermore,

inhibition of CSF1R with GW2580, a selective CSF1R antagonist,
administered either before or immediately after nerve injury,
significantly suppressed the early phase of SNI-inducedmechanical
hypersensitivity in the rat. On the other hand, when it was
administered 12 days after SNI,48 GW2580 was without effect on
the late phase of the mechanical hypersensitivity, even though
neuronal CSF1 expression in the DRG remains elevated at this
time.47 Taken together, these studies suggest that signaling through
CSF1R is an important contributor to the initiation, but not to the
maintenance of the neuropathic pain phenotype after nerve injury.
This conclusion is also consistent with the fact that microglia
activation is most prominent in the early phase after peripheral nerve
injury,28 and that the effect of minocycline is also limited to the early
phase of the nerve injury-induced mechanical hypersensitivity.54

6. A microglial DAP12/TREM2 pathway contributes
to neuropathic pain

Unclear, of course, is the mechanism through activation of
microglia influences dorsal horn pain transmission circuits. In fact,
even the signaling pathways downstream of microglial CSF1R
that are engaged in the setting of nerve injury are not fully
understood. Our own studies provided evidence for a necessary
contribution of DNAX-activating protein of 12 kDa (DAP12, even
though a type I transmembrane polypeptide that contains an
immunoreceptor tyrosine-based activation motif.36 DAP12,
which plays a central role in microglia signaling transduction,20

is engaged downstream of CSF1R in bone marrow-derived
macrophages.49 Given its relevance to microglial signal trans-
duction, we hypothesized that DAP12 also participates in CSF1-
induced and nerve injury-induced pain. Several studies, in fact,
support this hypothesis. For example, Tyrobp gene, which
encodes DAP12 protein, is induced in the lumbar spinal cord
after intrathecal CSF1 injection,16 in dorsal horn microglia after L4
spinal nerve injury,31 as well as in microglia in the hypoglossal
nucleus after XIIth nerve injury.32 DAP12 protein is also
upregulated and phosphorylated in lumbar spinal cord microglia
after peripheral nerve injury.31 Most importantly, we and others
found that nerve injury and intrathecal CSF1-induced microglia
gene upregulation and neuropathic pain behavior are prevented
or reduced in DAP12 knockout mice,16,31 which suggests that
DAP12 lies downstream of CSF1R in themicroglia that contribute
to nerve injury-induced neuropathic pain.

Other studies suggest that DAP12 is engaged in association
with TREM2, the triggering receptor expressed on myeloid cells 2
protein, a well-established modulator of microglia function.42,71 As
for DAP12, Trem2 gene is induced in dorsal hornmicroglia after L4
spinal nerve injury,31 and activation of TREM2 by intrathecal
injection of a TREM2 agonist antibody activates spinal cord
microglia and induces mechanical hypersensitivity.31 Interestingly,
the TREM2 activation-induced microglial gene upregulation and
pain behavior is DAP12-dependent.31 In addition, inhibition of
TREM2 with a neutralizing antibody significantly attenuates
chemotherapy-induced neuropathic pain behavior.21

7. Contribution of CSF1-CSF1R to maintenance and
self-renewal of spinal microglia

Microglia originate from yolk sac and migrate into developing brain
and spinal cord early in embryonic development.11,62 In the adult,
microglia maintain their population by a self-renewal process,
without a contribution of peripheral monocytic cells.64 Consistent
with that process, recent studies concluded that circulating
monocytes do not contribute to the expansion of lumbar cord
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microglia after peripheral nerve injury. Of particular interest, our qRT-
PCR study demonstrated that althoughmicroglia specific genes are
upregulated, peripheral monocyte specific genes could not be
detected in the lumbar cord after sciatic nerve injury.16 Similarly,
studies in a CCR2 reporter mouse, which marks a gene that is
exclusively expressed in peripheralmonocytes,59 found no evidence
for infiltration of peripheral monocytes into the spinal cord after nerve
injury.15,17,31 And most interestingly, parabiosis studies, in which 2
mice are surgically joined to share circulating blood cells,76

confirmed that there is no peripheral monocyte infiltration to the
spinal cord after nerve injury.17,70 Taken together, these results
overwhelmingly demonstrate that proliferative self-renewal of micro-
glia, rather than monocyte infiltration, underlies the microglia
expansion that occurs in the spinal cord after peripheral nerve injury.

Not surprisingly, perhaps, we also established that sensory
neuron-derived CSF1 is critical to the spinal cord microglia
proliferation after nerve injury. Deleting Csf1 from sensory
neurons, or intrathecal injection of the CSF1R inhibitor,
GW2580, greatly reduces nerve injury-induced microglia pro-
liferation in the spinal cord,16,48 while intrathecal injection of CSF1
induces spinal microglia proliferation.16,48 Importantly, however,
the effects of these manipulations were never complete; a low
level of nerve injury-induced microglia proliferation in the spinal
cord persists in the mice with Csf1 deleted from sensory neurons
or after intrathecal CSF1R inhibition.16,48 Those results suggest
that sensory neuron-derived CSF1 is not the only signal that
stimulates microglia proliferation after nerve injury.

CSF1 is also crucial for maintaining a homeostatic microglial
population, namely baseline levels. Although deletion of Csf1
from sensory neurons has little effect on the baseline microglia
population in the spinal cord, deletion of Csf1 from CNS neurons
with Nestin-Cre substantially reduces microglia baseline density
in the spinal cord,16 suggesting that neuronal Csf1 in CNS is
important in maintenance of microglial homeostatic status.
Furthermore, treating an animal with the CSF1R inhibitor,
PLX3397 or PLX5622, which are more potent than GW2580,
profoundly depletes CNS microglia,9,67 and the recovery from
these manipulations results in a dramatic microglia proliferative
repopulation.23,81 The exact mechanism downstream of CSF1R
for microglia proliferation remains to be elucidated.

8. Induction of CSF1 in injured motor neurons

Peripheral nerve injury not only transects peripheral axons that derive
from DRG sensory neurons but also from spinal cord motoneurons.
As for the sensory neurons, CSF1 is induced in ATF3 (1) motor
neurons in the ventral horn of the lumbar spinal cord after sciatic
nerve injury. Moreover, the de novo synthesized CSF1 distributes
from the cell bodies to motoneuron dendrites and axons, extending
peripherally and accumulating at the site of nerve injury.16

Importantly, motoneuron-derived CSF1 is also an important
contributor to nerve injury-induced activation and proliferation of
microglia in the vicinity of the axotomized motoneurons. In fact, we
found that this microglia proliferation is greatly reduced in mice with
Csf1 deleted from all CNS neurons.16 In addition, VIIth nerve injury-
induced microglia activation and proliferation in the facial nucleus is
also greatly reduced in Csf1mutant op/opmice.30

9. Contribution of dorsal root ganglion macrophages
to neuropathic pain

Paralleling the activation of dorsal horn microglia after peripheral
nerve injury is a concurrent and persistent expansion of
macrophages in the DRG ipsilateral to the injury.22,61,65,80 To

what extent the increase of DRGmacrophages contributes to the
initiation and themaintenance of nerve injury-inducedmechanical
hypersensitivity remains a major area of research. To a great
extent, the significant discrepancies in the literature result from
the technical challenge of conditional killing of macrophages,
without impacting microglial survival. For example, selective
CSF1R antagonists readily cross the blood–brain barrier (BBB)
and thus target both CNS microglia9,37,53 and peripheral mac-
rophages.37 The same limitation also applies to several trans-
genicmouse lines that express a drug-inducible suicide gene, eg,
herpes simplex virus type 1 thymidine kinase (CD11b-TK)19 or
diphtheria toxin receptor (CD11b-DTR,8 LysM-DTR,13 and
Cx3cr1-DTR50), in both microglia and macrophages. A different
approach used clodronate, which can target both macrophages
and microglia cells, but because of its size, it has a more limited
capacity to cross the BBB to kill microglia. To date, however,
there is little agreement as to the postdepletion behavioral
phenotype after nerve injury.1,6,38,51,58 We presume that the lack
of agreement reflects variability in the efficacy of clodronate.

An alternative approach involves use of the Macrophage Fas-
Induced Apoptosis (MAFIA) transgenic mouse line3 that ex-
presses a suicide gene, Fas, under the control of the CSF1R
promoter. Selective depletion of peripheral macrophages can be
achieved with an FK-binding protein dimerizer, AP20187 (AP),
which does not cross the BBB.3,80 Shepherd et al.63 used MAFIA
mice to deplete circulating monocytes and macrophages and
reported reduced nerve injury-induced mechanical hypersensi-
tivity. The authors found that macrophages in the DRG were
intact and therefore concluded that peripheral macrophages, not
those in the DRG, are the critical contributors to neuropathic
pain.63 Their findings, however, disagreed with those of an earlier
study that used a different approach to selectively kill peripheral
circulating monocytic cells, while sparing DRG macrophages,
and found a limited impact on neuropathic pain development.51

Given the little consensus as to whether the macrophage
population in the DRG or at the nerve injury site is more relevant to
nerve injury-induced pain initiation, we also investigated the utility
of the MAFIA to re-examine the question.80 In these studies, we
administered AP systemically, before or after producing the
peripheral nerve injury. This approach made it possible to
examine the contribution of peripheral macrophages to both
the initiation and the maintenance of the nerve injury-induced
mechanical hypersensitivity. Most importantly, we found that
both resident macrophages in the DRG and peripheral monocytic
cells can be significantly depleted by AP treatment in the MAFIA
mice and that themechanical hypersensitivity could be prevented
and in fact, reversed when the AP was administered after the
hypersensitivity had developed. Furthermore, we confirmed that
the approach spared spinal cord microglia. To distinguish the
contribution of DRG macrophages from those migrating to the
site of the peripheral nerve injury, in a separate set of studies, we
selectively depleted macrophages at the injury site, by local AP
application. In these studies, we found that depletion of
macrophages in the DRG, but not at the peripheral nerve injury
site, prevents the development of and reverses persistent nerve
injury-induced mechanical hypersensitivity, in both male and
female mice. Our findings are of interest in light of the report of
Sorge et al. that microglial depletion in male, but not female mice,
reduced nerve injury-induced neuropathic pain.66 Given that the
contribution of the DRG macrophages to the mechanical
hypersensitivity seems not to be sexually dimorphic, our findings
suggest that the cellular interaction between macrophages and
sensory neurons in the DRG are a potential target for future
neuropathic pain management in both males and females.
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A question still remains whether peripheral injury-induced
macrophage expansion in the DRG results from infiltration of
circulating monocytic cells or depends on resident macrophage
proliferation. Previously, ED11 macrophages identified in rat
cervical ganglia were believed to be infiltrating cells.61 A
comparable conclusion derived from studies demonstrating
expression of another purported marker of infiltrating macro-
phages, namely CCR2. On the other hand, CCR21 macrophages
are also found in the DRG of uninjured mice.72,80 Furthermore, in a
recent report, Wang et al.72 studied a parabiosis model in naive
mice and concluded that in the absence of nerve injury, there was
minimal contribution of circulating cells from the parabiotic partner.
The authors also conducted pulse-chase labeling of peripheral
macrophages in Csf1rMer-iCre-Mer x tdTomatofl/fl mice, in which
reporter gene expression in Csf1r1 cells could be triggered with
tamoxifen to induce Cre recombination. As expected, both
peripheral monocytic cells and microglia in the CNS, which were
CSF1R1, became tdTomato1. Eight weeks after tamoxifen
removal, more than 80% of the circulating monocytes were
gradually replaced by BM-derived hematopoietic progenitors and
lost reporter gene expression (tdTomato1). By contrast, 96% of
peripheral macrophages in the DRG remained positive for
tdTomato, suggesting there isminimal contribution fromcirculating
monocytic cells, which were already negative for tdTomato.
Rather, those DRG resident macrophages were self-maintained
or derived from resident cells that proliferate in the naive animal.

In the context of nerve injury, however, there may be a
compromised blood–nerve barrier in the DRG after nerve injury
that could result in increased permeability56 and potentially allow
the recruitment of circulating monocytic cells to contribute to the
expansion of DRG macrophages. Because of the controversy,

we initiated experiments directed at origin of the injury-induced
macrophage expansion in the DRG. In these studies, we used
Ki67 immunostaining to monitor proliferating CX3CR11 macro-
phages after nerve injury.80 We found that at 24 hours after nerve
injury, there was no difference in the percentage of
Ki671CX3CR11 macrophages in the ipsilateral, denervated
DRG from the uninjured contralateral DRG. However, 4 days
after the nerve injury, the percentage of Ki671CX3CR11

macrophages more than doubled in the ipsilateral DRG. We
cannot completely rule out a contribution of infiltrating macro-
phages because these cells may retain their Ki67 phenotype.
However, based on our finding that the percentage of
Ki671CX3CR11 macrophages did not change within the first
24 hours after the injury, we conclude that injury-induced
macrophage expansion in the DRG predominantly involves local
proliferation of resident macrophages.

10. CSF1 redefines the collaborative contribution of
spinal microglia and dorsal root ganglion
macrophages to neuropathic pain

Of particular interest is a possible interaction of the de novo
expression of CSF1 in axotomized DRG neurons and the pro-
liferating macrophages. As DRG macrophages also express
CSF1R, we re-examined Adv-Cre; Csf1fl/fl mice, in whichCsf1 gene
expression is depleted selectively from sensory neurons.16 As
described above, these mice do not develop the nerve injury-
induced neuropathic pain phenotype. In these mice, we also found
that conditional deletion of Csf1 abolished the injury-induced
expansion of macrophages in the ipsilateral DRG.80 Most in-
terestingly, we found that there is a sexual dimorphism in the

Figure 1. Sensory neuron-derived CSF1 triggers nerve injury-induced expansion of both resident microglia in the spinal cord and macrophages in the DRG.
Peripheral nerve injury induces de novo expression of CSF1 in injured sensory neurons. The CSF1, in turn, is released from DRG neurons and stimulates
proliferation of surrounding macrophages. The CSF1 is also transported to the spinal cord dorsal horn, where it engages the CSF1 receptor and stimulates
microglia. The activated microglia undergo a DAP12-independent pathway that induces microglia proliferation and a DAP12-dependent pathway that induces
expression of a host of neuropathic pain–associated genes. The figure is adapted from our previous article.16 DRG, dorsal root ganglion; CSF1, colony-stimulating
factor 1.

6 (2021) e883 www.painreportsonline.com 5

www.painreportsonline.com


contribution of CSF1 to the nerve injury-induced expansion of DRG
macrophages. Specifically, deletion ofCSF1 in sensory neurons only
affectedmacrophage expansion in theDRGofmalemice. It remains
to be determinedwhether other nerve injury-induced factor released
in the axotomized sensory neurons influence macrophage expan-
sion in female mice.

Notably, DRG sensory neuron-derived CCL2, a potent CCR2
ligand,35 was previously suggested to potentiate proliferation of
resident macrophages and recruitment of blood monocytes to
the injured DRG and peripheral nerve.12,22 We found that the
macrophage expansion was not compromised in both male and
female animals globally lacking CCL2. In addition, SNI-induced
mechanical hypersensitivity was comparable in male and female
mice lacking CCL2. It is unlikely that CCL2 regulates spinal
microglia in which the CCL2 receptor, CCR2, is not expressed.29

IL34, the other cognate ligand for CSF1R, has recently reemerged
as a potential candidate that instructs expansion of bothmicroglia and
macrophages.Asdiscussedabove, IL34contributes toCNSmicroglia
homeostasis.14,73 In the absence of IL-34, adult murine microglia
number is significantly reduced. Furthermore, Wang et al.72 recently
re-examined Il34 knock-out mice and reported a more than 35%
reduction in macrophage density in the uninjured DRG. Interestingly,
Schwann cells were identified as the source of the IL-34, at least by in
situ hybridization. Unfortunately, only male mice were examined. It
remains to be determined whether the pain phenotype in both male
and female mice is impacted equivalently by the loss of IL-34.

Taken together, our studies demonstrate that DRG sensory
neuron-derived CSF1, by engaging the CSF1R that is expressed
by both microglia and macrophages, triggers nerve injury-
induced expansion of both resident microglia in the spinal cord
and macrophages in the DRG. Based on these findings, we
propose that a dual and likely contemporaneous process occurs
in parallel in which both peripheral DRG macrophages and
microglia contribute to neuropathic pain development. Notably,
both cell populations have been implicated in pain chronicity.52,80

However, it seems that in femalemice, DRGmacrophages exert a
more prominent role as first responders to nerve injury.

In conclusion (Fig. 1), the CSF1 cytokine is de novo induced in
DRG sensory neurons after peripheral nerve injury. The CSF1 is
then transported along dorsal root axons to the dorsal horn, where
it binds to microglial CSF1R and activates and upregulates a host
of microglial genes. Engagement of the microglia, through a
DAP12-dependent pathway, is a critical contributor to the
consequent nerve injury-induced neuropathic pain behavior. In
addition to activating the microglia, CSF1 induces microglial
proliferation through a pathway that is independent of DAP12.
Paralleling these events, CSF1 is also required for injury-induced
macrophage expansion in the DRG, but this only occurs in male
mice. Given the considerable evidence that interactions among
neurons and immune cells are important contributors to the
induction and maintenance of neuropathic pain after peripheral
nerve injury,27 it is clear that a better understanding of the
downstream biochemical pathways engaged by CSF1, in both
microglia and macrophages, will provide new information con-
cerning the mechanism through which nerve injury contributes to
the transition from acute to persistent neuropathic pain, potentially
providing novel treatment targets for chronic pain management.
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