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Abstract

Coordinated cell migration during development is crucial for morphogenesis and largely relies on cells of the neural crest
lineage that migrate over long distances to give rise to organs and tissues throughout the body. Recent studies of protein
arginylation implicated this poorly understood posttranslational modification in the functioning of actin cytoskeleton and in
cell migration in culture. Knockout of arginyltransferase (Ate1) in mice leads to embryonic lethality and severe heart defects
that are reminiscent of cell migration–dependent phenotypes seen in other mouse models. To test the hypothesis that
arginylation regulates cell migration during morphogenesis, we produced Wnt1-Cre Ate1 conditional knockout mice (Wnt1-
Ate1), with Ate1 deletion in the neural crest cells driven by Wnt1 promoter. Wnt1-Ate1 mice die at birth and in the first 2–3
weeks after birth with severe breathing problems and with growth and behavioral retardation. Wnt1-Ate1 pups have
prominent defects, including short palate and altered opening to the nasopharynx, and cranial defects that likely contribute
to the abnormal breathing and early death. Analysis of neural crest cell movement patterns in situ and cell motility in
culture shows an overall delay in the migration of Ate1 knockout cells that is likely regulated by intracellular mechanisms
rather than extracellular signaling events. Taken together, our data suggest that arginylation plays a general role in the
migration of the neural crest cells in development by regulating the molecular machinery that underlies cell migration
through tissues and organs during morphogenesis.
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Introduction

Coordinated cell migration during development is crucial for

tissue and organ morphogenesis from early gastrulation to

adulthood. The largest cell populations that are capable of long-

range migration at different developmental stages originate from

the neural crest lineage. Neural crest cells are of mesenchymal

morphology and migrate from the trunk into different areas of the

developing embryo. These cells express a distinct subset of

markers, including Wnt1 and others [1–8], at or before the onset

of migration.

Recent studies of protein arginylation demonstrated an essential

role of this poorly understood posttranslational modification in

mammalian embryogenesis and suggested that arginylation is a

previously unknown major signaling mechanism that regulates

multiple physiological pathways. Knockout of arginyltransferase

(Ate1) in mice leads to embryonic lethality and severe cardiovascular

defects, including abnormal heart septation, underdeveloped

myocardium, and impaired angiogenesis [9]. Remarkably, all these

phenotypes resemble the phenotypes seen in the mouse models with

knockouts of various genes implicated in cell migration, leading to

the hypothesis that the mechanisms underlying cell migration may

be the primary targets for regulation by arginylation (see [10] for

review). It has been found that a large number of proteins in vivo are

arginylated [11–23], including a prominent subset of cytoskeletal

targets that play direct mechanistic roles in cell migration.

Arginylation of beta actin in cultured fibroblasts regulates lamella

formation and the structure of the cell leading edge [24]. Other

proteins involved in cell adhesion and migration, such as talin,

spectrin, filamin, myosin, etc. are also arginylated in different mouse

tissues [23]. All these data suggest that arginylation may be a general

mechanism of the regulation of cell movement in different

physiological events, however the role of arginylation in directional

cell migration in culture and during embryonic development has

never been studied before.

To test the hypothesis that arginylation regulates cell migration

during morphogenesis, we produced and analyzed a conditional

knockout mouse model with Ate1 deletion driven by neural crest-

marking Wnt1 promoter (Wnt1-Ate1 mouse line). These mice

exhibit perinatal lethality and severe morphogenesis defects

resulting from poorly developed neural crest-derived structures,

suggesting that Ate1 indeed regulates the migration of neural crest

cells that give rise to these structures in embryogenesis. Studies of

cell migration patterns in embryos and in culture show that Ate1

knockout results in an overall delay in the migration, likely

regulated at the intracellular level, and that Ate1 knockout cells co-
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cultured with wild-type tend to ‘ride’ on the migrating cells rather

than move on their own. Taken together, our data indicate that

arginylation regulates tissue and organ morphogenesis by affecting

the intracellular mechanisms that drive the migration of the

mesenchymal cells of the neural crest lineage.

Results

Generation of Wnt1-Ate1 mice
To produce an Ate1 conditional knockout we first generated an

‘Ate1-floxed’ mouse line with the first three exons of the Ate1 gene

flanked by LoxP sites (Figure S1). We have previously shown that

exons 1 and 2 are essential for the formation of all four Ate1 isoforms

[25] and that deletion of the region encoded by these exons from the

Ate1 sequence leads to the abolishment of Ate1 activity in yeast

complementation assays [26]. Control experiments (data not shown)

confirmed that deletion of the exons 1–3 using the Cre-driven

recombination in the Ate1-floxed line resulted in embryonic lethality

similarly to the previously described Ate1 knockout [9,27]. To

produce a neural crest-specific Ate1 knockout, we crossed the Ate1-

floxed line with a commercial mouse strain (Wnt1-Cre) where Cre

recombinase is expressed under neural crest-inducing Wnt1

promoter, resulting in Ate1 deletion in subsequently derived neural

crest and some other cell types. These mice, termed Wnt1-Ate1

mice, were used in the present study.

To confirm the efficiency of the Ate1 knockout in these mice, we

analyzed the Ate1 protein expression by immunohistochemistry of

the sagittal sections of E12.5 and E16.5 Wnt1-Ate1 embryos

probed with rat monoclonal antibody that recognizes all four Ate1

isoforms (see Figure S2 for antibody characterization and Figure

S3 and Figure S4 for embryo staining). In control embryos Ate1

expression was observed in most tissues and organs (data not

shown), consistent with our previous data that Ate1 is expressed

throughout the embryo [9,25]. In contrast, Ate1 expression in the

conditional knockout mice was prominently excluded from the

midbrain region and the enteric nerves, as well as parts of the

peripheral nervous system (Figure S3 and Figure S4), the

structures that are derived from Wnt1 expressing cells [6,28]. No

prominent areas with missing Ate1 expression were observed

anywhere else in the embryo, however it is possible that Wnt1-

expressing Ate1 knockout cells in other areas (such as, the somite

regions along the back) mixed with other cell populations, making

them difficult to detect. It is also possible that in such areas the

normal levels of Ate1 are reduced, making the knockout cells

poorly distinguishable from the background. To address this

possibility and further confirm the efficiency of the Cre transgene

expression, we crossed Wnt1-Cre mice to the R26R Rosa reporter

mouse strain, in which prominent LacZ expression occurs in all

Cre-expressing tissues [29–32]. X-gal staining of Wnt1-Cre

embryos at E9.5 showed that Cre expression occurred as expected,

with the majority of staining observed in the head and the somite

region (Figure S14).

Wnt1-Ate1 mice exhibit perinatal lethality
Unlike the complete Ate1 knockout mice that die just past mid-

gestation (E12.5–E14.5) [9,27], Wnt1-Ate1 mice survived until

birth and exhibited perinatal lethality (Table 1). Over 60% of the

pups died on the day of birth (P0), and another 24% died during

the following 3 weeks, with less than 13% of mice surviving to

adulthood. Such a variability in the mortality rate could be

explained by the variability in the migratory patterns of neural

crest cells between individual embryos (see below).

The conditional knockout mice that died at P0 had severe

breathing problems. Unlike their littermates they breathed

frequently and irregularly and appeared to be gasping as if from

the lack of air (Video S1). Within a few hours, these mice became

bloated, with abnormally enlarged stomachs, and died (Figure 1A,

left). Post-mortem dissection showed large amounts of air in their

stomach (Figure 1A, right), suggesting that the air was misdirected

there from the respiratory tract, possibly through the digestive

system, and accumulated due to extensive breathing.

Wnt1-Ate1 mice that died at later stages after birth (mostly

within the first week, Table 1) showed no visibly abnormal

breathing, however these mice appeared severely retarded, with

delayed growth and significantly smaller body size compared to

their littermates (Figure 1B) and apparent inability to actively

move and explore the surrounding space (Video S2). Their

appearance and behavior could be explained by malnutrition

caused by non-lethal alterations in their ability to breathe and feed

compared to their wild-type littermates. It is also possible,

however, that these defects were caused by additional physiolog-

ical and/or neurological abnormalities, caused by Ate1 deletion in

other neural crest cell populations.

The remaining 12.8% of Wnt1-Ate1 mice were able to grow to

adulthood. These mice were fertile and able to produce healthy,

surviving pups, however they were consistently smaller than their

littermates and had visible facial abnormalities (short snouts and

abnormally shaped skulls, Figure 1C). Thus, despite the variations

in the severity of the Wnt1-Ate1 phenotype, over 87% of the

conditional knockout mice died at or soon after birth, and all of

them exhibited varying degrees of defects.

Wnt1-Ate1 mice have craniofacial defects
It has been previously found that mouse knockouts of the genes

implicated in neural crest cell migration and neural crest-

Table 1. Death/survival rates of Wnt1-Ate1 mice.

Numbers (%) of Wnt1-Ate1 mice

born died at survived

P0 P1–P21

125 (100.0) 79 (63.2) 30 (24.0) 16 (12.8)

doi:10.1371/journal.pgen.1000878.t001

Author Summary

Formation of many organs during development depends
on the coordinated migration of individual cells and cell
layers throughout the embryo. The majority of migrating
cells originate from the neural crest lineage that gives rise
to peripheral neurons, ganglia, pigment cells, and cranio-
facial structures, as well as parts of other organs in the
body. Recent studies have implicated arginylation—a
poorly understood protein modification—in the regulation
of basic mechanisms that underlie cell migration. Here we
test the role of arginylation in neural crest cell migration
during mouse development by constructing and examin-
ing a mouse model with arginylation-deficient neural crest
cells. We find that these mice die at or soon after birth and
exhibit severe defects in the development of distinct
neural crest-derived structures. Our findings uncover a
previously unknown mechanism of the regulation of
neural crest cell migration during development, and shed
light on general principles of neural crest migration in vivo.

Arginylation Regulates Neural Crest Migration
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dependent morphogenesis are often accompanied by the defects in

palate and other craniofacial structures that originate from the

neural crest cell lineage [33–36]. Palate defects in particular are

known to correlate with breathing problems. It is hypothesized

that shortened or cleft palates affect the separation between the

digestive and respiratory tract, causing the inhaled air to be

directed to the stomach rather than the lungs and resulting in air

accumulation in the stomach and lethality similar to that seen in

Wnt1-Ate1 mice at P0 [35,37,38]. To test whether Wnt1-Ate1

mice have defects in the palate and/or surrounding structures, we

performed postmortem analysis of the pups that died at P0 with

breathing abnormalities, by removing the lower jaw and visually

analyzing the throat and the roof of the oral cavity.

Several defects were observed during this analysis. First, the

majority of the analyzed mutant pups had an abnormally large

entrance to the nasopharynx and a reduced area normally covered

by the soft palate (denoted by two shorter perpendicular arrows

and one longer arrow in Figure 2A, respectively). In control

animals (Figure 2A, left) the entrance to the nasopharynx was

tightly shut and resembled a vertical slit surrounded by a small

area of soft tissue. In the mutant animals (Figure 2A, right), the

nasopharynx entrance appeared partially opened, assuming a

triangular shape with a larger surrounding area, suggesting that

this structure was prevented from closing either because of being

structurally defective, or because the musculature that controls it

did not operate properly. Closer observations (Figure 2B) showed

that while in control mice (left) the entrance to the nasopharynx

was partially closed by the soft palate, in the mutants (right) the

soft palate in this area was either short (not shown) or missing

(Figure 2B), leaving a gap that would be expected to permit the air

to travel unrestrictedly throughout the passages connected to the

oral cavity in this area.

To confirm that the defects we see are indeed palate defects, we

fixed the newborn Wnt1-Ate1 pups and their control littermates

and sectioned them sagittally through the middle, in the area

where the palate appears as the horizontal line separating the oral

and the nasal cavity. Consistent with our morphological

observations, palates in all the conditional knockout pups analyzed

at P0 appeared short, unable to reach the area of the throat where

the separation between the trachea and the esophagus occurs

(Figure 2C). The average distance between the end of the palate

and the epiglottis in the mutant mice was approximately 10 times

larger than that in control (Figure 2D). Thus, Wnt1-Ate1 knockout

mice, similar to other mouse models with neural crest migration

defects, have severe malformations of the soft palate that likely

cause the breathing problems and misdirected air flow resulting in

early postnatal lethality (Figure 1A and Video S1).

Since Wnt family genes, in addition to the neural crest, have

been implicated in the functioning of other organs, including lungs

[39,40], we tested whether, in addition to the palate, other defects

in Wnt1-Ate1 mice may contribute to the breathing problems

and/or early lethality. Histological examination of the sagittal

Figure 1. Wnt1-Ate1 mice have perinatal lethality. (A) A Wnt1-Ate1 pup that died at birth from breathing defects as shown in the Video S1. In
such pups labored breathing leads to bloating (left) and prominent air accumulation in the stomach (right). (B) Wnt1-Ate1 pups that survive after
birth (indicated by arrows) shown at postnatal day 5 (P5) are smaller than their wild-type littermates and are significantly less active at day 9 (Video
S2), suggesting growth and behavioral retardation. (C) Wnt1-Ate1 (KO) mice that survive to adulthood are smaller than control (WT, top) and have
short snouts and abnormally shaped skulls (bottom).
doi:10.1371/journal.pgen.1000878.g001

Arginylation Regulates Neural Crest Migration
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sections of the Wnt1-Ate1 embryos at P0 revealed no prominent

abnormalities in the major organs or structures throughout the

body (data not shown). Lungs in the Wnt1-Ate1 mice appeared

collapsed compared to the wild-type, with little or no air in the

alveolae and hemorrhaging in the air passages, however no visible

lung defects were observed in the E16.5, E18.5 and E19.5 embryos

recovered before birth that did not have a chance to breathe (data

not shown). Therefore, given that Wnt1-Ate1 pups have breathing

abnormalities that may indirectly affect the lungs, it appears

unlikely that these mice have an independent structural lung

defect.

Since neural crest cells contribute to the formation of bone and

cartilage in the head, we next examined the skeletons of newborn

Wnt1-Ate1 and control mice at P0 by staining with alizarin red S

and alcian blue 8GS that interact with bones and cartilage to color

them red and blue, respectively [41] (Figure 3). While the overall

bone structure and skeletal architecture appeared normal in Wnt1-

Ate1 mice (data not shown), prominent abnormalities were seen in

the development of the frontal bones, the neural-crest-derived

parts of craniofacial skeleton that contribute to the top of the skull

[32,42]. In control mice, frontal bones came close together,

leaving only a narrow slit along the top of the skull (Figure 3A, top

images). In contrast, in the mutant mice, frontal bones appeared

smaller and narrower and were unable to meet on top of the skull,

leaving a wide gap that exposed the cranial cavity beneath

(Figure 3A, bottom images). Measurements of the ratios between

the width of the gap and the width of the skull showed that in the

mutant the gap occupied on average almost 1/3 of the skull width,

an area almost 4 times larger than in wild-type (Figure 3B). This

defect was observed in all the analyzed mutants, even those that

did not exhibit breathing defects at birth.

To test whether frontal bone defects are also seen in the Wnt1-

Ate1 mice that survive to adulthood, we euthanized several adult

Wnt1-Ate1 animals and matching wild-type controls and stained

their skeletons similarly to the way described above for the

newborn mice. Consistent with the defects seen in the newborns,

adult surviving Wnt1-Ate1 mice had short, deformed frontal bones

that had altered shape and rougher outline and often appeared

incompletely closed (arrows in Figure 3C) and unable to meet in

the middle (arrowheads in Figure 3C). Nasal bones also appeared

shortened, leading to the overall shortening of the snouts as seen in

the intact animals (Figure 1C). Therefore, some neural crest-

derived parts of the craniofacial skeletons are affected in Wnt1-

Ate1 mice regardless of the severity of other phenotypic changes

seen in these mice.

Since, in addition to craniofacial structures, Wnt1-Ate1 mice

also show prominent Ate1 deletion in the enteric neurons and some

deletion in the peripheral nervous system (Figure S3 and Figure

S4), we tested whether the mutants have abnormal distribution of

peripheral nervous system structures and gut neurons that might

indicate defects in gut innervation often associated with neural

crest-related developmental abnormalities (reviewed in [43–45])

by staining embryo sections and whole mount guts excised from

E16.5 Wnt1-Ate1 embryos with antibody to the neuron projection

marker beta-III tubulin. This staining revealed no abnormalities in

the peripheral nervous system (Figure S4) or gut neuronal network

(Figure S5), suggesting that the peripheral nervous system and

enteric neurons, despite being Ate1-deficient, were able to position

normally during embryogenesis.

Wnt1-Ate1 neural crest cells show defects in migration
patterns during development

To address the question whether Wnt1-Ate1 mice exhibit any

defects in neural crest cell migration, we used the Wnt1-Ate1-

R26R reporter conditional knockout line and analyzed the

distribution of LacZ -expressing cells in wild-type and Wnt1-

Ate1-R26R embryos at E9.5. Several litters, whose embryonic

stage was determined by counting the somites, were analyzed, and

the comparisons were made between embryos with comparable

somite numbers. In the analyzed embryos, the somite numbers

Figure 2. Wnt1-Ate1 mice have palate defects. (A) Observation of the roof of the mouth of control (WT) and Wnt1-Ate1 (KO) newborn pups at
P0 shows a shorter soft palate area (longer vertical arrow on the right in each image) and an enlarged nasopharynx entrance (two shorter
perpendicular arrows on the left and bottom in each image). Heads have been contrasted with trypan blue dye for better observation. 5 wild-type
and 5 Wnt1-Ate1 pups were analyzed. (B) Closer view of the nasopharynx entrance (arrow) and the surrounding area in a control (WT) and aWnt1-
Ate1 (KO) newborn pup at P0 with the missing soft palate (arrowhead). (C) Sagittal sections through the palate areas of the control (WT) and Wnt1-
Ate1 (KO) newborn pups at P0. While in control the soft palate (P) reaches all the way to the epiglottis (E), in the mutant the palate is shorter and
leaves a large gap of exposed tissue at the back of the throat. Scale bar, 1 mm. 4 wild-type and 5 Wnt1-Ate1 pups were analyzed. (D) Quantification of
the distance from the end of the palate to the epiglottis in all the examined pups at P0 (4 wild-type and 5 mutants). In wild-type, the average distance
was 48.6+/228.9 (SEM), and in the mutants this number increased over 10-fold to 501.0+/293.7 (SEM), indicating a significant overall shortening of
the tissue of the soft palate.
doi:10.1371/journal.pgen.1000878.g002
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ranged between 22 and 26 in wild-type and between 21 to 28 in

Wnt1-Ate1, consistent with the expected somite numbers at this

stage. While the X-gal staining of the migrating neural crest cells in

these embryos, especially with the larger somite numbers, was

heavily masked by staining of other organs originating from Wnt1-

expressing cells, such as midbrain (Figure S14), cell migration

patterns could be clearly observed in the somite regions and near

the pharyngeal arches, where the migrating cells appeared as

streams of LacZ-expressing ‘dots’ arranged in different patterns

from the back to the front of the embryo (Figure 4). In wild-type

(Figure 4A and 4B), prominent populations of cells migrated from

back to front as continuous lines (from the third pharyngeal arch

down to the somites) and as triangular ‘streams’ directed toward

the third and fourth pharyngeal arches and along each of the

somites. In Wnt1-Ate1, several of these migration patterns were

affected with different degrees of severity. Embryos with 24+
somites had altered cell distribution in the streams migrating

toward the third and fourth pharyngeal arches and in the line

migrating over the upper area of the trunk, which appeared

diffuse, with fewer cells present in those areas (Figure 4C and 4D).

In some embryos (Figure 4E), migration toward the pharyngeal

arches appeared normal, but X-gal staining in the upper trunk

area appeared weaker than control, indicating a reduced number

of migrating cells in that area. In the embryos at a slightly earlier

developmental stage (21–23 somites, Figure 4F–4H) these

differences were more obvious, resulting in much lower overall

levels of the X-gal-stained cells visible in these areas. Such

extremely affected embryos also appeared smaller than wild-type

embryos or knockout embryos with less severe phenotypes (see

Figure S14).

To further confirm this result, we performed in situ hybridiza-

tion of whole mount embryos for the neural crest marker Sox10.

Analysis of embryos at E9.5 and E10.5 showed similar changes in

the migration patterns in Wnt1-Ate1 mice compared to control

(Figure 4I and 4J and Figure S15). Finally, to obtain an

independent confirmation of altered migration in Ate1 knockout

neural crest cells, we isolated neural crest explants from E8.5

Wnt1-Ate1-R26R mice, and observed the migratory patterns of

LacZ-expressing cells after incubation for 48 hourrs in culture

(Figure S6). While in control explants (Figure S6, left panels),

many of the LacZ-expressing cells during this time emigrated from

the original cell mass and traveled to the periphery of the

expanding explant as groups or individual cells, in the knockout

LacZ-expressing cells traveled to a shorter distance as streams of

cells mostly connected to the original explant, without venturing

out on their own (Figure S6, right panels). All of the examined

explants behaved consistently with each other, suggesting that this

altered migration pattern occurs universally in response to Ate1

knockout. Therefore, consistent with the situation in situ, Ate1

knockout in the neural crest cells results in impairment of their

migration in culture.

Since most of the developmental defects observed in Wnt1-Ate1

knockout mice are related to the size reduction of the structures

that are normally derived from the neural crest cells (such as palate

or frontal bones), it is possible that in addition to decreased cell

migration some of these defects are due to other reasons, such as

decreased proliferation or increased apoptosis in the Ate1 knockout

neural crest cells. To test for possible increase in apoptosis, we used

TUNEL assay to stain E9.5 Wnt1-Ate1 embryos (Figure S7) or

E12.5 Ate1 knockout embryos (not shown) and found no

differences in the amount or distribution of the stain in the wild-

type and knockout littermates. We also stained sections of Wnt1-

Ate1 embryos with antibodies to the apoptotic cell marker cleaved

caspase 3 and found no differences in the staining intensity or

patterns between wild-type and Wnt1-Ate1 embryos (see Figure S8

for representative images).

To test for possible changes in cell proliferation, we stained

embryo sections for the cell proliferation marker phospho-histone

Figure 3. Wnt1-Ate1 mice have defects in the frontal bones. (A) Top view of the skulls of the control (WT, top) and Wnt1-Ate1 (KO, bottom)
pups at P0 stained with alizarin red S and alcian blue 8GS show a significant gap on top of the skull in the mutant pups, due to the significantly
reduced frontal bones. Left images show the same pictures as those shown on right with the edges of the gap outlined. Arrowheads indicate the
point of the opening of the gap used for the measurements shown in (B). (B) Measurement of the ratio of the gap width to skull width along the
same axis (gap/skull) at P0 show that in the mutant (KO) unlike the control (WT) the gap occupies on average more than 1/3 of the skull (ratio 0.334+/
20.018 (SEM, n = 5) in the mutant vs. 0.076+/20.016 (SEM, n = 12) in wild-type). (C) Skulls of adult Wnt1-Ate1 mice compared to their littermate
controls show frontal bone abnormalities, including abnormal shape, incomplete cranial suture (arrows), and abnormal suture between the frontal
bones (arrowheads). 2 wild-type and 2 mutant animals were analyzed.
doi:10.1371/journal.pgen.1000878.g003

Arginylation Regulates Neural Crest Migration

PLoS Genetics | www.plosgenetics.org 5 March 2010 | Volume 6 | Issue 3 | e1000878



H3 and found no differences in the staining intensity or

distribution between wild-type and Wnt1-Ate1 embryos (Figure

S9). To further test this possibility, we isolated neural crest

explants from E8.5 and E9.5 Ate1 knockout littermate embryos

and, after two days in culture, labeled the actively proliferating

cells with 5-bromo-2-deoxyuridine (BrdU). No difference was

found between the numbers or distribution of actively proliferating

cells in wild-type and Ate1 knockout explants (Figure S10).

These results suggest that Ate1 knockout does not cause changes

in the rates of cell proliferation or apoptosis during embryogenesis,

pointing to the fact that the defects observed in Wnt1-Ate1

knockout mice are due primarily to the impairment in neural crest

cell migration.

Ate1 knockout cells of mesenchymal morphology
migrate abnormally in culture

To further characterize impairments in cell migration induced

by Ate1 knockout, we analyzed the motility of cultured Ate1

knockout fibroblasts, derived from the back portion of the E12.5

Ate1 knockout embryos and immortalized by continuous passaging

in culture as described in [9,24]. This model was chosen as one of

the closest cell culture models of neural crest cell migration.

Figure 4. Wnt1-Ate1 mice have defects in neural crest cell migration. (A–H) X-gal staining of E9.5 control (A,B) and Wnt1-Ate1 (C–E) embryos
derived from Wnt1-Ate1-R26R mouse line grouped by somite count (indicated on the top left for each embryo). A, lower magnification image of a
control embryo at 24 somite stage. (B–E), back areas of different wild-type and Wnt1-Ate1 embryos with higher somite count, corresponding to the
region boxed in (A), showing different neural crest migration patterns as described in the text. For Wnt1-Ate1, three littermates are shown, illustrating
different pattern and severity of defects as described in the text; asterisk indicates the embryo, for which somite count was not performed and the
staging relied on the comparison with its littermates shown on both sides. (F–H), back areas of wild-type and Wnt1-Ate1 embryos with lower somite
count. Bar, 1 mm, for the images shown in (B–H). 10 wild-type and 10 mutant embryos were analyzed. See Figure S14 for whole embryo views. (I,J) In
situ hybridization of E9.5 (I) and E10.5 (J) control and Wnt1-Ate1 embryos using Sox10 neural crest marker. 2 wild-type and 2 Wnt1-Ate1 embryos
were analyzed for each developmental stage. See Figure S15 for whole embryo views.
doi:10.1371/journal.pgen.1000878.g004
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Indeed, these fibroblasts are mesenchymal cells derived from the

back portion of the embryos where the majority of the migrating

neural crest cells are also found, and they are morphologically

indistinguishable from the cells composing the neural crest

explants in culture. Therefore, such fibroblasts can be expected

to behave in the same manner as the neural crest cells in terms of

their motile properties, and using these cells as a model in culture

makes it possible to perform much more detailed tests than

possible with neural crest explants.

Ate1 knockout fibroblasts have been previously shown to have a

defective lamella [24], however no changes in the speed or

directionality of their migration have been reported. To test

whether these cells move slower than wild-type, we performed

scratch wound assays by removing an area of a dense cell

monolayer and taking time lapse images of cells moving from the

dense area to the scarce. The observations were performed over

long periods of time similar to the estimated duration of many

neural crest-dependent migratory events in development (10–

15 hours).

While individual Ate1 knockout cells during shorter stretches of

time were capable of moving at speeds similar to wild-type (not

shown), the migration speed of the Ate1 knockout cell monolayers

over continuous periods of time was nearly 4 times slower than

that of wild-type cells (average speed of 11.5 mm/h compared to

41.3 mm/h in wild-type) (Figure 5, Video S3 and Video S4). This

difference constitutes a significant delay in the overall migration,

and, when transferred to an in vivo environment of a developing

embryo would be likely to create significant morphogenic defects.

Cell migration in culture and in situ is mediated by attachment

to the substrate and forming a connection between the

intracellular actin cytoskeleton and the extracellular matrix via

focal adhesions. To test whether the slow migration speeds in Ate1

knockout cells were due to their impaired adhesion on the intra- or

extracellular side, we first tested whether these cells are capable of

creating a local extracellular environment that favors migration.

To do this, we stained wild-type and Ate1 knockout non-

permeabilized cell monolayers for fibronectin, a major extracel-

lular matrix component that directs the migration and adhesion of

the mesenchymal cells and is secreted by these cells in culture and

in situ (reviewed in [46]). No differences were found in the amount

or distribution of fibronectin per area in each culture (Figure 6A),

suggesting that Ate1 knockout cells are capable of creating and

utilizing the same local extracellular environment as wild-type.

Thus, the migration defects in Ate1 knockout cells do not originate

at the local extracellular level.

We next tested whether the intracellular defects in Ate1

knockout cells could be responsible for slower migration speeds.

To do this, we compared the number of focal adhesions (the

structures that connect cells to the extracellular matrix and thus

are responsible for cell movement) at the edge of the cell

Figure 5. Knockout of the arginyltransferase Ate1 in the mesenchymal cells results in a significant reduction in their migration
speeds. (A) The first and the last frame of a time lapse series of a wild-type (WT) and Ate1 knockout (KO) fibroblast monolayer moving into the
wound. See Video S3 and Video S4 for the corresponding time lapse series. Bar, 200 mm. (B) Quantification of the average migration speed in wild-
type (WT) and Ate1 knockout (KO) cultures calculated from the time lapse series similar to the one shown in (A). In wild-type average migration speed
was 39.97+/24.90(SEM), n = 2; in the knockout the speed was almost 4 times slower at 11.34+/21.32(SEM), n = 4.
doi:10.1371/journal.pgen.1000878.g005
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monolayer migrating into the wound in wild-type and Ate1

knockout cells by staining these cells with three different focal

adhesion markers, paxillin, talin, and focal adhesion kinase (FAK)

(Figure 6B and Figure S11). While in wild-type cultures cells

moving into the wound developed prominent focal adhesions that

appeared firmly anchored to the substrate (Figure 6B, top panel,

and Figure S11, left panels WT), in Ate1 knockout cells focal

adhesions appeared smaller and scarcer, sometimes difficult to

detect (Figure 6B, bottom panel, and Figure S11, right panels).

This decrease in focal adhesion size and number was accompanied

by a reduced level of paxillin but did not correlate with the

changes in talin and FAK protein level (Figure S11, middle panels

KO), suggesting that the decrease in focal adhesion constituted a

genuine structural defect rather than a secondary effect of down-

regulation of any of these markers. Manual counting of the

number of prominent elongated paxillin-containing structures per

mm of the wound edge, or the area of talin-containing structures

per leading edge in each cell, revealed an almost 10-fold reduction

in the focal adhesion area and number in Ate1 knockout cells

compared to wild-type (Figure 6B and Figure S11, right panels).

Such a prominent difference is highly likely to severely affect both

the cell’s ability to attach to the substrate and the resulting cell

migration. Thus, Ate1 knockout-dependent impairment in cell

migration likely originates at the intracellular level.

To further study the focal adhesion defects in Ate1 knockout cells

we quantified the total area of talin and paxillin-containing focal

adhesions in single wild-type and Ate1 knockout cells, and found

that, consistent with the results obtained in the moving cell

monolayer, the focal adhesion area in single cells is significantly

reduced (Figure S12). This result suggests that the focal adhesion

defects in Ate1 knockout cells are the intrinsic property of these

cells and not the secondary result of the impaired movement of

these cells along the substrate. Finally, to corroborate this

observation with the situation in situ, we stained embryo sections

for talin and quantified the staining intensity in the migrating

subpopulations of neural crest cells at the sides of the neural tube

(Figure S13). While this assay measures not only talin localized to

the adhesion sites but the total talin level in the tissue (which is

similar in wild-type and knockout, as seen in Figure S11), the un-

localized talin is expected to show a reduced, more diffuse signal

compared to talin bound at the focal adhesion sites. Consistent

with this hypothesis and the results of focal adhesion quantification

in culture, the talin staining in situ was reduced in Wnt1-Ate1

embryos by a small but statistically significant number (Figure

S13), suggesting that migrating neural crest cells in these embryos

have focal adhesion defects that may prevent them from proper

attachment and movement through the tissues during embryo-

genesis.

Unlike in the complete knockout, when cells migrate in situ in a

conditional mouse model, in many cases knockout cells are found

in the immediate vicinity of the wild-type and are expected to co-

migrate during different developmental events. Therefore, the

straight comparison between wild-type and Ate1 knockout cell

movements does not necessarily reflect the complex situation in

which these cells co-exist in situ, potentially affecting each others’

migration. To test the motility of Ate1 knockout cells in the

environment of the surrounding wild-type cells, we performed

wound healing migration assays of wild-type cells co-cultured with

Ate1 knockout cells labeled with stably transfected GFP. Control

experiments showed that GFP-expressing cells moved at rates

Figure 6. Ate1 knockout affects cell attachment to the substrate via intracellular and not extracellular mechanisms. (A) Left,
extracellular fibronectin staining in a dense monolayer of wild-type (WT) and Ate1 knockout (KO) cultured fibroblasts shows no difference between
the two cultures. Right, quantification of the fibronectin level in the two cultures measured as average gray value in the entire field of view confirms
that there is no difference between WT and KO cells in the amount of extracellular fibronectin. Bars show the ratio between WT and KO and error bars
represent the average of the measurements in 10 different fields of view in each culture. (B) Left, an overlay of the fluorescence staining of the edge
of the cell monolayer moving into the wound co-stained with rhodamine-phalloidin (red) to visualize the actin filaments and anti-paxillin (green) to
visualize the focal adhesions. Right, quantification of the number of focal adhesions per mm of the wound edge shows that the number of prominent
focal adhesion in wild-type exceeds that in the knockout by over 5-fold. Error bars represent the measurements in 21 and 18 different images in WT
and KO, respectively. Bar, 20 mm.
doi:10.1371/journal.pgen.1000878.g006
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similar to the regular Ate1 knockout cells when cultured separately

from wild-type (data not shown).

After the scratching of the wound the wild-type cells recovered

first; even though areas with GFP-expressing cells at the edge were

chosen for observation, shortly after the start of the time lapse,

wild-type cells moved to the front and continued leading the way

for the entire observation period (Figure 7A and Video S5). Ate1

knockout cells moved prominently slower than wild-type, however,

unlike in individual cultures, co-cultured Ate1 knockout cells

showed a less significant difference in migration speed from the

wild-type cells (around 2-fold, Figure 7B) and were able to cover

larger distances. This observation suggests that wild-type cells are

capable of aiding the knockout cells along to cover larger distances

over a period of time. Observations of the time-lapse images

(Video S5) suggested that rather than moving, Ate1 knockout cells,

when possible, ‘rode’ on the expanding wild-type monolayer,

possibly due to their poorer substrate attachment, and that their

ability to cover greater distances was likely due to passive, rather

than active movement. Reciprocal assay, with GFP-labeled wild-

type cells co-cultured with unlabeled knockout cells, confirmed

that, independently of the GFP transfection, wild-type cells indeed

migrated faster and filled the wound sooner than the knockout

(Figure 7C). It should be noted that in the co-culture assay the

wild-type cells on average moved somewhat slower than when

cultured individually. A possible explanation for this effect could

be that in this assay we did not wait for the edge of the monolayer

to recover after the scratch wound and the delay may be simply

due to the additional time the dislodged cells at the edge needed to

re-attach and polarize.

Thus, Ate1 knockout in the mesenchymal cells results in greatly

delayed migration speeds that originate at the intracellular level

and are likely to result in severe morphogenic defects in vivo.

Figure 7. Ate1 knockout cells co-cultured with wild-type move with speeds closer to the wild-type cells than when cultured
individually. (A) Phase contrast (top), fluorescence (middle), and overlayed (bottom) images of the first and last frame of a 12-hour time lapse series
of GFP-labeled Ate1 knockout cells co-cultured with wild-type moving into the wound. Wild-type cells quickly bypass the Ate1 knockout cells initially
found at the wound edge and ‘lead’ for the rest of the time lapse, consistent with their faster migration speeds. Ate1 knockout cells lag behind, often
‘riding’ on the wild-type cells rather than moving on their own, however they are able to cover greater distance over the 12 hours than in individual
cultures (Figure 5). See Video S5 for the merged time lapse. Bar, 200 mm. (B) Average speeds of the wild-type (WT, unlabeled) and Ate1 knockout (KO,
GFP-labeled) cells moving in co-culture show that the difference between the speeds of the two cell types is much less than in individual cultures.
Average migration speed of wild-type cells was 24.12+/24.00(SEM), and the knockout 11.29+/22.78(SEM), n = 4. (C) Last frame of a 12-hour time
lapse series of GFP-labeled wild-type cells co-cultured with Ate1 knockout cells moving into the wound, overlayed similarly to that shown in (A).
doi:10.1371/journal.pgen.1000878.g007
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Discussion

Our data show that knockout of the arginyltransferase Ate1 in

the cells of the neural crest lineage results in multiple morphogenic

defects and perinatal lethality in mice. It has been previously

shown that complete Ate1 knockout in mice leads to embryonic

lethality and defects in cardiovascular development and angio-

genesis [9] that are reminiscent of the defects seen in mouse

models with knockout of genes implicated in cell adhesion and

migration during embryogenesis [10]. Here we show for the first

time that Ate1 deletion in the migratory subpopulations of the

neural crest cells leads to delayed development and reduced size of

the neural crest-derived organs and tissues, suggesting that Ate1-

dependent migration of the neural crest cells is essential for normal

embryogenesis.

We have previously shown that Ate1 knockout embryonic

fibroblasts have leading edge defects that arise from abnormalities

in the non-arginylated actin cytoskeleton [24]. Here we found that

in addition to the abnormal leading edge Ate1 knockout cells also

have impaired adhesion to the extracellular matrix and that the

rate of their motility is significantly delayed due to the impaired

intracellular machinery rather than to the extracellular environ-

ment. It is possible that the defects seen in Wnt1-Ate1 embryos

may have additional underlying mechanisms, including impaired

epithelio-mesenchimal transformation that could hinder the size of

the migratory cell population, or abnormal responses to the signals

that coordinate the migratory events on the organismal level.

However, the intracellular changes observed in response to Ate1

knockout are likely sufficient to induce major morphogenic defects

even without perturbations in other important developmental

processes.

Wnt1-Ate1 mice show defects of varying severity, with a small

fraction of mice surviving to adulthood. Our data show that the

impairments of neural crest cell migration patterns observed in

Wnt1-Ate1 knockout are variable from embryo to embryo,

suggesting that local variations in the migration speeds of the

Ate1 knockout cells can contribute to the phenotype variability.

Our data on co-culture of wild-type and Ate1 knockout cells further

suggest that Ate1 knockout cells during migration and tissue

expansion can ‘ride’ on the neighboring expanding wild-type

tissues, reaching further destinations in the embryo than they

could reach on their own. This seems to be especially likely in the

case of the enteric neurons that migrate as individual cells on the

walls of the expanding gut. Indeed, the migrating speeds of these

neurons have been calculated to exceed the average speed of

migrating mesenchymal cells in culture and in situ by at least a

factor of 2 [10], suggesting that the expanding tissues greatly aid

them along in reaching their destination and covering the entire

gut wall. Consistent with this fact, Wnt1-Ate1 mice have no defects

in gut innervation, while having significant defects in craniofacial

migratory neural crest tissues, suggesting that gut neuron

precursors in Wnt1-Ate1 knockout reach their destinations mostly

by ‘riding’, which is not affected by Ate1 knockout–related

impairments in cell migration speeds.

In addition to the neural crest-derived craniofacial structures,

Wnt1-expressing cells in the neural tube give rise to the peripheral

nervous system and large parts of the brain, including the entire

midbrain. In Wnt1-Ate1 mice parts of the peripheral nervous

system and the midbrain region are prominently devoid of Ate1

expression (Figure S3 and Figure S4). While we observed no

morphological defects in the midbrain or the layout of the

peripheral nervous system in the mutant mice, the Wnt1-Ate1

pups that survived for 1–3 weeks past birth exhibited severe

behavioral retardation, delayed growth, and apparent difficulty

with feeding. While some of these defects, especially the feeding

abnormalities, could result from the shortened palates that prevent

normal food intake, others could result from the neurological

problems, such as reduced innervation leading to the impaired

neuromuscular functions and reduced expansion in the thoracic

cage (which may result in breathing abnormalities and lung

collapse), or from the defects in the sensory organs that are

controlled by the midbrain, and possibly from other midbrain-

related physiological abnormalities. It has been previously

suggested that Ate1-dependent arginylation plays an important

role in nerve growth and regeneration [17,47], leading to an

interesting possibility that some of the Wnt1-Ate1 mice may have

neurological abnormalities of varying severity originated from the

developmental defects not directly related to the neural crest cell

migration. This possibility requires further study.

Despite prominent Wnt1 expression in the head and chest area

and somites, we saw no visible reduction in Ate1 staining in such

neural crest-derived structures as teeth, endocrine glands, and

heart, and no abnormalities were detected in these structures in

Wnt1-Ate1 knockout mice. It is possible that in these areas Wnt1-

expressing cells exist in a mixture with other cell populations,

making them difficult to distinguish on tissue sections. In such case,

their migration through the embryo could be heavily aided by

surrounding tissues and impairment in their migratory machinery

would be less visible. It is also possible that these cells normally

express lower levels of Ate1, making the Ate1 knockout and the

corresponding migratory defects difficult to detect. Further

investigation of these differences may lead to important discoveries

of the role of arginylation in the development of these organs.

Our data show that uniform impairment of the intracellular

arginylation-dependent mechanisms of cell migration produces

different effects in different Wnt1-expressing migratory cell

subpopulations during development. These differences may be

explained by the diverse mechanisms by which these subpopula-

tions migrate in situ (Figure 8). Cells of the cranial neural crest

migrate in large groups from the upper trunk region into the

craniofacial areas and contribute to the soft palate, frontal bones,

and other craniofacial structures. Vagal and sacral neural crest

cells migrate individually along the developing gut from the back

and the front, to give rise to the enteric nervous system. Trunk

neural crest cells migrate over relatively short distances forming

pigment cells, ganglia, and some other structures. Based on the

timing of the corresponding developmental events and the

distances these cells cover overall, it has been calculated that

migration in these subpopulations occurs at different speeds [10],

and therefore such migration on the organismal level would be

differentially affected by impairment of the same intracellular

mechanisms. In the trunk, where cells migrate slowly over short

distances, 2–4-fold reduction in the motility rate would be

practically unnoticeable on the developmental scale. Consistent

with this, we did not observe significant defects in the structures

that develop from these cells due to Ate1 knockout. In the gut, cells

migrate individually and while the migration speed of these cells is

believed to be the fastest, up until now it has been unknown how

much of this speed is contributed by the movement of the

expanding tissues rather than the migrating cells themselves. Our

data that enteric neurons are positioned normally despite the Ate1

knockout in these cells points to a possibility that their migration is

heavily aided by tissue growth and gut elongation and that the cells

themselves do not need to move fast to reach their final position.

Cells contributing to craniofacial skeleton migrate as large

subpopulations, with predicted speeds close to those experimen-

tally observed for neural crest and other mesenchymal cells in

culture and in situ (,40 mm/hour, see [10] for review). Our data
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Figure 8. Ate1-dependent impairment of cell migration preferentially affects cranial neural crest-dependent morphogenesis.
Arginyltransferase Ate1 has been found to arginylate multiple intracellular targets, including a large subset of cytoskeletal proteins and a smaller
subset of regulatory proteins. A combination of these arginylation events results in impairment of cell adhesion and the cytoskeletal structures that
lead to slower migration speeds. The three migrating subpopulations of Wnt1-expressing cells—cranial neural crest (bright orange-yellow arrows),
vagal and sacral neural crest (large pale yellow arrows), and trunk neural crest (pale yellow arrowheads)—are differentially affected by this impaired
migration. In the trunk, cells migrating over short distances with relatively slow speeds are apparently capable of getting to their destinations despite
the Ate1-dependent defects. Cells of the vagal and sacral neural crest migrate individually along the expanding gut; while they are believed to be the
fastest migrating neural crest cells, our data suggest that this migration may be greatly aided by the expanding surrounding tissues and that Ate1-
dependent impairments do not affect the final positioning of these cells in the enteric nervous system. Cranial neural crest giving rise to some of the
skull bones (top arrow) and palate (bottom arrow) migrate with steady speeds similar to those observed in culture. Migration of these cells is heavily
affected by Ate1 knockout, resulting in morphogenic defects in multiple craniofacial structures.
doi:10.1371/journal.pgen.1000878.g008
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suggest that the migration of these cells depends heavily on the

intracellular mechanical components that drive cell adhesion and

movement, and that this cell population is affected the most by the

impairment in these mechanisms. This is consistent with the results

of other studies, where mouse knockouts of the cell migration-

related genes (such as fibronectin, cell adhesion molecules, etc., see

[10] for review) leads to similar defects.

Recent data suggest that many proteins involved in different

physiological events are arginylated [23] and the list of identified

arginylation targets is by far not complete. A prominent subset of

the identified arginylated proteins (such as actin, etc.) are directly

implicated in cell migration and it is very easy to suggest how lack

of arginylation could lead to the defects in these proteins and affect

cell migration by impairing the intracellular cytoskeleton-related

machinery. For example, talin, a major focal adhesion protein, has

been found to be arginylated on Ala1903, and the present study

suggests that talin-containing focal adhesions are significantly

reduced in Ate1 knockout, pointing to a possibility that talin

arginylation is one of the key players in the Ate1 regulation of cell

adhesion. Studies of the regulation of these, and other proteins by

arginylation and its contribution to Ate1-dependent cell migration

constitute exciting directions of further research.

Materials and Methods

Transgenic mice
Mice with the exons 1–3 of the Ate1 gene flanked by LoxP

sites (Ate1-floxed mice) were generated by introducing a targeting

construct into the corresponding genome region in a cassette

containing the floxed allele of the Ate1 genomic region fused with

an frt-flanked Neo gene. The targeting vector was constructed using

recombineering technique as described in [48]. A 12,375 bp genomic

DNA fragment (position Chr 7: 130,302,694–130,315,068 Mouse

Feb 2006 Assembly) containing exon 1–4 of the gene was retrieved

from BAC clone RP23-92D13. A loxP sequence was inserted 657 bp

upstream of exon 1 and A frt-neo-frt-loxP cassette was inserted into

the intron 3, 505 bp downstream of exon 3. Thus a fragment of

5,019 bp genomic DNA containing exons 1–3 of the Ate1 gene was

floxed (see Figure S1A). For ES cell targeting, the targeting vector was

linearized with Not1 and electroporated into D1 ES cells derived

from F1 hybrid blastocysts of 129S6 x C57BL/6J by Gene Targeting

& Transgenic Facility at University of Connecticut Health Center.

192 G418 resistant ES colonies were isolated, and 32 clones were

screened by nested PCR using primers outside the construct paired

with primers inside the neo cassette. The sequences for primers used

for ES cell screening were as follows:

59 arm forward primers: ATE Scr F1 (59- GTCTCAC-

TTCCCTTCCTTAG -39) and ATE Scr F2 (59- ATTACCA-

GTGCTCGGTGCTT -39). Reverse primers: Loxp scrR1 (59–

GAGGGACCTAATAACTTCGT-39) and loxp scrR2 (59-GGA-

ATTGGGCTGCAGGAATT-39). 39 arm forward primers: frt scr

F1 (59-TTCTGAGGCGGAAAGAACCA-39) and frt scr F2, (59-

CGAAGTTATTAGGTGGATCC-39); Reverse primers: ATE Scr

R1 (59- tcagtggttctcaacctgtg -39) and ATE Scr R2 (59- caggggttacc-

taagaccat -39);

7 out of 32 clones were PCR positive for both arms and were

expanded. The genotypes were confirmed after ES cell expansion.

For chimera generation and F1 mice genotype analysis three

clones (1B3, 1A4 and 1H2) were aggregated with 8-cell embryos of

CD-1 strain. The aggregated embryos were transferred to

pseudopregnant recipients and allowed to develop to term. 25

chimeric mice were identified by coat color. Five chimeras (2 each

for1B3 and 1A4, 1 for 1H2) were mated with CD-1 females to test

for germline transmission. All of them were demonstrated as

germline chimeras. The neo cassette was removed by mating the

chimeras with ROSA26FLP1 (Jax stock#: 003946) homozygous

females.

To obtain Wnt1-Ate1 mice, Ate1-floxed mice were crossed with

the mouse strain Tg(Wnt1-GAL4)11Rth Tg(Wnt1-cre)11Rth/J

(The Jackson Laboratory) expressing Cre recombinase under the

neural crest-inducing Wnt1 promoter. The following primers were

used for genotyping of the final mouse strain (see Figure S1B for a

typical genotyping gel): for Ate1-floxed allele, Ate1gtLoxF (59-TG-

CCTCCAGCATTGGATGAA-39) and Ate1gtLoxR (59-CCATG-

GGTCTCCAATTTGCA-39); For ROSA locus and Wnt trans-

gene, primers recommended by the Jackson Laboratory were used

as described on their web site for each corresponding strain.

Ate1 antibody
Rat monoclonal antibodies against a mixture of full-length

bacterially expressed Ate1-1 and Ate1-2 were custom produced by

Absea (http://www.absea-antibody.com). Reactivity with individ-

ual Ate1 isoforms was verified by Western blots against purified

bacterially expressed Ate1, isoforms 1–4. Clone 6F11 that interacts

equally with all four Ate1 isoforms was used for section staining

shown in Figure S3 and Figure S4.

Anatomical and histological analysis
For gross anatomical examination, mice at different postnatal

stages were euthanized, dissected and observed for possible organ

and tissue abnormalities, and individual organs were collected and

compared between the mutants and the matching controls. For

obtaining the images of the roof of the mouth and nasopharynx

entrance shown in Figure 2 newborn mice were fixed in 4%

paraformaldehyde in PBS and stored at 4uC. Fixed samples were

washed in PBS and lower jaws were removed, and then the palate

and the entrance of nasopharynx were observed under a dissection

microscope.

For histological analysis, mice and isolated mouse organs

including X-gal stained embryos were fixed in 4% paraformalde-

hyde in PBS, paraffin embedded, and sectioned. For observation

and analysis of general organ morphology sections were stained

with hematoxylin and eosin. For immunohistochemistry shown in

Figure S3 and Figure S4, paraffin-embedded sections were

deparaffinized with xylene, re-hydrated with sequential metha-

nol:PBS series (95:5, 70:30, 50:50 and 30:70), washed with PBS,

blocked with PBS supplemented with 0.1% Triton X-100 and

BSA, and treated with anti-Ate1 (described above, 1:50), anti-beta-

III tubulin (R&D Systems, MAB1195, 1:100), anti-phospho

histone H3 (Santa Cruz Biotechnology, sc-8656, 1:500), anti-

cleaved caspase 3 (Cell Signaling Technology, #9661, 1:100) or

anti-talin (Santa Cruz Biotechnology, sc-7534, 1:500) antibodies in

PBS supplemented with 0.1% Triton X-100. After washing with

0.1% Triton X-100 in PBS, samples were treated with fluorescent

dye-conjugated secondary antibodies, washed with PBS and

mounted in Aqua Poly/Mount (Polysciences, Inc., 18606).

Samples were observed under a fluorescent microscope.

Whole-mount skeletal staining
Whole-mount skeletons of newborn and adult mice were stained

with alizarin red S and alcian blue 8GS as described in [41].

Whole-mount immunostaining for enteric nerves
Fixation and blocking in guts excised from embryos at E16.5

was performed as described in [49]. After blocking, guts were

incubated with anti beta-III tubulin antibody for 2 days at 1:100

dilution in 5% BSA in TST buffer (20 mM Tris-HCl (pH 8.0),
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150 mM NaCl, 0.1% Triton X-100), washed with TST, and

treated with FITC-conjugated secondary antibody at 1:100

dilution in TST. After washing in TS buffer (20 mM Tris-HCl

(pH 8.0), 150 mM NaCl), samples were mounted in OxyFluor at

1:100 dilution in TS, and observed under confocal microscope.

Whole-mount in situ hybridization
Riboprobe generation and in situ hybridization were performed

according to [50] with a modification in post-antibody wash as

follows: after the treatment with the antibody, embryos were

washed 6 times for 1 hour each and stored at 4uC overnight. This

washing process was done 3 times over the course of 3 days. After

color development, embryos were fixed, dehydrated, rehydrated

and cleared according to the protocol available online (http://

www.med.upenn.edu/mcrc/histology_core/wholemount.shtml).

Cultures of neural crest explants
Embryos at E8.5 or E9.5 were collected from pregnant female

mice into PBS, and neural tube area was dissected from the back

of the embryos using 27 gauge needles. Dissected tissues were

cultured in 1:1 of DMEM/F10 supplemented with 10% FCS and

antibiotics on glass bottom dishes (Matek) pre-coated with 10 mg/

ml fibronectin in PBS for 1 hour at room temperature. Explants

were cultured for 2 days and used for further analyses.

Cell migration assays
Immortalized wild-type and Ate1 KO embryonic fibroblasts

were cultured as described in [24]. Wound healing assays to

measure the migration speeds of these cells were performed by

growing the cells to a confluent monolayer in tissue culture dishes,

followed by scraping off a portion of the monolayer, and the

migration of the cells into the resulting wound was recorded as

time-lapse images at 2 min intervals over 10–15 hour observation

period and analyzed using Metamorph imaging software (Molec-

ular Devices).

To analyze the migration of Ate1 KO cells in co-culture with

wild-type cells, wound healing experiment were performed with

GFP-labeled Ate1 KO cells co-plated with wild-type cells as a

mixture at the ratio of KO:WT 1:2 to 1:6. For reciprocal

experiments, GFP-labeled wild-type and unlabeled Ate1 KO cells

were used.

Immunocytochemistry in cultured cells
For immunostaining, WT and Ate1 KO cell monolayers were

scraped to produce the wound. After 4 hours, cells were fixed with

4% paraformaldehyde, permeabilized with 1% Triton X-100, and

stained with mouse monoclonal anti-paxillin antibody (BD

Biosciences), rhodamine-phalloidin (Sigma), mouse anti-talin clone

8d4 (Sigma), and mouse anti-FAK, clone 2A7 (Upstate Biotech-

nology) in different combinations. For immunostaining for

fibronectin, cells attached on the cover glasses were fixed in 4%

paraformaldehyde and stained with rabbit polyclonal anti-

fibronectin antibody (Sigma). To observe only the extracellular

fibronectin, cells were not permeabilized or washed with Triton X-

100 before or after fixation.

X-gal staining in fetuses and neural crest explants
Fetuses or neural crest explants were fixed with 4% parafor-

maldehyde at 4C for 1 hour, rinsed for 30 minutes with rinse

buffer (0.2 M sodium phosphate pH 7.3, 2 mM magnesium

chloride, 0.02% IGEPAL and 0.01% sodium deoxycholate) 3

times, and incubated overnight at 37uC in the staining solution

(5 mM potassium ferricyanide, 5 mM potassium ferrocyanide and

1 mg/ml X-gal in rinse buffer). Samples were post-fixed with 4%

paraformaldehyde and stored in 70% ethanol.

Detection of apoptosis in fetuses by TUNEL assay
TUNEL assay were performed in fetuses at E9.5 and E12.5 using

In Situ Cell Death Detection Kit, Fluorescein (Roche). Fetuses were

fixed in 4% paraformaldehyde in PBS overnight at 4uC, washed 3

times in PBS and incubated with 18.7 mg/ml proteinase K in 10 mM

Tris/HCl, pH 7.5 for 30 minutes at 37uC. After washing 3 times in

PBS, samples were incubated in the Label Solution supplemented

with Enzyme Solution for 1 hour at 37uC, then washed in PBS 3

times and photographed under a fluorescent microscope. For

negative control, samples were incubated in Label Solution without

Enzyme Solution. For positive control, samples were treated with

100 U/ml DNase I and 1 mg/ml BSA in 50 mM Tris/HCl, pH 7.5

for 20 minutes at room temperature, followed by incubation with

Label Solution supplemented with Enzyme Solution.

Detection of BrdU incorporation in neural crest explants
by immunostaining

Cell proliferation in the neural crest explants from E8.5 and E9.5

fetuses was analyzed by detecting BrdU incorporation using BrdU

Cell Proliferation Assay kit (Calbiochem, QIA58). After 2-day

culture, explants were incubated with 1:2000 BrdU Label in culture

medium for 2 hours. Explants were washed twice in DMEM without

serum, and fixed with Fixative/Denaturing solution at room

temperature for 30minutes. After washing in 70% ethanol, samples

were air-dried and incubated with 1:100 Anti-BrdU antibody in

Antibody Diluent at room temperature for 1 hour. Samples were

washed twice in Wash Buffer (1:20 Plate Wash Concentrate in

water), twice in PBS, and treated with 1:200 Cy3 conjugated

secondary antibody (Jackson ImmunoResearch Laboratories) in PBS

at room temperature for 1 hour. Samples were washed 3 times in

PBS and photographed under a fluorescent microscope.

Supporting Information

Figure S1 (A) Construction of the Ate1 conditional knockout and

Wnt1-Ate1 mice. (B) Genotyping of Ate1-floxed and Wnt1-Ate1

mice.

Found at: doi:10.1371/journal.pgen.1000878.s001 (0.76 MB TIF)

Figure S2 Ate1 antibody characterization. Left, Coomassie-

stained gel of wild-type and knockout cell extracts. Right top,

immunoblots of the cell extracts shown on the left. Ate1 antibody

specifically recognizes a ,55 kDa band in the wild-type but not

knockout extract. Right bottom, immunoblots of bacterially

expressed Ate1 isoforms show that Ate1 antibody reacts equally

with all four isoforms.

Found at: doi:10.1371/journal.pgen.1000878.s002 (3.06 MB TIF)

Figure S3 Ate1 deletion in Wnt1-Ate1 mice in midbrain and

enteric neurons. (A) An H&E-stained sagittal section of an embryo

at E16.5. Large and small box outline the areas of the animal

corresponding to those shown in (B,C), respectively. (B) Midbrain

area of the control (WT) and Wnt1-Ate1 (KO) newborn mouse

double-stained for the neuronal marker beta-III tubulin and Ate1.

In KO, Ate1 is prominently missing from the midbrain, but not

from other areas of the embryo. (C) Cross sections of the gut in

control (WT) and Wnt1-Ate1 (KO) newborn co-stained for Ate1

and beta-III tubulin show prominent absence of Ate1 from the

enteric neurons. Decrease in the Ate1 signal level compared to the

control was similar in the gut neurons and in mid-brain, as verified

by measurement of the fluorescence levels.

Found at: doi:10.1371/journal.pgen.1000878.s003 (3.25 MB TIF)
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Figure S4 Ate1 deletion in Wnt1-Ate1 mice affects some but not

all of the peripheral nervous system. Midbrain (m) and hindbrain

(h) area of the control (WT) and Wnt1-Ate1 (KO) E12.5 embryo

double-stained for the neuronal marker beta-III tubulin and Ate1.

Ate1 is prominently missing from the midbrain and some

peripheral nervous system structures (arrowheads).

Found at: doi:10.1371/journal.pgen.1000878.s004 (3.87 MB TIF)

Figure S5 Enteric neurons are positioned normally in Wnt1-

Ate1 mice. Mid-areas of whole mount E16.5 guts stained for beta-

III tubulin.

Found at: doi:10.1371/journal.pgen.1000878.s005 (2.44 MB TIF)

Figure S6 Impaired cell migration in Wnt1-Ate1-R26R neural

crest explants. X-gal staining of control (left four panels) and

Wnt1-Ate1 (right four panels) explants derived from E8.5 embryos

show that while LacZ-expressing cells in control actively emigrate

from the explant and reach the periphery of the expanding cell

mass, cells in the mutant stay closer to the explant and do not

appear to venture out on their own. 106 images on the periphery

show higher magnifications of the regions boxed in the 26 images

of the corresponding explants in the center, illustrating the cell

emigration from the explant mass in control (left) and absence of

such emigration in the knockout (right). 10 control and 6 mutant

explants were analyzed.

Found at: doi:10.1371/journal.pgen.1000878.s006 (4.60 MB TIF)

Figure S7 Ate1 knockout in Wnt1-Ate1 embryos does not result

in increased rates of apoptosis. Left, lower magnification image of

a control DNaseI-treated embryo stained with TUNEL. Boxed

regions outline the areas of the head (1), pharyngeal arches (2), and

back (3), shown magnified in the right-hand panels for TUNEL-

stained wild-type, Wnt1-Ate1, negative, and positive control

embryos as marked. Levels of TUNEL staining in Wnt1-Ate1

and wild-type embryos are similar to those in the negative control

and do not show any prominent differences from each other. 4

wild-type and 2 Wnt1-Ate1 embryos were analyzed.

Found at: doi:10.1371/journal.pgen.1000878.s007 (1.82 MB TIF)

Figure S8 Ate1 knockout in Wnt1-Ate1 embryos does not result

in increased rates of apoptosis. Cross sections of wild-type (top) and

Wnt1-Ate1 (bottom) embryos at E9.5 stained with an antibody to

cleaved caspase 3. The area shown includes neural tube with

adjacent population of migratory neural crest cells (see Figure

S13C for X-gal staining of a similar section). Levels of cleaved

caspase 3 staining in Wnt1-Ate1 and wild-type embryos do not

show any prominent differences from each other and from the

negative control with secondary antibody only.

Found at: doi:10.1371/journal.pgen.1000878.s008 (1.22 MB TIF)

Figure S9 Ate1 knockout does not affect neural crest cell

proliferation rates. X-gal stained E9.5 wild-type (top) and Wnt1-

Ate1 (bottom) embryos were sectioned and immunostained for cell

proliferation marker phospho-histone H3. No differences in

staining were observed between wild-type and Wnt1-Ate1 in X-

gal stained tissues.

Found at: doi:10.1371/journal.pgen.1000878.s009 (4.03 MB TIF)

Figure S10 Ate1 knockout does not affect neural crest cell

proliferation rates. Neural crest explants from E8.5 and E9.5 Ate1

knockout embryos labeled with BrdU after 2 days in culture.

Levels of BrdU staining are similar in wild-type and knockout

explants, suggesting no differences in proliferation rates of the

neural crest cells.

Found at: doi:10.1371/journal.pgen.1000878.s010 (3.57 MB TIF)

Figure S11 Ate1 knockout results in reduced focal adhesions.

Left panels, fluorescence staining of the edge of the cell monolayer

moving into the wound with anti-paxillin (top), anti-talin (middle),

and anti-focal adhesion kinase (FAK, bottom) to visualize focal

adhesions. Knockout cells show a dramatic reduction in focal

adhesion area and number. Bar, 20 mm. Middle panels, Western

Blotting comparison of the focal adhesion protein levels in wild-

type and Ate1 knockout cells. Loading was adjusted by weight of

the packed cell pellets and verified by loading control–actin for

paxillin, and tubulin for talin and FAK, as shown in the image.

Right panels, quantification of the number of paxillin focal

adhesions per mm of the wound edge and of the area of talin focal

adhesions per cell leading edge shows that the number of

prominent focal adhesions in wild-type exceeds that in the

knockout by over 5-fold. Error bars for paxillin represent SEM

for the measurements in 21 and 18 different images in WT and

KO, respectively. Error bars for talin represent SEM for the

measurements of 15 WT and 18 KO cells.

Found at: doi:10.1371/journal.pgen.1000878.s011 (2.18 MB TIF)

Figure S12 Ate1 knockout results in reduced focal adhesions.

Left panels, fluorescence staining of single cells with anti-talin (top)

and anti-paxillin (bottom) to visualize focal adhesions. Knockout

cells show a dramatic reduction in focal adhesion area and

number. Right panels, quantification of the number of focal

adhesion area per cell shows that the number of prominent focal

adhesions in wild-type exceeds that in the knockout by several fold.

Quantifications shown represent measurements of 15 WT and 15

KO cells (paxillin) and 21 WT and 25 KO cells (talin).

Found at: doi:10.1371/journal.pgen.1000878.s012 (2.07 MB TIF)

Figure S13 Ate1 knockout results in reduced focal adhesions.

Cross sections of wild-type (A) and Wnt1-Ate1 (B) embryos at E9.5

stained with antibody to talin. C, a similar area from an X-gal

stained embryo showing the location of the migratory neural crest

cell population used for the quantification of talin levels shown in

D. Error bars represent SEM for measurements of 6 regions taken

from each of the 5 wild-type and 4 Wnt1-Ate1 sections (30 wild-

type and 24 Wnt1-Ate1 measurements), p-value,0.01.

Found at: doi:10.1371/journal.pgen.1000878.s013 (2.98 MB TIF)

Figure S14 Images of X-gal-stained E9.5 wild-type (left) and

Wnt1-Ate1 (right) embryos used for obtaining higher magnifica-

tion views shown in Figure 4 of the main text. Embryos were

staged by somite count, indicated for each embryo on the top right

next to the head. For some embryos (marked with X and asterisks)

somite counts were not performed. These embryos were staged by

comparison with their littermates as follows: *–littermates (shown

on right) had 25 and 28 somites; **–littermate (shown on left) had

21 somites; ***–littermates had 22–26 somites; X–four embryos

from the same litter lined up on the bottom for comparison.

Found at: doi:10.1371/journal.pgen.1000878.s014 (4.29 MB TIF)

Figure S15 Images of Sox10-stained E9.5 and E10.5 wild-type

and Wnt1-Ate1 embryos used for obtaining higher magnification

views shown in Figure 4 of the main text.

Found at: doi:10.1371/journal.pgen.1000878.s015 (4.99 MB TIF)

Video S1 Newborn Wnt1-Ate1 pup (left bottom) exhibits

shallow, rapid breathing, eventually resulting in the accumulation

of air in the abdominal cavity and death (see Figure 1 in the main

text). In contrast its littermate control (right top) breathes regularly

and exhibits no visible abnormalities.

Found at: doi:10.1371/journal.pgen.1000878.s016 (4.61 MB AVI)

Video S2 Four littermate mice at P9 show different behavior

depending on the genotype. While control mice (two larger pups)

move actively, Wnt1-Ate1 mice (two smaller pups, one on right

and one hidden under the other pups at the beginning of the
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video) don’t move around much an appear to be ‘frozen’ in place.

Such mice die within the first three weeks after birth (see Table 1).

Found at: doi:10.1371/journal.pgen.1000878.s017 (3.20 MB AVI)

Video S3 Wild-type cells moving into the wound cover the

entire wound area over 12 hours.

Found at: doi:10.1371/journal.pgen.1000878.s018 (2.69 MB AVI)

Video S4 Ate1 knockout cells moving into the wound are

significantly slowed down and do not cover large areas over

extended periods of time.

Found at: doi:10.1371/journal.pgen.1000878.s019 (2.70 MB AVI)

Video S5 Ate1 knockout cells (red) co-cultured with wild-type are

able to cover larger distances than when migrating by themselves.

Some knockout cells could be clearly seen ‘riding’ on the migrating

wild-type cells rather than moving on their own.

Found at: doi:10.1371/journal.pgen.1000878.s020 (1.78 MB AVI)
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