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Abstract: In this survey we stress the importance of the higher transcendental Mittag-Leffler function
in the framework of the Fractional Calculus. We first start with the analytical properties of the classical
Mittag-Leffler function as derived from being the solution of the simplest fractional differential
equation governing relaxation processes. Through the sections of the text we plan to address the
reader in this pathway towards the main applications of the Mittag-Leffler function that has induced
us in the past to define it as the Queen Function of the Fractional Calculus. These applications concern
some noteworthy stochastic processes and the time fractional diffusion-wave equation We expect that
in the next future this function will gain more credit in the science of complex systems. Finally, in an
appendix we sketch some historical aspects related to the author’s acquaintance with this function.

Keywords: fractional calculus; Mittag-Lefflller functions; Wright functions; fractional relaxation;
diffusion-wave equation; Laplace and Fourier transform; fractional Poisson process complex systems

1. Introduction

For a few decades, the special transcendental function known as the Mittag-Leffler function has
attracted the increasing attention of researchers because of its key role in treating problems related to
integral and differential equations of fractional order.

Since its introduction in 1903–1905 by the Swedish mathematician Mittag-Leffler at the beginning
of the last century up to the 1990s, this function was seldom considered by mathematicians and
applied scientists.

Before the 1990s, from a mathematical point of view, we recall the 1930 paper by Hille and
Tamarkin [1] on the solutions of the Abel integral equation of the second kind, and the books
by Davis [2], Sansone & Gerretsen [3], Dzherbashyan [4] (unfortunately in Russian), and finally
Samko et al. [5]. Particular mention would be for the 1955 Handbook of High Transcendental Functions
of the Bateman project [6], where this function was treated in Volume 3, in the chapter devoted to
miscellaneous functions. For former applications we recall an interesting note by Davis [2] reporting
previous research by Dr. Kenneth S. Cole in connection with nerve conduction, and the papers by Cole
& Cole [7], Gross [8] and Caputo & Mainardi [9,10], where the Mittag-Leffler function was adopted
to represent the responses in dielectric and viscoelastic media. More information are found in the
Appendix of this survey.

In the 1960’s the Mittag-Leffler function started to exit from the realm of miscellaneous functions
because it was considered as a special case of the general class of Fox H functions, that can exhibit
an arbitrary number of parameters in their integral Mellin-Barnes representation. However, in our
opinion, this classification in a too general framework has, to some extent, obscured the relevance and
the applicability of this function in applied sciences. In fact, most mathematical models are based on a
small number of parameters, say 1 or 2 or 3, so that a general theory may be confusing whereas the
adoption of a generalized Mittag-Leffler function with 2 or 3 indices may be sufficient.
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Nowadays it is well recognized that the Mittag-Leffler function plays a fundamental role in
Fractional Calculus even if with a single parameter (as originally introduced by Mittag-Leffler) just to
be worth of being referred to as the Queen Function of Fractional Calculus, see Mainardi & Gorenflo [11].
We find some information on the Mittag-Leffler functions in any treatise on Fractional Calculus but
for more details we refer the reader to the surveys of Haubold, Mathai and Saxena [12] and by Van
Mieghem [13] and to the treatise by Gorenflo et al. [14], just devoted to Mittag-Leffler functions, related
topics and applications.

The plan of this survey is the following. We start to give in Section 2 the main definitions and
properties of the Mittag-Leffler function in one parameter with related Laplace transforms. Then in
Section 3 we describe its use in the simplest fractional relaxation equation pointing out its compete
monotonicity. The asymptotic properties are briefly discussed in Section 4. In Section 5 we briefly
discuss the so called generalized Mittag-Leffler function, that is the 2-parameter Mittag-Leffler function.
Of course further generalization to 3 and more parameter will be referred to specialized papers and
books. Then in the following sections we discuss the application of the Mittag-Leffler function in some
noteworthy stochastic processes. We start in Section 6 with the fractional Poisson process, and then in
Section 7 with its application of the thinning of renewal processes. The main application are dealt in
Section 8 where we discuss the continuous time random walks (CTRW) and then in Section 9 we point
out the asymptotic universality. In Section 10 we discuss the time fractional diffusion-wave processes
pointing out the role of the Mittag-Leffler functions in two parameters and their connection with the
basic Wright functions. In Appendix A we find worthwhile to report the acquaintance of the author
with the Mittag-Leffler functions started in the late 1960s and continued up to nowadays.

We recall that Sections 3–10 are taken from several papers by the author, published alone and
with colleagues and former students. Furthermore we have not considered other applications of the
Mittag-Leffler functions including, for example, anomalous diffusion theory in terms of fractional
and generalized Langevin equations. On this respect we refer the readers to the articles of the
author, see References [15,16], and to the recent book by Sandev and Tomovski [17] and references
therein. For many items related to the Mittag-Leffler functions we refer again to the treatise by
Gorenflo et al. [14].

2. The Mittag-Leffler Functions: Definitions and Laplace Transforms

The Mittag-Leffler function is defined by the following power series, convergent in the whole
complex plane,

Eα(z) :=
∞

∑
n=0

zn

Γ(αn + 1)
, α > 0 , z ∈ C . (1)

We recognize that it is an entire function of order 1/α providing a simple generalization of
the exponential function exp(z) to which it reduces for α = 1. For detailed information on the
Mittag-Leffler-type functions and their Laplace transforms the reader may consult e.g., [6,18,19] and
the recent treatise by Gorenflo et al. [14].

We also note that for the convergence of the power series in (1) the parameter α may be complex
provided that <(α) > 0. The most interesting properties of the Mittag-Leffler function are associated
with its asymptotic expansions as z→ ∞ in various sectors of the complex plane.

In this paper we mainly consider the Mittag-Leffler function of order α ∈ (0, 1) on the negative real
semi-axis where is known to be completely monotone (CM) due a classical result by Pollard [20],
see also Feller [21].

Let us recall that a function φ(t) with t ∈ IR+ is called a completely monotone (CM) function if it
is non-negative, of class C∞, and (−1)nφ(n)(t) ≥ 0 for all n ∈ IN. Then a function ψ(t) with t ∈ IR+ is
called a Bernstein function if it is non-negative, of class C∞, with a CM first derivative. These functions
play fundamental roles in linear hereditary mechanics to represent relaxation and creep processes, see,
for example, Mainardi [22]. For mathematical details we refer the interested reader to the survey paper
by Miller and Samko [23] and to the treatise by Schilling et al. [24].
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In particular we are interested in the function

eα(t) := Eα(−tα) =
∞

∑
n=0

(−1)n tαn

Γ(αn + 1)
, t > 0 , 0 < α ≤ 1 , (2)

whose Laplace transform pair reads

eα(t) ÷
sα−1

sα + 1
, α > 0 . (3)

Here we have used the notation ÷ to denote the juxtaposition of a function of time f (t) with its
Laplace transform

f̃ (s) =
∫ ∞

0
e−st f (t) dt .

The pair (3) can be proved by transforming term by term the power series representation of eα(t)
in the R.H.S of (2). Similarly we can prove the following Laplace transform pair for its time derivative

e′α(t) =
d
dt

Eα(−tα) ÷ − 1
sα + 1

, α > 0 . (4)

For this Laplace transform pair we can simply apply the usual rule for the Laplace transform for
the first derivative of a function, that reads

d
dt

f (t) ÷ s f̃ (s)− f (0+) .

3. The Mittag-Leffler Function in Fractional Relaxation Processes

For readers’ convenience let us briefly outline the topic concerning the generalization via fractional
calculus of the first-order differential equation governing the phenomenon of (exponential) relaxation.
Recalling (in non-dimensional units) the initial value problem

du
dt

= −u(t) , t ≥ 0 , with u(0+) = 1 (5)

whose solution is
u(t) = exp(−t) , (6)

the following two alternatives with α ∈ (0, 1) are offered in the literature:

(a)
du
dt

= −D1−α
t u(t) , t ≥ 0 , with u(0+) = 1 , (7)

(b) ∗Dα
t u(t) = −u(t) , t ≥ 0 , with u(0+) = 1 , (8)

where D1−α
t and ∗Dα

t denote the fractional derivative of order 1− α in the Riemann-Liouville sense
and the fractional derivative of order α in the Caputo sense, respectively.

For a generic order µ ∈ (0, 1) and for a sufficiently well-behaved function f (t) with t ∈ IR+ the
above derivatives are defined as follows, see for example, Gorenflo and Mainardi [18], Podlubny [19],

(a) Dµ
t f (t) =

1
Γ(1− µ)

d
dt

[∫ t

0

f (τ)
(t− τ)µ dτ

]
, (9)

(b) ∗D
µ
t f (t) =

1
Γ(1− µ)

∫ t

0

f ′(τ)
(t− τ)µ dτ . (10)
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Between the two derivatives we have the relationship

∗D
µ
t f (t) = Dµ

t f (t)− f (0+)
t−µ

Γ(1− µ)
= Dµ

t
[

f (t)− f (0+)
]

. (11)

Both derivatives in the limit µ → 1− reduce to the standard first derivative but for µ → 0+

we have
Dµ

t f (t)→ f (t) , ∗D
µ
t f (t) = f (t)− f (0+) , µ→ 0+ . (12)

In analogy to the standard problem (5), we solve the problems (7) and (8) with the Laplace
transform technique, using the rules pertinent to the corresponding fractional derivatives, that we
recall hereafter for a generic order µ ∈ (0, 1),

(a) Dµ
t f (t) ÷ sµ f̃ (s)− g(0+) , g(0+) =

1
Γ(1− µ)

lim
t→0+

∫ t

0
(t− τ)−µ f (τ) dτ . (13)

(b) ∗D
µ
t f (t) ÷ sµ f̃ (s)− f (0+) . (14)

We note that it is generally more cumbersome to use the Laplace transform pair for the Rieaman
Liouville derivative (13) that for the Capute derivative (14). Indeed the rule (13) requires the initial
value of the fractional integral of f (t) whereas the rule (14) simply requires the initial value of f (t).
For this property the Caputo derivative is mostly used in physical problems where finite initial values
are given.

Then we recognize that the problems (a) and (b) are equivalent since the Laplace transform of the
solution in both cases comes out as

ũ(s) =
sα−1

sα + 1
, (15)

that yields, in virtue of the Laplace transform pair (3)

u(t) = eα(t) := Eα(−tα) . (16)

We thus recognize that the Mittag-Leffler function provides the solution to the fractional relaxation
equation, as outlined, for example, by Gorenflo and Mainardi [18], Mainardi and Gorenflo [11], and
Mainardi [22].

Furthermore, by anti-transforming the R.H.S of (3) by using the complex Bromwich formula, and
taking into account for 0 < α < 1 the contribution from branch cut on the negative real semi-axis (the
denominator sα + 1 does nowhere vanish in the cut plane −π ≤ arg s ≤ π), we get, see the survey by
Gorenflo and Mainardi [18],

eα(t) =
∫ ∞

0
e−rtKα(r) dr , (17)

where

Kα(r) = ∓
1
π

Im
{

sα−1

sα + 1

∣∣∣∣
s = r e±iπ

}
=

1
π

rα−1 sin (απ)

r2α + 2 rα cos (απ) + 1
≥ 0 . (18)

We note that this formula was obtained as a simple exercise of complex analysis without be aware
of the Titchmarsh formula for inversion of Laplace transforms [25], revised by Gross and Levi [26] and
by Gross [27]. This formula is rarely outlined in books on Laplace transforms so we refer the reader for
example to Apelblat’s book [28] for its presence.

Since Kα(r) is non-negative for all r in the integral, the above formula proves that eα(t) is a CM function
in view of the Bernstein theorem. This theorem provides a necessary and sufficient condition for a CM
function as a real Laplace transform of a non-negative measure.

However, the CM property of eα(t) can also be seen as a consequence of the result by Pollard [20]
because the transformation x = tα is a Bernstein function for α ∈ (0, 1). In fact it is known that a
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CM function can be obtained by composing a CM with a Bernstein function based on the following
theorem: Let φ(t) be a CM function and let ψ(t) be a Bernstein function, then φ[ψ(t)] is a CM function.

As a matter of fact, Kα(r) provides an interesting spectral representation of eα(t) in frequencies.
With the change of variable τ = 1/r we get the corresponding spectral representation in relaxation
times, namely

eα(t) =
∫ ∞

0
e−t/τ Hα(τ) dτ , Hα(τ) = τ−2 Kα(1/τ) , (19)

that can be interpreted as a continuous distributions of elementary (i.e., exponential) relaxation
processes. As a consequence we get the identity between the two spectral distributions, that is

Kα(r) = Hα(τ) =
1
π

τα−1 sin (απ)

τ2α + 2 τα cos (απ) + 1
, (20)

a surprising fact pointed out in Linear Viscoelasticity by the author in his book [22]. This kind of
universal/scaling property seems a peculiar one for our Mittag-Leffler function eα(t).

In Figure 1, we show Kα(r) for some values of the parameter α. Of course for α = 1 the
Mittag-Leffler function reduces to the exponential function exp(−t) and the corresponding spectral
distribution is the Dirac delta generalized function centred at r = 1, namely δ(r− 1).

0 0.5 1 1.5 2
0

0.5

1

K
α
(r)

α = 0.25

α = 0.50

α = 0.75

α = 0.90

r

v
Figure 1. The spectral function Kα(r) for α = 0.25, 0.50, 0.75, 0.90 in the frequency range 0 ≤ r ≤ 2.

In Figure 2, we show some plots of eα(t) for some values of the parameter α. It is worth to note
the different rates of decay of eα(t) for small and large times. In fact the decay is very fast as t→ 0+

and very slow as t→ +∞.
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α
(−t

α
)
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α = 0.75

α = 1.00
α = 0.90
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Figure 2. The Mittag-Leffler function eα(t) for α = 0.25, 0.50, 0.75, 0.90, 1. in the time range 0 ≤ t ≤ 15.

The Mittag-Leffler function turns out the basic function in relaxation processes of physical
interested as occurring in viscoelastic and dielectric materials. We refer the readers for viscoelasticity,
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that is, to the contribution of the author including References [22,29,30] whereas for dielectric materials
to the survey by Garrappa et al. [31]. For the pioneers who have pointed out the role of the
Mittagf-Leffler function in mechanical and dielectric relaxation processes we refer to the recent survey
by Mainardi and Consiglio [32].

4. Asymptotic Approximations to the Mittag-Lefler Function

We now report the two common asymptotic approximations of our Mittag-Lefflrer function.
Indeed, it is common to point out that the function eα(t) matches for t → 0+ with a stretched
exponential with an infinite negative derivative, whereas as t→ ∞ with a negative power law. The
short time approximation is derived from the convergent power series representation (2). In fact,

eα(t) = 1− tα

Γ(1 + α)
+ · · · ∼ exp

[
− tα

Γ(1 + α)

]
, t→ 0 . (21)

The long time approximation is derived from the asymptotic power series representation of eα(t)
that turns out to be, see [6]

eα(t) ∼
∞

∑
n=1

(−1)n−1 t−αn

Γ(1− αn)
, t→ ∞ , (22)

so that, at the first order,

eα(t) ∼
t−α

Γ(1− α)
, t→ ∞ . (23)

As a consequence the function eα(t) interpolates for intermediate time t between the stretched
exponential and the negative power law. The stretched exponential models the very fast decay for
small time t, whereas the asymptotic power law is due to the very slow decay for large time t. In fact,
we have the two commonly stated asymptotic representations:

eα(t) ∼


e0

α(t) := exp
[
− tα

Γ(1 + α)

]
, t→ 0 ;

e∞
α (t) :=

t−α

Γ(1− α)
=

sin(απ)

π

Γ(α)
tα

, t→ ∞ .

(24)

The stretched exponential replaces the rapidly decreasing expression 1− tα/Γ(1 + α) from (21).
Of course, for sufficiently small and for sufficiently large values of t we have the inequality

e0
α(t) ≤ e∞

α (t) , 0 < α < 1 . (25)

In Figures 3 and 4, we compare for α = 0.25, 0.5, 0.75, 0.90 in logarithmic scales the function eα(t)
(continuous line) and its asymptotic representations, the stretched exponential e0

α(t) valid for t→ 0
(dashed line) and the power law e∞

α (t) valid for t→ ∞ (dotted line). We have chosen the time range
10−5 ≤ t ≤ 10+5.

We note from Figures 3 and 4 that, whereas the plots of e0
α(t) remain always under the

corresponding ones of eα(t), the plots of e∞
α (t) start above those of eα(t) but, at a certain point, an

intersection may occur so changing the sign of the relative errors. The interested reader may consul the
plots of the relative errors in the 2014 paper by the author [33] from which, in particular, Figures 1–4
have been extracted.
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Figure 3. Approximations e0
α(t) (dashed line) and e∞

α (t) (dotted line) to eα(t) in 10−5 ≤ t ≤ 10+5 for
α = 0.25 (LEFT) and for α = 0/50 (RIGHT).

Figure 4. Approximations e0
α(t) (dashed line) and e∞

α (t) (dotted line) to eα(t) (LEFT) and the
corresponding relative errors (RIGHT) in 10−5 ≤ t ≤ 10+5 for α = 0/75 (LEFT) and for α = 0.90
(RIGHT).

5. The Generalized Mittag-Leffler Function

In this survey we will devote our attention mainly to the classical Mittag-Leffler in one parameter
α as introduced by Mittag-Leffler since 1903 defined by the power series in (1). We have just learned
from the instructive E-print by Van Mieghem [13] that the series (1) was discussed by Hadamard in
1893, that is 10 years earlier than Mittag-Leffler himself.

As a matter of fact a straightforward generalization of the classical Mittag-Leffler function is
obtained by replacing the additive constant 1 in the argument of the Gamma function in (1) by
an arbitrary complex parameter β . It was formerly considered in 1905 by Reference [34] and soon
later by Mittag-leffler himself, almost incidentally in one of his notes. Later, in the 1950’s, such
generalization was investigated by Humbert and Agarwal, with respect to the Laplace transformation,
see References [35–37]. Usually, when dealing with Laplace transform pairs, the parameter β is
required to be real and positive like α.

For this function we agree to use the notation

Eα,β(z) :=
∞

∑
n=0

zn

Γ(αn + β)
, <α > 0 , β ∈ C , z ∈ C . (26)

Of course Eα,1(z) ≡ Eα(z). The series is still convergent for all the complex plane C so the function
(26) is still entire for <(α) > 0 for any β ∈ C with order 1/<α so the additional parameter play any
role on this respect. However the Laplace transform pairs concerning the Mittag-Leffler function (26)
and its derivative are known to be with α, β > 0 and <(s) > |λ|1α, see, for example, Refs. [14,19,22],

tβ−1 Eα,β (−λ tα) ÷ sα−β

sα + λ
=

s−β

1 + λs−α
. (27)
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and

tαk+β−1 E(k)
α,β(λtα) ÷ k! sα−β

(sα − λ)k+1 , k = 0, 1, 2, . . . . (28)

We also note the following relation concerning the first derivative of the classical Mittag-Leffler
function with the two-parameter Mittag-Leffler function usually overlooked by several authors but of
easy proof:

φα(t) := t−(1−α) Eα,α (−tα) = − d
dt

Eα (−tα) , t ≥ 0, 0 < α < 1 . (29)

We report the plot of the function φα(t) herewith in Figure 5.

Figure 5. Plots of φα(t) with α = 1/4, 1/2, 3/4, 1 versus t; for 0 ≤ t ≤ 5.

We note that Mittag-Leffler functions with more than two parameters were also dealt by several
authors as pointed out in [14]. In particular, for the 3-parameter Mittag-Leffler function (known as
Prabhakar function) and related operators we refer the reader to the recent survey by Giusti et al. [38]
and references therein. Kiryakova has dealt in a number of papers the multi-index Mittag-Leffler
functions, see for example [39].

6. The Fractional Poisson Process and the Mittag-Leffler Function

Hereafter we describe how the Mittag-Leffler function enters in the so-called fractional Poisson
process. We are following the original approach by Mainardi et al. in [40] where the fractional Poisson
process is referred to as the renewal process of the Mittag-Leffler type. However, an independent
approach to the fractional Poisson process was given for example, by Laskin in [41].

6.1. Essentials of Renewal Theory

The concept of renewal process has been developed as a stochastic model for describing the class
of counting processes for which the times between successive events are independent identically
distributed (iid) non-negative random variables, obeying a given probability law. These times are
referred to as waiting times or inter-arrival times. For more details see, for example, the classical
treatises by Cox [42], Feller [21].

For a renewal process having waiting times T1, T2, . . . , let

t0 = 0 , tk =
k

∑
j=1

Tj , k ≥ 1 . (30)
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That is t1 = T1 is the time of the first renewal, t2 = T1 + T2 is the time of the second renewal and
so on. In general tk denotes the kth renewal.

The process is specified if we know the probability law for the waiting times. In this respect we
introduce the probability density function (pd f ) φ(t) and the (cumulative) distribution function Φ(t) so
defined:

φ(t) :=
d
dt

Φ(t) , Φ(t) := P (T ≤ t) =
∫ t

0
φ(t′) dt′ . (31)

When the non-negative random variable represents the lifetime of technical systems, it is common
to refer to Φ(t) as to the failure probability and to

Ψ(t) := P (T > t) =
∫ ∞

t
φ(t′) dt′ = 1−Φ(t) , (32)

as to the survival probability, because Φ(t) and Ψ(t) are the respective probabilities that the system does
or does not fail in (0, T]. A relevant quantity is the counting function N(t) defined as

N(t) := max {k|tk ≤ t, k = 0, 1, 2, . . .} , (33)

that represents the effective number of events before or at instant t. In particular we have Ψ(t) =

P (N(t) = 0) . Continuing in the general theory we set F1(t) = Φ(t), f1(t) = φ(t), and in general

Fk(t) := P (tk = T1 + · · ·+ Tk ≤ t) , fk(t) =
d
dt

Fk(t) , k ≥ 1 , (34)

thus Fk(t) represents the probability that the sum of the first k waiting times is less or equal t and fk(t)
its density. Then, for any fixed k ≥ 1 the normalization condition for Fk(t) is fulfilled because

lim
t→∞

Fk(t) = P (tk = T1 + · · ·+ Tk < ∞) = 1 . (35)

In fact, the sum of k random variables each of which is finite with probability 1 is finite with
probability 1 itself. By setting for consistency F0(t) ≡ 1 and f0(t) = δ(t), where for the Dirac delta
generalized function in IR+ we assume the formal representation

δ(t) :=
t−1

Γ(0)
, t ≥ 0 ,

we also note that for k ≥ 0 we have

P (N(t) = k) := P (tk ≤ t , tk+1 > t) =
∫ t

0
fk(t′)Ψ(t− t′) dt′ . (36)

We now find it convenient to introduce the simplified ∗ notation for the Laplace convolution
between two causal well-behaved (generalized) functions f (t) and g(t)

∫ t

0
f (t′) g(t− t′) dt′ = ( f ∗ g) (t) = (g ∗ f ) (t) =

∫ t

0
f (t− t′) g(t′) dt′ .

Being fk(t) the pd f of the sum of the k iid random variables T1, . . . , Tk with pd f φ(t) , we easily
recognize that fk(t) turns out to be the k-fold convolution of φ(t) with itself,

fk(t) =
(

φ∗k
)
(t) , (37)

so Equation (36) simply reads:
P (N(t) = k) =

(
φ∗k ∗ Ψ

)
(t) . (38)
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Because of the presence of Laplace convolutions a renewal process is suited for the Laplace
transform method. Throughout this paper we will denote by f̃ (s) the Laplace transform of a sufficiently
well-behaved (generalized) function f (t) according to

L { f (t); s} = f̃ (s) =
∫ +∞

0
e−st f (t) dt , s > s0 ,

and for δ(t) consistently we will have δ̃(s) ≡ 1 . Note that for our purposes we agree to take s real. We
recognize that (38) reads in the Laplace domain

L{P (N(t) = k) ; s} =
[
φ̃(s)

]k Ψ̃(s) , (39)

where, using (32),

Ψ̃(s) =
1− φ̃(s)

s
. (40)

6.2. The Classical Poisson Process as a Renewal Process

The most celebrated renewal process is the Poisson process characterized by a waiting time pd f
of exponential type,

φ(t) = λ e−λt , λ > 0 , t ≥ 0 . (41)

The process has no memory. Its moments turn out to be

〈T〉 = 1
λ

, 〈T2〉 = 1
λ2 , . . . , 〈Tn〉 = 1

λn , . . . , (42)

and the survival probability is
Ψ(t) := P (T > t) = e−λt , t ≥ 0 . (43)

We know that the probability that k events occur in the interval of length t is

P (N(t) = k) =
(λt)k

k!
e−λt , t ≥ 0 , k = 0, 1, 2, . . . . (44)

The probability distribution related to the sum of k iid exponential random variables is known to
be the so-called Erlang distribution (of order k). The corresponding density (the Erlang pd f ) is thus

fk(t) = λ
(λt)k−1

(k− 1)!
e−λt , t ≥ 0 , k = 1, 2, . . . , (45)

so that the Erlang distribution function of order k turns out to be

Fk(t) =
∫ t

0
fk(t′) dt′ = 1−

k−1

∑
n=0

(λt)n

n!
e−λt =

∞

∑
n=k

(λt)n

n!
e−λt , t ≥ 0 . (46)

In the limiting case k = 0 we recover f0(t) = δ(t), F0(t) ≡ 1, t ≥ 0.
The results (44)–(46) can easily obtained by using the technique of the Laplace transform sketched

in the previous section noting that for the Poisson process we have:

φ̃(s) =
λ

λ + s
, Ψ̃(s) =

1
λ + s

, (47)

and for the Erlang distribution:

f̃k(s) = [φ̃(s)]k =
λk

(λ + s)k , F̃k(s) =
[φ̃(s)]k

s
=

λk

s(λ + s)k . (48)
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We also recall that the survival probability for the Poisson renewal process obeys the ordinary
differential equation (of relaxation type)

d
dt

Ψ(t) = −λΨ(t) , t ≥ 0 ; Ψ(0+) = 1 . (49)

6.3. The Renewal Process of Mittag-Leffler Type

A “fractional” generalization of the Poisson renewal process is simply obtained by generalizing
the differential Equation (49) replacing there the first derivative with the integro-differential operator

∗D
β
t that is interpreted as the fractional derivative of order β in Caputo’s sense, see Section 2. We write,

taking for simplicity λ = 1,

∗D
β
t Ψ(t) = −Ψ(t) , t > 0 , 0 < β ≤ 1 ; Ψ(0+) = 1 . (50)

We also allow the limiting case β = 1 where all the results of the previous section (with λ = 1) are
expected to be recovered.

For our purpose we need to recall the Mittag-Leffler function as the natural “fractional”
generalization of the exponential function, that characterizes the Poisson process. We again recall that
the Mittag-Leffler function of parameter β is defined in the complex plane by the power series

Eβ(z) :=
∞

∑
n=0

zn

Γ(β n + 1)
, β > 0 , z ∈ C , (51)

as stated in Section 2 where the parameter was denoted by α.
The solution of Equation (50) is known to be, see Section 3

Ψ(t) = Eβ(−tβ) , t ≥ 0 , 0 < β ≤ 1 , (52)

so
φ(t) := − d

dt
Ψ(t) = − d

dt
Eβ(−tβ) , t ≥ 0 , 0 < β ≤ 1 . (53)

Then, the corresponding Laplace transforms read

Ψ̃(s) =
sβ−1

1 + sβ
, φ̃(s) =

1
1 + sβ

, 0 < β ≤ 1 . (54)

Hereafter, we find it convenient to summarize the most relevant features of the functions Ψ(t)
and φ(t) when 0 < β < 1 . We begin to quote their series expansions convergent in all of IR suitable for
t→ 0+ and their asymptotic representations for t→ ∞,

Ψ(t) =
∞

∑
n=0

(−1)n tβn

Γ(β n + 1)
∼ sin (βπ)

π

Γ(β)

tβ
, (55)

and

φ(t) =
1

t1−β

∞

∑
n=0

(−1)n tβn

Γ(β n + β)
∼ sin (βπ)

π

Γ(β + 1)
tβ+1 . (56)

In contrast to the Poissonian case β = 1, in the case 0 < β < 1 for large t the functions Ψ(t) and
φ(t) no longer decay exponentially but algebraically. As a consequence of the power-law asymptotics
the process turns be no longer Markovian but of long-memory type. However, we recognize that for
0 < β < 1 both functions Ψ(t), φ(t) keep the “completely monotonic” character of the Poissonian case.
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as can be simply derived from Section 2. We recall that complete monotonicity of our functions Ψ(t) and
φ(t) means

(−1)n dn

dtn Ψ(t) ≥ 0 , (−1)n dn

dtn φ(t) ≥ 0 , n = 0, 1, 2, . . . , t ≥ 0 , (57)

or equivalently, their representability as real Laplace transforms of non-negative generalized functions
(or measures).

For the generalizations of Equations (44)–(46), characteristic of the Poisson and Erlang
distributions respectively, we must point out the Laplace transform pair

tβ k E(k)
β (−tβ) ÷ k! sβ−1

(1 + sβ)k+1 , β > 0 , k = 0, 1, 2, . . . , (58)

with E(k)
β (z) :=

dk

dzk Eβ(z) , that can be deduced from the book by Podlubny, see Equation (1.80) in

Reference [19]. Then, by using the Laplace transform pairs (25) and Equations (52), (53), (58) in
Equations (37) and (38), we have the generalized Poisson distribution,

P (N(t) = k) =
tk β

k!
E(k)

β (−tβ) , k = 0, 1, 2, . . . (59)

and the generalized Erlang pd f ’s (of order k ≥ 1),

fk(t) = β
tkβ−1

(k− 1)!
E(k)

β (−tβ) . (60)

The generalized Erlang distribution functions turn out to be

Fk(t) =
∫ t

0
fk(t′) dt′ = 1−

k−1

∑
n=0

tnβ

n!
E(n)

β (−tβ) =
∞

∑
n=k

tnβ

n!
E(n)

β (−tβ) . (61)

7. The Gnedenko-Kovalenko Theory of Thinning and the Mittag-Leffler Function

The thinning theory for a renewal process has been considered in detail by Gnedenko and
Kovalenko [43] in the first edition of their book on Queue theory of 1968. However, the connection with
the Laplace transform of the Mittag-Leffler function outlined at the end of this section in Equations (71)
and (72), see also [44] and [45], is surprisingly not present in the second edition of the book by
Gnedenko & Kovalenko in 1989.

We must note that other authors, like Szántai [46,47] speak of rarefaction in place of thinning.
Let us sketch here the essentials of this theory: in the interest of transparency and easy readability

we avoid the possible decoration of the relevant power law by multiplying it with a slowly varying
function.

Denoting by tn, n = 1, 2, 3, . . . the time instants of events of a renewal process, assuming
0 = t0 < t1 < t2 < t3 < . . . , with i.i.d. waiting times T1 = t1 , Tk = tk − tk−1 for k ≥ 2, (generically
denoted by T), thinning (or rarefaction) means that for each positive index k a decision is made: the
event happening in the instant tk is deleted with probability p or it is maintained with probability
q = 1− p, 0 < q < 1. This procedure produces a thinned or rarefied renewal process with fewer events
(very few events if q is near zero, the case of particular interest) in a moderate span of time.

To compensate for this loss we change the unit of time so that we still have not very few but
still a moderate number of events in a moderate span of time. Such change of the unit of time is
equivalent to rescaling the waiting time, multiplying it with a positive factor τ so that we have waiting
times τT1, τT2, τT3, . . . , and instants τt1, τt2, τt3, . . . , in the rescaled process. Our intention is, vaguely
speaking, to dispose on τ in relation to the rarefaction parameter q in such a way that for q near zero in
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some sense the “average” number of events per unit of time remains unchanged. In an asymptotic
sense we will make these considerations precise.

Denoting by F(t) = P(T ≤ t) the probability distribution function of the (original) waiting
time T, by f (t) its density ( f (t) is a generalized function generating a probability measure) so that
F(t) =

∫ t
0 f (t′) dt′, and analogously by Fk(t) and fk(t) the distribution and density, respectively, of the

sum of k waiting times, we have recursively

fk(t) =
∫ t

0
fk−1(t− t′) dF(t′) , for k ≥ 2 . (62)

Observing that after a maintained event the next one of the original process is kept with probability
q but dropped in favour of the second-next with probability p q and, generally, n− 1 events are dropped
in favour of the n-th-next with probability pn−1 q, we get for the waiting time density of the thinned
process the formula

gq(t) =
∞

∑
n=1

q pn−1 fn(t) . (63)

With the modified waiting time τ T we have

P(τT ≤ t) = P(T ≤ t/τ) = F(t/τ) ,

hence the density f (t/τ)/τ, and analogously for the density of the sum of n waiting times fn(t/τ)/τ.
The density of the waiting time of the rescaled (and thinned) process now turns out as

gq,τ(t) =
∞

∑
n=1

q pn−1 fn(t/τ)/τ . (64)

In the Laplace domain we have f̃n(s) =
(

f̃ (s)
)n

, hence (using p = 1− q)

g̃q(s) =
∞

∑
n=1

q pn−1
(

f̃ (s)
)n

=
q f̃ (s)

1− (1− q) f̃ (s)
, (65)

from which by Laplace inversion we can, in principle, construct the waiting time density of the thinned
process. By rescaling we get

g̃q,τ(s) =
∞

∑
n=1

q pn−1
(

f̃ (τs)
)n

=
q f̃ (τs)

1− (1− q) f̃ (τs)
. (66)

Being interested in stronger and stronger thinning (infinite thinning) let us now consider a scale of
processes with the parameters τ (of rescaling) and q (of thinning), with q tending to zero under a scaling
relation q = q(τ) yet to be specified.

We have essentially two cases for the waiting time distribution: its expectation value is finite or
infinite. In the first case we put

λ =
∫ ∞

0
t′ f (t′) dt′ < ∞ . (67)

In the second case we assume a queue of power law type (dispensing with a possible decoration
by a function slowly varying at infinity)

Ψ(t) :=
∫ ∞

t
f (t′) dt′ ∼ c

β
t−β , t→ ∞ if 0 < β < 1 . (68)
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Then, by the Karamata theory (see References [21,48]) the above conditions mean in the Laplace
domain

f̃ (s) = 1− λ sβ + o
(

sβ
)

, for s→ 0+ , (69)

with a positive coefficient λ and 0 < β ≤ 1. The case β = 1 obviously corresponds to the situation
with finite first moment (2.6a), whereas the case 0 < β < 1 is related to a power law queue with
c = λ Γ(β + 1) sin(βπ)/π .

Now, passing to the limit of q→ 0 of infinite thinning under the scaling relation

q = λ τβ , 0 < β ≤ 1 , (70)

between the positive parameters q and τ, the Laplace transform of the rescaled density g̃q,τ(s) in (66)
of the thinned process tends for fixed s to

g̃(s) =
1

1 + sβ
, (71)

which corresponds to the Mittag-Leffler density

g(t) = − d
dt

Eβ(−tβ) = φML(t) . (72)

Let us remark that Gnedenko and Kovalenko obtained (71) as the Laplace transform of the limiting
density but did not identify it as the Laplace transform of a Mittag-Leffler type function. Observe that
in the special case λ < ∞ we have β = 1, hence as the limiting process the Poisson process, as formerly
shown in 1956 by Rényi [49].

8. The Continuous Time Random Walk (Ctrw) and the Mittag-Leffler Function

The name continuous time random walk (CTRW) became popular in physics after Montroll and
Weiss (just to cite the pioneers) published a celebrated series of papers on random walks for modelling
diffusion processes on lattices, see, for example, Reference [50], and the book by Weiss [51] with
references therein. CTRWs are rather good and general phenomenological models for diffusion,
including processes of anomalous transport, that can be understood in the framework of the classical
renewal theory. In fact a CTRW can be considered as a compound renewal process (a simple renewal
process with reward) or a random walk subordinated to a simple renewal process. Hereafter we will
mainly follow the approach by Gorenflo & Mainardi, see, for example, Reference [52].

A spatially one-dimensional CTRW is generated by a sequence of independent identically
distributed (iid) positive random waiting times T1, T2, T3, . . . , each having the same probability density
function φ(t) , t > 0 , and a sequence of iid random jumps X1, X2, X3, . . . , in IR , each having the same
probability density w(x) , x ∈ IR .

Let us remark that, for ease of language, we use the word density also for generalized functions
in the sense of Gel’fand & Shilov [53], that can be interpreted as probability measures. Usually the
probability density functions are abbreviated by pd f . We recall that φ(t) ≥ 0 with

∫ ∞
0 φ(t) dt = 1 and

w(x) ≥ 0 with
∫ +∞
−∞ w(x) dx = 1.

Setting t0 = 0 , tn = T1 + T2 + . . . Tn for n ∈ IN , the wandering particle makes a jump of length
Xn in instant tn, so that its position is x0 = 0 for 0 ≤ t < T1 = t1 , and xn = X1 + X2 + . . . Xn , for
tn ≤ t < tn+1 . We require the distribution of the waiting times and that of the jumps to be independent
of each other. So, we have a compound renewal process (a renewal process with reward), compare
Reference [42].
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By natural probabilistic arguments we arrive at the integral equation for the probability density
p(x, t) (a density with respect to the variable x) of the particle being in point x at instant t ,

p(x, t) = δ(x)Ψ(t) +
∫ t

0
φ(t− t′)

[∫ +∞

−∞
w(x− x′) p(x′, t′) dx′

]
dt′ , (73)

in which δ(x) denotes the Dirac generalized function, and the survival function

Ψ(t) =
∫ ∞

t
φ(t′) dt′ (74)

denotes the probability that at instant t the particle is still sitting in its starting position x = 0 . Clearly,
Equation (73) satisfies the initial condition p(x, 0+) = δ(x).

Note that the special choice
w(x) = δ(x− 1) (75)

gives the pure renewal process, with position x(t) = N(t), denoting the counting function, and with
jumps all of length 1 in positive direction happening at the renewal instants.

For many purposes the integral Equation (73) of CTRW can be easily treated by using the Laplace
and Fourier transforms. Writing these as

L { f (t); s} = f̃ (s) :=
∫ ∞

0
e−st f (t) dt , F {g(x); κ} = ĝ(κ) :=

∫ +∞

−∞
e+iκx g(x) dx ,

then in the Laplace-Fourier domain Equation (73) reads

̂̃p(κ, s) =
1− φ̃(s)

s
+ φ̃(s) ŵ(κ) ̂̃p(κ, s) . (76)

Introducing formally in the Laplace domain the auxiliary function

H̃(s) =
1− φ̃(s)

s φ̃(s)
=

Ψ̃(s)
φ̃(s)

, hence φ̃(s) =
1

1 + sH̃(s)
, (77)

and assuming that its Laplace inverse H(t) exists, we get, following Mainardi et al. [54], in the
Laplace-Fourier domain the equation

H̃(s)
[
ŝ̃p(κ, s)− 1

]
= [ŵ(κ)− 1] ̂̃p(κ, s) , (78)

and in the space-time domain the generalized Kolmogorov-Feller equation

∫ t

0
H(t− t′)

∂

∂t′
p(x, t′) dt′ = −p(x, t) +

∫ +∞

−∞
w(x− x′) p(x′, t) dx′, (79)

with p(x, 0) = δ(x), where H(t) acts as a memory function.

If the Laplace inverse H(t) of the formally introduced function H̃(s) does not exist, we can formally set
K̃(s) = 1/H̃(s) and multiply (78) with K̃(s). Then, if K(t) exists, we get in place of (79) the alternative
form of the generalized Kolmogorov-Feller equation

∂

∂t
p(x, t) =

∫ t

0
K(t− t′)

[
−p(x, t′) +

∫ +∞

−∞
w(x− x′) p(x′, t′) dx′

]
dt′ , (80)

with p(x, 0) = δ(x). where K(t) acts as a memory function
Special choices of the memory function H(t) are (i) and (ii), see Equations (81) and (85):

(i) H(t) = δ(t) corresponding to H̃(s) = 1 , (81)
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giving the exponential waiting time with

φ̃(s) =
1

1 + s
, φ(t) = Ψ(t) = e−t . (82)

In this case we obtain in the Fourier- Laplace domain

ŝ̃p(κ, s)− 1 = [ŵ(κ)− 1] ̂̃p(κ, s) , (83)

and in the space-time domain the classical Kolmogorov-Feller equation

∂

∂t
p(x, t) = −p(x, t) +

∫ +∞

−∞
w(x− x′) p(x′, t) dx′ , p(x, 0) = δ(x) . (84)

(ii) H(t) =
t−β

Γ(1− β)
, 0 < β < 1 , corresponding to H̃(s) = sβ−1 , (85)

giving the Mittag-Leffler waiting time with

φ̃(s) =
1

1 + sβ
, φ(t) = − d

dt
Eβ(−tβ) = φML(t), Ψ(t) = Eβ(−tβ) . (86)

In this case we obtain in the Fourier-Laplace domain

sβ−1
[
ŝ̃p(κ, s)− 1

]
= [ŵ(κ)− 1] ̂̃p(κ, s) , (87)

and in the space-time domain the time fractional Kolmogorov-Feller equation

∗D
β
t p(x, t) = −p(x, t) +

∫ +∞

−∞
w(x− x′) p(x′, t) dx′ , p(x, 0+) = δ(x) , (88)

where ∗D
β
t denotes the fractional derivative of of order β in the Caputo sense, see Section 3.

The time fractional Kolmogorov-Feller equation can be also expressed via the Riemann-Liouville
fractional derivative D1−β

t , see again Section 3, that is

∂

∂t
p(x, t) = D1−β

t

[
−p(x, t) +

∫ +∞

−∞
w(x− x′) p(x′, t) dx′

]
, (89)

with p(x, 0+) = δ(x). The equivalence of the two forms (88) and (89) is easily proved in the
Fourier-Laplace domain by multiplying both sides of Equation (87) with the factor s1−β.

We note that the choice (i) may be considered as a limit of the choice (ii) as β = 1. In fact, in this limit
we find H̃(s) ≡ 1 so H(t) = t−1/Γ(0) ≡ δ(t) so that Equations (78)–(79) reduce to Equations (83)–(84),
respectively. In this case the order of the Caputo derivative reduces to 1 and that of the R-L derivative
to 0, whereas the Mittag-Leffler waiting time law reduces to the exponential.

In the sequel we will formally unite the choices (i) and (ii) by defining what we call the
Mittag-Leffler memory function

HML(t) =


t−β

Γ(1− β)
, if 0 < β < 1 ,

δ(t) , if β = 1 ,
(90)

whose Laplace transform is
H̃ML(s) = sβ−1 , 0 < β ≤ 1 . (91)
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Thus we will consider the whole range 0 < β ≤ 1 by extending the Mittag-Leffler waiting time
law in (86) to include the exponential law (82).

Remark 1. Equation (79) clearly may be supplemented by an arbitrary initial probability density p(x, 0) =
f (x). The corresponding replacement of δ(x) by f (x) in (73) then requires in (76) multiplication of the term
(1− φ̃(s))/s by f̂ (κ) and in (78) replacement of the LHS by H̃(s)

[
ŝ̃p(κ, s)− f̂ (κ)

]
. With p(x, 0) = δ(x)

we obtain in p(x, t) the fundamental solution of Equation (79).

Note: The probability density function for the waiting time distribution in terms of the Mittag-Leffler
function was formerly given since 1995 by Hilfer [55–57]. In these papers the waiting time density
was given with the Mittag-Leffler function in two parameters without noting the relation with the
first derivative of the classical Mittag-Leffler function as stated in Equation (29). We also note that 10
years earlier Balakrishnan [58] had derived a similar expression without recognizing the Mittag-Leffler
function. Like in the case of the thinning process dealt by Gnedenko-Kowalenko (see Section 7) once
again the Mitag-Leffler function was unknown for the authors.

Manipulations: Rescaling and Respeeding

We now consider two types of manipulations on the CTRW by acting on its governing
Equation (79) in its Laplace-Fourier representation (78).
(A): rescaling the waiting time, hence the whole time axis;
(B): respeeding the process.

(A) means change of the unit of time (measurement). We replace the random waiting time T by a
waiting time τT, with the positive rescaling factor τ. Our idea is to take 0 < τ � 1 in order to bring
into near sight the distant future. In a moderate span of time we will so have a large number of jump
events. For τ > 0 we get the rescaled waiting time density

φ̃τ(s) = φ̃(τs) . (92)

By decorating also the density p with an index τ we obtain the rescaled integral equation of the
CTRW in the Laplace-Fourier domain as

H̃τ(s)
[
ŝ̃pτ(κ, s)− 1

]
= [ŵ(κ)− 1] ̂̃pτ(κ, s) , (93)

where, in analogy to (77),

H̃τ(s) =
1− φ̃(τs)

s φ̃(τs)
. (94)

(B) means multiplying the quantity representing
∂

∂t
p(x, t) by a factor 1/a, where a > 0 is the respeeding

factor: a > 1 means acceleration, 0 < a < 1 means deceleration. In the Laplace-Fourier representation
this means multiplying the RHS of Equation (78) by the factor a since the expression

[
ŝ̃p(κ, s)− 1

]
corresponds to

∂

∂t
p(x, t).

We now chose to consider the procedures of rescaling and respeeding in their combination so that
the equation in the transformed domain of the rescaled and respeeded process has the form

H̃τ(s)
[
ŝ̃pτ,a(κ, s)− 1

]
= a [ŵ(κ)− 1] ̂̃pτ,a(κ, s) , (95)

Clearly, the two manipulations can be discussed separately: the choice {τ > 0, a = 1} means pure
rescaling, the choice {τ = 1, a > 0} means pure respeeding of the original process. In the special case
τ = 1 we only respeed the original system; if 0 < τ � 1 we can counteract the compression effected
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by rescaling to again obtain a moderate number of events in a moderate span of time by respeeding
(decelerating) with 0 < a� 1. These vague notions will become clear as soon as we consider power
law waiting times.

Defining now

H̃τ,a(s) :=
H̃τ(s)

a
=

1− φ̃(τs)
as φ̃(τs)

. (96)

we finally get, in analogy to (78), the equation

H̃τ,a(s)
[
ŝ̃pτ,a(κ, s)− 1

]
= [ŵ(κ)− 1] ̂̃pτ,a(κ, s) . (97)

What is the combined effect of rescaling and respeeding on the waiting time density?
In analogy to (77) and taking account of (96) we find

φ̃τ,a(s) =
1

1 + sH̃τ,a(s)
=

1

1 + s
1− φ̃(τs)
as φ̃(τs)

, (98)

and so, for the deformation of the waiting time density, the essential formula

a φ̃(τs)
1− (1− a)φ̃(τs)

. (99)

Remark 2. The formula (99) has the same structure as the thinning formula (66) in Section 5 (just devoted to
the thinning theory) by identification of a with q. In both problems we have a rescaled process defined by a time
scale τ, and we send the relevant factors τ, a and q to zero under a proper relationship. However in the thinning
theory the relevant independent parameter going to 0 is that of thinning (actually respeeding) whereas in the
present problem it is the rescaling parameter τ.

9. Power Laws and Asymptotic Universality of the Mittag-Leffler Waiting Time Density

We have essentially two different situations for the waiting time distribution according to its first
moment (the expectation value) being finite or infinite. In other words we assume for the waiting time
pd f φ(t) either

ρ :=
∫ ∞

0
t′ φ(t′) dt′ < ∞ , labelled as β = 1 , (100)

or
φ(t) ∼ c t−(β+1) for t→ ∞ hence Ψ(t) ∼ c

β
t−β , 0 < β < 1 , c > 0 . (101)

For convenience we have dispensed in (101) with decorating by a slowly varying function at
infinity the asymptotic power law. Then, by the standard Tauberian theory (see References [21,48]) the
above conditions (100)–(101) mean in the Laplace domain the (comprehensive) asymptotic form

φ̃(s) = 1− λsβ + o(sβ) for s→ 0+ , 0 < β ≤ 1 , (102)

where we have

λ = ρ , if β = 1 ; λ = cΓ(−β) =
c

Γ(β + 1)
π

sin(βπ)
, if 0 < β < 1 . (103)

Then, fixing s as required by the continuity theorem of probability theory for Laplace transforms, taking

a = λτβ , (104)
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and sending τ to zero, we obtain in the limit the Mittag-Leffler waiting time law. In fact, Equations (99)
and (102) imply as τ → 0 with 0 < β ≤ 1,

φ̃τ,λτβ(s) =
λτβ

[
1− λτβsβ + o(τβsβ)

]
1− (1− λτβ)

[
1− λτβsβ + o(τβsβ)

] → 1
1 + sβ

, (105)

the Laplace transform of φML(t). This formula expresses the asymptotic universality of the
Mittag-Leffler waiting time law that includes the exponential law for β = 1. It can easily be
generalized to the case of power laws decorated with slowly varying functions, thereby using the
Tauberian theory by Karamata (see again References [21,48]).

Comment: The formula (105) says that our general power law waiting time density is gradually
deformed into the Mittag-Leffler waiting time density as τ tends to zero.

Remark 3. Let us stress here the distinguished character of the Mittag-Leffler waiting time density

φML(t) = − d
dt

Eβ(−tβ). Considering its Laplace transform

φ̃ML(s) =
1

1 + sβ
, φML(t) = − d

dt
Eβ(−tβ) , 0 < β ≤ 1 , (106)

we can easily prove the identity

φ̃ML
τ,a (s) = φ̃ML(τs/a1/β) for all τ > 0, a > 0 . (107)

Note that Equation (107) states the self-similarity of the combined operation rescaling-respeeding for
the Mittag-Leffler waiting time density. In fact, (107) implies φML

τ,a (t) = φML(t/c)/c with c = τ/a1/β ,
which means replacing the random waiting time TML by c TML. As a consequences, choosing a = τβ

we have
φ̃ML

τ,τβ(s) = φ̃ML(s) for all τ > 0 . (108)

Hence the Mittag-Leffler waiting time density is invariant against combined rescaling with τ and
respeeding with a = τβ.

Observing (105) we can say that φML(t) is a τ → 0 attractor for any power law waiting time (101)
under simultaneous rescaling with τ and respeeding with a = λτβ. In other words, this attraction
property of the Mittag-Leffler probability distribution with respect to power law waiting times (with
0 < β ≤ 1) is a kind of analogy to the attraction of sums of power law jump distributions by
stable distributions.

10. The Mittag-Leffler Functions W.R.T the Time Fractional Diffusion-Wave Equations and the
Wright Functions

In this section we show the relations of the Mittag-Leffler function with the Wright function
via Laplace and Fourier transformations, in order to provide other arguments to outline the role
of the Mittag-Leffler in the Fractional Calculus. For this purpose, because of the necessity to work
with two independent parameters we first recall the proper definitions of the Mittag-Leffler and
the Wright function. Then we will consider the time fractional diffusion-wave equation with its
fundamental solutions to the basic boundary value problem that urn out to be expressed in terms
of some special cases of the Wright functions, the so called F and M functions. Finally we pay
attention to some noteworthy formulas for the M-Wright function, including its connections with the
Mittag-Leffler function.
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10.1. Definitions and Main Properties of the Wright Functions

The classical Wright function, that we denote by Wλ,µ(z), is defined by the series representation
convergent in the whole complex plane,

Wλ,µ(z) :=
∞

∑
n=0

zn

n!Γ(λn + µ)
, λ > −1, µ ∈ C, (109)

As a consequence Wλ,µ(z) is an entire function for all λ ∈ (−1,+∞). Originally Wright assumed
λ ≥ 0 in connection with his investigations on the asymptotic theory of partition [59,60] and only
in 1940 he considered −1 < λ < 0, [61]. We note that in the Vol 3, Chapter 18 of the handbook of
the Bateman Project [6], presumably for a misprint, the parameter λ is restricted to be non-negative,
whereas the Wright functions remained practically ignored in other handbooks. In 1993 the present
author, being aware only of the Bateman handbook, proved that the Wright function is entire also
for −1 < λ < 0 in his approaches to the time fractional diffusion equation, as outlined in his papers
published from 1994 to 1997, [62–66]. For other earlier treatments of this function we refer to the 1999
paper by Gorenflo, Luchko and Mainardi [67]).

In view of the asymptotic representation in the complex domain and of the Laplace transform the
Wright functions were distinguished by the author in first kind (λ ≥ 0) and second kind (−1 < λ < 0) as
outlined e.g., in the Appendix F of his book [22].

We note that the Wright functions are entire of order 1/(1 + λ) hence only the first kind functions
(λ ≥ 0) are of exponential order whereas the second kind functions (−1 < λ < 0) are not of exponential
order. The case λ = 0 is trivial since W0,µ(z) = ez/Γ(µ).

Following the profs in the Appendix F in Reference [22] we get the following Laplace transform
pairs of the Wright functions in terms of the Mittag-Leffler functions in two parameters, where r can
be the time variable t > 0 or the space variable x > 0)
for the first kind (λ ≥ 0)

Wλ,µ(±r) ÷ 1
s

Eλ,µ

(
±1

s

)
, λ > 0 , (110)

for the second kind (λ = −ν, 0 < ν < 1)

W−ν,µ(−r) ÷ Eν,µ+ν(−s) , 0 < ν < 1 . (111)

The Wright functions of the first kind are useful to find the solutions of some (linear and non-linear)
differential equations of fractional order as recently shown by Garra and Mainardi, [68].

Since the pioneering works in 1990’s by the author, noteworthy cases of Wright functions of the
second kind, known as auxiliary functions F and M play fundamental roles in solving the Signalling
problem and the Cauchy value problem, respectively for the time fractional diffusion-wave equation.

We first recall hereafter these auxiliary functions in terms of the Wright functions of the second
kind, following their power series representations. They read

Fν(z) := W−ν,0(−z) , 0 < ν < 1 , (112)

and
Mν(z) := W−ν,1−ν(−z) , 0 < ν < 1 , (113)

interrelated through
Fν(z) = ν z Mν(z) . (114)
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The series representations of our auxiliary functions are derived from those of Wλ,µ(z) in (109).
We have:

Fν(z) =
∞

∑
n=1

(−z)n

n! Γ(−νn)
= − 1

π

∞

∑
n=1

(−z)n

n!
Γ(νn + 1) sin(πνn) , (115)

and

Mν(z) =
∞

∑
n=0

(−z)n

n! Γ[−νn + (1− ν)]
=

1
π

∞

∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn) , (116)

where we have used the well-known reflection formula for the Gamma function,

Γ(ζ) Γ(1− ζ) = π/ sin πζ .

10.2. The Time-Fractional Diffusion-Wave Equation and the Related Green Functions

For the reader’s convenience let us recall the main formulas for the time fractional diffusion
equations and their fundamental solutions (also referred to as the Green functions) for the Cauchy and
Signalling problems. For more details we refer to References [69,70].

Denoting as usual x, t the space and time variables, and r = r(x, t) the response variable, the
family of these evolution equations reads

∂βr
∂tβ

= a
∂2r
∂x2 , 0 < β ≤ 2 , (117)

where the time derivative of order β is intended in the Caputo sense, namely is the operator ∗D
β
t , introduced

in Section 3, but for order less than 1, see Equation (10), and a is a positive constant of dimension
L2 T−β. Thus we must distinguish the cases 0 < β ≤ 1 and 1 < β ≤ 2. We have

∂βr
∂tβ

:=


1

Γ(1− β)

∫ t

0

[
∂

∂τ
r(x, τ)

]
dτ

(t− τ)β
, 0 < β < 1 ,

∂r
∂t

, β = 1 ;

(118)

∂βr
∂tβ

:=


1

Γ(2− β)

∫ t

0

[
∂2

∂τ2 r(x, τ)

]
dτ

(t− τ)β−1 , 1 < β < 2,

∂2r
∂t2 , β = 2 .

(119)

It should be noted that in both cases 0 < β ≤ 1, 1 < β ≤ 2, the time fractional derivative in the
L.H.S. of Equation (117) can be removed by a suitable fractional integration. leading to alternative
forms where the necessary initial conditions at t = 0+ explicitly appear.

For this purpose we apply to Equation (117) the fractional integral operator of order β, namely

Jβ
t f (t) :=

1
Γ(β)

∫ t

0
(t− τ)β−1 f (τ) dτ.

For β ∈ (0, 1] we have:

Jβ
t ◦ ∗D

β
t r(x, t) = Jβ

t ◦ J1−β
t D1

t r(x, t) = J1
t D1

t r(x, t) = r(x, t)− r(x, 0+) .

For β ∈ (1, 2] we have:

Jβ
t ◦ ∗D

β
t r(x, t)= Jβ

t ◦ I2−β
t D2

t r(x, t)= J2
t D2

t r(x, t)= r(x, t)− r(x, 0+)− t rt(x, 0+).
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Then, as a matter fact, we get the integro-differential equations:

if 0 < β ≤ 1 :

r(x, t) = r(x, 0+) +
a

Γ(β)

∫ t

0

(
∂2r
∂x2

)
(t− τ)β−1 dτ ; (120)

if 1 < β ≤ 2 :

r(x, 0+) + t
∂

∂t
r(x, t)|t=0+ +

a
Γ(β)

∫ t

0

(
∂2r
∂x2

)
(t− τ)β−1 dτ. (121)

Denoting by f (x) , x ∈ IR and h(t) , t ∈ IR+ sufficiently well-behaved functions, the basic
boundary-value problems are thus formulated as following, assuming 0 < β ≤ 1,

(a) Cauchy problem
r(x, 0+) = f (x) , −∞ < x < +∞ ; r(∓∞, t) = 0 , t > 0 ; (122)

(b) Signalling problem

r(x, 0+) = 0 , x > 0 ; r(0+, t) = h(t) , r(+∞, t) = 0 , t > 0 . (123)

If 1 < β < 2 , we must add into (122) and (123) the initial values of the first time derivative of the
field variable, rt(x, 0+) , since in this case the corresponding fractional derivative is expressed in terms
of the second order time derivative. To ensure the continuous dependence of our solution with respect
to the parameter β also in the transition from β = 1− to β = 1+ , we agree to assume

∂

∂t
r(x, t)|t=0+ = 0 , for 1 < β ≤ 2 , (124)

as it turns out from the integral forms (120)–(121).

In view of our subsequent analysis we find it convenient to set

ν := β/2 , so

{
0 < ν ≤ 1/2 , ⇐⇒ 0 < β ≤ 1 ,

1/2 < ν ≤ 1 , ⇐⇒ 1 < β ≤ 2 ,
(125)

and from now on to add the parameter ν to the independent space-time variables x , t in the solutions,
writing r = r(x, t; ν).

For the Cauchy and Signalling problems we introduce the so-called Green functions Gc(x, t; ν) and
Gs(x, t; ν), which represent the respective fundamental solutions, obtained when f (x) = δ(x) and
h(t) = δ(t) . As a consequence, the solutions of the two basic problems are obtained by a space or time
convolution according to

r(x, t; ν) =
∫ +∞

−∞
Gc(x− ξ, t; ν) f (ξ) dξ , (126)

r(x, t; ν) =
∫ t+

0−
Gs(x, t− τ; ν) h(τ) dτ . (127)

It should be noted that in (126) Gc(x, t; ν) = Gc(|x|, t; ν) because the Green function of the Cauchy
problem turns out to be an even function of x. According to a usual convention, in (127) the limits
of integration are extended to take into account for the possibility of impulse functions centred at
the extremes.

Now we recall the results obtained in 1990’s by the author that allow us to express the two Green
functions in terms of the auxiliary functions Fν(ξ) and Mν(ξ) where, for x > 0, t > 0

ξ := x/(
√

a tν) > 0 (128)
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acts as similarity variable. Then we obtain the Green functions in the space-time domain in the form

Gc(x, t; ν) =
1

2 ν x
Fν(ξ) =

1
2
√

a tν
Mν(ξ) , (129)

Gs(x, t; ν) =
1
t

Fν(ξ) =
ν x√
a t1+ν

Mν(ξ) . (130)

We also recognize the following reciprocity relation for the original Green functions,

2ν x Gc(x, t; ν) = t Gs(x, t; ν) = Fν(ξ) = νξ Mν(ξ) . (131)

Now Fν(ξ), Mν(ξ) are the auxiliary functions for the general case 0 < ν ≤ 1, which generalize
those well known for the standard (Fourier) diffusion equation and for the standard (D’alembert) wave
equation derived for ν = 1/2 and for ν = 1, respectively.

10.3. Some Noteworthy Results for the Mν Wright Function

In this survey we find worthwhile to concentrate our attention on a single auxiliary function,
the M-Wright function, sometimes referred to as the Mainardi function. Indeed this function is indeed
referred with this name in n the 1999 book by Podlubny [19], that is one of the most cited treatises
on fractional calculus. Then this name is found in several successive papers and books related to
fractional diffusion and wave processes, see for example, the relevant 2015 paper by Sandev et al. [71].

Let us now recall some interesting analytic results related to the so-called Mainardi function. One
reason for the major attention is due to its straightforward generalization of the Gaussian probability
density obtained for ν = 1/2, that is the fundamental solution of the Cauchy problem for the standard
diffusion equation. Furthermore it allows an impressive visualization of the evolution with the order
ν ∈ (0, 1) of the Green function of the Cauchy problem of the fractional diffusion wave Equation (129)
as shown in the next figures with a = 1 and taking t = 1.

The readers are invited to look the YouTube video by my former student Armando Consiglio
whose title is “Simulation of the M−Wright function”, in which the author has shown the evolution
of this function as the parameter ν changes between 0 and 0.85 in the interval (−5 < x < +5) of IR
centered in x = 0 represented herewith in Figures 6 and 7 at fixed time t = 1.

Figure 6. Plot of the symmetric M−Wright function Mν(|x|) for 0 ≤ ν ≤ 1/2. Note that the M−Wright
function becomes a Gaussian density for ν = 1/2.
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Figure 7. Plot of the symmetric M−Wright type function Mν(|x|) for 1/2 ≤ ν ≤ 1. Note that the
MWright function becomes a a sum of two delta functions centered in x = ±1 for ν = 1.

The readers interested to have more details on the classical Wright functions would consult the
recent survey by Luchko [72] and references therein.

In view of time-fractional diffusion processes related to time-fractional diffusion equations it is
worthwhile to introduce the function in two variables

Mν(x, t) := t−ν Mν(xt−ν) , 0 < ν < 1 , x, t ∈ IR+ , (132)

which defines a spatial probability density in x evolving in time t with self-similarity exponent H = ν.
Of course for x ∈ IR we have to consider the symmetric version of the M-Wright function. obtained
from (132) multiplying by 1/2 and replacing x by |x|.

Hereafter we provide a list of the main properties of this function, which can be derived from the
Laplace and Fourier transforms for the corresponding Wright M-function in one variable presented in
papers by Mainardi and recalled in the Appendix F of Reference [22].

For the Laplace transform of Mν(x, t) with respect to t > 0 and x > 0 we get respectively:

L {Mν(x, t); t→ s} :=
∫ ∞

0
e−st t−ν Mν(x t−ν) dt = sν−1 e−xsν

; (133)

L {Mν(x, t); x → s} :=
∫ ∞

0
e−sx t−ν Mν(x t−ν) dx = Eν,1 (−stν) . (134)

For the Fourier transforms with respect to the spatial variable x we have for Mν(x, t) with x ∈ IR+,

FC {Mν(x, t); x → κ} :=
∫ ∞

0 cos(κx) t−ν Mν(x t−ν) dx = E2ν,1(−κ2t2ν) ,

FS {Mν(x, t); x → κ} :=
∫ ∞

0 sin(κx) t−ν Mν(x t−ν) dx = κν E2ν,ν+1(−κ2t2ν) ,
(135)

so that for the symmetric function Mν(|x|, t) we get

F {Mν(|x|, t); x → κ} = 2
∫ ∞

0
cos(κx) t−ν Mν(x t−ν) dx = 2E2ν,1

(
−κ2t2ν

)
. (136)

Restricting our attention at the known analytic expressions of the Mν functions versus x at fixed
time t = 1 we recall the following results for some special rational values of the parameter ν:
ν = 1/3 (see Reference [22])

M1/3(x) = 32/3Ai(x/31/3) , (137)
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ν = 1/2 (see Reference [22])

M1/2(x) =
1√
π

e−x2/4 , (138)

ν = 2/3 (see Reference [73])

M2/3(x) = 3−2/3
[
31/3 x Ai

(
x2/34/3

)
− 3Ai′

(
x2/34/3

)]
e−2x3/27 . (139)

In the above equations Ai and Ai′ denote the Airy function and its first derivative.
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Appendix A. My Acquaintance with the Mittag-Leffler Function Since the Late 1960’s

I was formerly acquainted with the Mittag-Leffler function from the pioneering 1947 paper by
Gross on creep and relaxation in linear viscoelasticity. It was during my PhD sties at the University
of Bologna under the supervision of Prof Caputo in the year 1969. Indeed I was asked to apply in
the framework of anelastic materials the derivative of non-integer order introduced by Prof Caputo
in [74,75]. More recently this fractional derivative was named after him thanks the suggestions of
Gotrenflo and Mainardi [18] and Podlubny [19]. I understood that the Mittag-Leffler function proposed
by Gross both in creep and relaxation processes could be used in the corresponding processes in the
fractional Zener model. Because Gross had computed and plotted only the spectra, see Figure 1 in
this article, I was interested to plot the Mittag-Leffler function on which I was addressed in the Third
volume of the Handbook of the Bateman Project published in 1955 [6]. Carrying out the plot of the
Mittag-Leffler function Eα(−tα) using a Fortran program was not easy for me using its power series
representation, so I limited the time interval to [0.5] with ordinate in logarithmic scale. As far as I know
this was the former plot of this function, see References [9,10] where the results of my PhD thesis were
published in 1971 jointly with my supervisor. Later I was acquainted with the viscoelastic model by
Rabotnov in 1948 [76] and with the Russian school of Meskov and Rossikhin who used the so-called
Rabotnov function, indeed related to the Mittag-Leffler function. and consequently with results similar
to some extent to those in References [9,10]. However, our work was totally independent from the
Russian school (incidentally published in Russian), as outlined in the Notes to the chapter 3 of my 2010
book, see pp. 74–76 in [22]. More later, in the 1980 I was acquainted with the results by Bagley-Torvik
and by Koeller that confirmed the relevant role of the Mittag-Leffler functions in linear viscoelastic
models governed by constitutive laws of fractional order. Once again their results crossed with those
in References [9,10]. However, I have to confess that, when in conferences of those years I dealt with
fractional derivatives in rheology, the audience remained indifferent if not hostile and laughable so
I left this topic preferring to transfer my research interests to wave phenomena, in particular on the
effects of dissipation on linear dispersive waves.

Incidentally, in 1980’s, I was also aware of the nice treatise by Harold T. Davis on the Theory of
Linear operators published in 1936 [2], where the author gave information about the fractional calculus
and the Mittag-Leffler function. It was my honor to publish a recent survey on the contributions
by Davis and Gross (already recalled in Introduction), whom I consider the pioneers of fractional
relaxation processes in viscoelastic and dielectric materials [32]. In the firsts years of 1990s under the
push of fractals, the relevance of fractional derivatives (used not always in a correct way) was outlined
in several papers. For this I was induced to come back to fractional calculus. It was just this occasion
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for me to devote my research interests to the application of fractional calculus in relaxation, oscillation
phenomena governed by fractional ODEs and diffusion, wave phenomena governed by fractional
PDEs. Once again I understood the relevance of the Mittag-Leffler functions but also that of the Wright
functions, both of them classified as miscellaneous functions in the handbook of Bateeman project. I
must note that, as far as I known, the Bateman handbook was the only one published in English to
deal with these special function, and therefore accessible to me.

The year 1994 was the golden year for me as far as my acquaintance with fractional calculus
and related special functions is concerned. Indeed I took profit by the acquaintance in three different
conferences with the late Prof Gorenflo and Prof. Nigmatullin (in Bordeaux, France), with Prof.
Podlubny and Prof. Caputo (in Astlanta, USA), and with Prof Virginia Kiryakova and the late Prof.
Stankovic (in Sofia, Bulgaria), among other authorities of the fractional calculus. But it was with Prof
Gorenflo that I started a collaboration for more than 20 years (1995–2015) motivated by our common
interest towards the potential of the Mittag-Leffler functions in the applications of the fractional
calculus.

Then, since 1997, I was interested in the emerging science of Econophysics thanks mainly to my
younger colleague Enrico Scalas. With Gorenflo, Scalas and his student Raberto we published some
papers on the advent of fractional Calculus in Econophysics, see e.g., [54] and my historical survey
in Mathematics [77]. In 2007, on the occasion of the 80-birthday of Prof. Caputo, I published with
Gorenflo a survey in Fractional Calculus and Applied Analysis [11] where I took the liberty to propose
for the Mittag-Leffler function the (successful) title of the Queen Function of the Fractional Calculus. Some
years earlier, Gorenflo had contacted the American Mathematical Society to give a specific number to
the Mittag-Leffler function, that is 33E12, in the MSC classification.

Gorenflo and I promoted the Mittag-Lffler functions in several Conferences and Workshops in all
the world. In particular, I would like to recall my lectures in India (under invitation of Prof Mathai,
director of the Center of Mathematical Sciences, in Brazil (under invitation of Prof Edmundo Capelas
de Oliveira, Campinas University) and in US (under invitation of Prof. Karniadakis, Brown University,
see Reference [78]).

I like to outline my gratitude to Professor Michele Caputo (1927) and Rudolf Gorenflo (1930–2017)
for having provided me with useful advice in earlier and later times, respectively. It is my pleasure to
enclose a photo showing the author between them, taken in Bologna, April 2002.

Figure A1. F. Mainardi between R. Gorenflo (left) and M. Caputo (right).

Unfortunately, I lost Gorenflo’s guidance and collaboration in 2015 when he suffered strong
health troubles that led him to his death on 20 October 2017 at 87 years. He was Emeritus Professor of
Mathematics at the Free University of Berlin since his retirement in 1998.
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Nowadays I am quite interested to promote the special functions of the Mittag-Leffler and Wright
type with the second edition of the treatise by Gorenflo et al. [14] and my surveys [79,80], including
the present review.
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