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Compound-protein interaction (CPI) prediction is a foundational task for drug

discovery, which process is time-consuming and costly. The effectiveness of

CPI prediction can be greatly improved using deep learning methods to

accelerate drug development. Large number of recent research results in

the field of computer vision, especially in deep learning, have proved that

the position, geometry, spatial structure and other features of objects in an

image can be well characterized. We propose a novel molecular image-based

model namedCAT-CPI (combining CNN and transformer to predict CPI) for CPI

task. We use Convolution Neural Network (CNN) to learn local features of

molecular images and then use transformer encoder to capture the semantic

relationships of these features. To extract protein sequence feature, we propose

to use a k-gram based method and obtain the semantic relationships of sub-

sequences by transformer encoder. In addition, we build a Feature Relearning

(FR) module to learn interaction features of compounds and proteins. We

evaluated CAT-CPI on three benchmark datasets—Human, Celegans, and

Davis—and the experimental results demonstrate that CAT-CPI presents

competitive performance against state-of-the-art predictors. In addition, we

carry out Drug-Drug Interaction (DDI) experiments to verify the strong potential

of the methods based on molecular images and FR module.

KEYWORDS

compound-protein interaction, drug-drug interaction, molecular image, deep
learning, transformer encoder

Introduction

Since developing a new drug is expensive and time-consuming, drug repurposing or

repositioning is promising for drug development in the future (Manoochehri and

Nourani, 2020). By contrast, repurposing an existing drug approved by the Food and

Drug Administration (FDA) to obtain new drug effects saves more time and experimental

funds for clinical trials (Yue and He, 2021). Therefore, silico-based methods for predicting

potential Compound-protein Interactions (CPIs) are of great enhancement for drug

discovery (Wu et al., 2017).
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With the growth of public databases (Li et al., 2016), many

computational methods have been used for the CPIs prediction.

The ligand-based (Keiser et al., 2007) and docking-based

(Donald, 2011) methods are the traditional computational

methods. Although both methods can provide CPIs

predictions, they both have obvious limitations. Ligand-based

methods will not work when few binding ligands are provided for

a certain target, while docking-based methods are completely

dependent on the three-dimensional (3D) structure of the target

(Luo et al., 2017). In recent years, machine learning based

methods have been proposed to predict CPIs. Liu et al. used

six typical classifiers to predict CPIs including Naive Bayes, KNN,

L1-logistic, L2-logistic, support vector machine (SVM) and

Random Forest (RF) (Liu et al., 2015). Yamanishi et al.

proposed a supervised learning method called bipartite graph

to infer interactions in drug space by synthesizing compound and

protein information (Yamanishi et al., 2008). Traditional

machine learning methods are based on this assumption that

similar drugs may share similar targets (Lan et al., 2015). Many

kernel-based methods have been proposed to follow this

assumption, which essentially map various drug-drug and

target-target similarity matrices (Kipf and Welling, 2016;

Nascimento et al., 2016). However, the main drawback of

these methods is that: they are only sensitive to small

fractions of drugs which have known interactions and some

datasets are of binary nature (Bagherian et al., 2021). In addition,

traditional machine learning methods are difficult to perform to

massive datasets to obtain great results and to understand

nonlinear features.

Inspired by recent deep learning techniques, several deep

learning models have been applied to drug discovery and

repositioning processes that including the convolution neural

network (CNN) (Öztürk et al., 2018; Wan et al., 2019) graph

convolution network (GCN) (Nguyen et al., 2021), transformer

(Vaswani et al., 2017; Chen et al., 2020) and the deep neural

network (Gawehn et al., 2016), etc. In CPImodel architecture, the

process is usually divided into compound feature extraction,

protein feature extraction, and classifier. The overall CPI task can

be considered as a binary classification task, where the features

extracted by compounds and proteins are used to determine

whether there are interactions through the classifier.

One class of approach is to use deep learning to train one-

dimensional compound and protein sequences. Protein

information in DeepDTA (Öztürk et al., 2018) is expressed as

an amino acid-based vector, where each amino acid corresponds

to a unique number. Two CNN modules are then used for

compound and protein sequence learning. WideDTA (Öztürk

et al., 2019) is a derivative of DeepDTA, where the original drug

and protein sequences are first grouped into higher-dimensional

features. TransformerCPI (Chen et al., 2020) used self attention

mechanism to learn the semantic relations in SMILES sequences.

MolTrans (Huang et al., 2021) created a large corpus to split the

original sequences, and then used transformer to encode the split

sequences directly. Although, these sequence representations

contain atoms and continuously learn semantic relationships

between atoms, none of the sequence representations cover the

spatial structure of the molecule. The loss of spatial structure

information may weaken the predictive power of the model as

well as the functional relevance of the learned potential space.

Another family of solutions are the Graph-Based Methods which

build a large heterogeneous network or create a spatial structure

graph of molecular to predict CPI. Themolecular graph is used as

a representation of a compound molecule to learn to its spatial

structure information, often using atoms as nodes and chemical

bonds as edges of the graph, with the chemical valence, type and

degree of the atoms as the initial node information.

InterpretableDTIP (Gao et al., 2018) and CPI-GNN (Tsubaki

et al., 2019; Chen et al., 2020) first convert the SMILES sequences

into molecular graph with the Rdkit (Landrum, 2013) software

and then use GCN for propagation and aggregation of graph

node information to obtain structural features.

Extracting the molecular graph structure requires complex

pre-processing of the data and multiple iterations of aggregation

of the neighboring node information for each atom in the process

of constructing the molecular graph. Multiple iterations may lead

to the loss of information on the atomic nodes themselves.

Another recent trend is the network-based methods, which

can better describe interactions between compounds and

proteins by vertices and edges. Heterogeneous information

networks are powerful tools for modeling the semantic

information of complex data by utilizing different vertices and

edges (Zhao et al., 2020). Chen et al. decomposed the

heterogeneous network into multiple sub-networks and

processed each sub-network separately (Chen et al., 2019).

DTINet (Luo et al., 2017) learns embeddings through a

network diffusion algorithm and an inductive matrix

complementation strategy. Although many heterogeneous

network embedding algorithms have been performed for CPI

predictions, this is still challenging due to the diversity of vertex

types and the diversity of relationships between vertices. In

addition, heterogeneous networks only consider the

correlation between drugs and targets from a macroscopic

point of view, and miss thinking for the internal information

of drug molecules and protein amino acids.

Over the past years, many research results in computer vision

field have demonstrated that position, geometry, and spatial

structure of objects in images can be well characterized. These

features can greatly contribute to objects classification, detection,

recognition and generation of similar objects (Zeiler and Fergus,

2014; Nguyen et al., 2016; Olah et al., 2017; Nguyen et al., 2019).

In addition, the image processing field has developed rapidly in

recent years, and many excellent algorithm models and

technologies can be used for reference (Pouyanfar et al., 2018;

Yadav and Vishwakarma, 2020). The image of the molecule

clearly displays the atomic, structural, and chemical bonding

information of molecules, etc. Compared with SMILES
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sequences, molecular graphs and the heterogeneous networks,

molecular image contains quite complex information and it is

reasonable to use it to represent compound.

Transformer originates from the field of natural language

processing and where attention mechanism is applicable to the

machine translation task (Vaswani et al., 2017). Its success has

also been translated to vision tasks, including image recognition

(Bello et al., 2019; Hu et al., 2019), image generation (Parmar

et al., 2018; Zhang et al., 2019) and object detection (Carion et al.,

2020; Hu et al., 2018). At the same time, transformer-based visual

models are emerging. For example, ViT (Dosovitskiy et al., 2020)

is a pure transformer model, which directly divides the images

into patches and feeds them into the transformer encoder

directly. PVT (Wang et al., 2021) is a pyramidal ViT, which

changes the original cylinder model into a pyramidal one, greatly

saving the number of computational parameters and arithmetic

power. Swin Transformer (Liu et al., 2021) is a model developed

by Microsoft Asia Research based on the spatial architecture of

CNN networks. From this, we can find that transformer is

excellent in the field of vision, i.e. image processing. Applying

Transformer to the image processing field makes it possible to

obtain the global information of features without increasing the

depth of the network. Besides being used in the fields of computer

vision and natural language processing, the self-attention

mechanism of transformer is also widely used in

bioinformatics. MADE (Pang et al., 2022) constructs two

different encoders to learn the graph information and

sequence information of the drug respectively, and then uses a

feature fusion atttention-basedmethod which integating the drug

multiple dimensions features. TransPhos (Wang et al., 2022)

proposes a two-stage deep learning approach and constructs

three different structures of encoders for feature learning based

on the attention mechanism. SDNN-PPI (Li et al., 2022)

constructs three different ways of encoding protein sequences,

and then uses a self-attention mechanism to further learn

semantic relationships in the sequences for Protein-Protein

Interaction (PPI). SAVAE-Cox (Meng et al., 2022) adopts a

novel attention mechanism and takes full advantage of the

adversarial transfer learning strategy, and it works for survival

analysis of high-dimensional transcriptome data. Inspired by

these works, we use an image-based transformer encoder to learn

the information in the images of compound molecules. We use

Transformer to obtain the semantic relationships between

features in molecular images. Use Transformer to obtain

contextual relationships between amino acids in protein

sequences.

PWO-CPI (Qian et al., 2022) is our first attempt to extract

features from molecular images for CPI tasks and demonstrates

the potential of molecular images. In our previous work we fully

explored the feasibility of molecular images as molecular feature

learning. In the meanwhile, a GAN (Goodfellow et al., 2014) was

constructed to demonstrate that the neural network can

effectively learn the information of drug molecules contained

in images. In PWO-CPI, we considered using CNN to learn

feature information in molecular images by convolutional

aggregation operations. However, the global information of

the whole molecular image is not fully considered.

Based on the previous work, in order to further enhance the

global feature learning capability, we propose a novel image-

based model called CAT-CPI (combining CNN and transformer

to predict CPI) which uses transformer to capture global features

from images.

In this work, we first use CNN to learn the detail information

in the image, and then use transformer encoder to further learn

the semantic relationship of the context in global. The learning

ability of molecular image is greatly enhanced by our model

CAT-CPI which combining CNN and transformer. For protein

feature extraction, we use a sliding window k-gram method to

segment the protein sequences. The number of original amino

acid species is twenty, which is insufficient for the representation

of proteins. After using k-gram method, the number of amino

acid combinations can be increased to 20k.

To enhance the representation capability of the model, we

propose a Feature Relearning (FR) module to learn the

interaction features of compounds and proteins features. It

can preserve the high-dimensional interrelationship features

better, compared to the vector concatenation method. The

operation of convolution in FR module can effectively capture

the interrelationships between compound and protein. To

validate the effectiveness of CAT and FR, we conduct

experiments on three datasets and achieve the best results.

The experiments were carried out in Drug-Drug Interaction

(DDI) task to further verify that the CAT method is indeed

effective in learning the complex information of molecular

images.

Methods

The model we proposed can be divided into three modules:

compound feature extraction, protein feature extraction and

FR module. The compound feature extraction is used for

feature extraction of compound molecule images and the

protein feature extraction is used for protein sequences

extraction. FR learns the features extracted from the

compound and protein feature extraction again for the final

prediction. The model architecture is shown in Figure 1.

Compound feature extraction is divided into two stages:

CNN Block and transformer encoder. First, we construct an

CNN Block to learn the local detail features of the image and

conduct semantic learning by N transformer encoders. The

feature map of the compound is obtained. Protein feature

extraction uses k-gram method to learn the protein sequence

and obtain the protein feature map. Finally, we combine both

feature maps and then get the final prediction result by the FR

module.
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Compound feature extraction

The compound image can be generated by Rdkit software

which is denoted as P ∈ Rh×w, where h and w represent the height

and width of the image respectively. This structured image is

given as the input to our CNN Block. The network of our CNN

Block is shown in Supplementary Figure S1, which contains

convolution layers (Conv), batch normalization (Ioffe and

Szegedy, 2015) layers (BatchNorm), activation layers and pool

layers.

Convolution Layer. The convolutional layer is the most

essential part of the CNN network, which aims to extract

features from the input data. It first perceives the local

features of the image, and then computes the local

information by performing the convolutional aggregation

operation. The process can be formulated as follows:

Pi
out � f (PpWconv) + Bconv

where i denotes the number of layers in which network is

located. f denotes the convolution operation and * represents

dot product of matrices. Wconv and B conv are the parameter

matrix and bias. The pi
out denotes the output of the convolution

layer.

Batch Normalization Layer. The BatchNorm layer has the

following three main roles: 1) Speed up convergence. 2) Prevent

gradient exploding and gradient vanishing. 3) Prevent

overfitting.

Activation Layer. The activation function is usually used

after the convolution kernel. With the activation function, the

original features are preserved and mapped, which is the key to

solve the problem of nonlinearity in neural network results. In

nonlinear activation layer, we use LeakyReLU (Maas et al., 2013)

as the activation function, and the formula is as follows:

LeakyReLU(x) � { x , if x ≥ 0
αx , otherwise

Pooling Layer. After feature extraction in the convolutional

layer, the output feature maps are fed to the pooling layer for

feature selection and filtering. The pooling layer contains pre-

defined pooling functions whose function is to replace the result

of a single point in the feature map with the feature map statistics

of its neighboring regions. We choose MaxPooling as a function

of the pooling layer.

After the CNN Block, we have the first step feature of the

original image W0 ∈ RC×H×W, whereC,H, and W imply the

output channels, height and width, respectively. Then we

FIGURE 1
An overall architecture of the CAT-CPI. The model contains three modules: compound feature extraction, protein feature extraction and
feature relearning module.
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flatten W0 to achieve the dimensionality reduction to

W1 ∈ RN×D ,whereN � C and D � H × W, used as the input

of transformer encoder. Position embeddings are added to the

W1 to retain positional information.

Our encoder contains Layer Normalization (LN) layers,

multihead self-attention (MSA), DropPath (Larsson et al.,

2016) layers, MLP blocks and residual connections.

Layer Normalization layer and Residual connections. LN is

similar to BN. The length of sequence in natural language will be

inconsistent and LN can process these data well. LN is applied

before every block and residual connections are after every block

(Baevski and Auli, 2018; Wang et al., 2019).

Multi-Head Self attention Layer. MSA is an extension of

self-attention. In self-attention layer, the input vector z ∈ RN×D is

transformed into three specific vectors: query vector q, key vector

k and value vector v, and then these vectors are packed into

different matrices Q, K and V (Vaswani et al., 2017). The

computation in the self attention layer can be divided into the

following steps:

Step 1: Calculate the score S of matrices Q and K:S � Q · KT

Step 2: Normalize the scores for gradient stability: Sn � S/
��
dk

√
Step 3: Use softmax function to convert scores to

probabilities:P � sof tmax(Sn)
Step 4: Obtain the weighted value matrix: SA � P · V

The whole process can be expressed by the following

equation:

SA(Q,K ,V) � sof tmax((Q · KT)��
dk

√ ) · V

Since the self-attention layer is insensitive to position

information, it is left out of the computation process. To solve

this issue, the position information is added by including the

same dimensional position embedding (Shaw et al., 2018) at the

time of input embedding, and the position embedding is shown

by the following equation:

PE(pos, 2i) � sin( pos

10000
2i
D
)

PE(pos, 2i + 1) � cos( pos

10000
2i
D
)

where pos implies the position of the word in sentence and i

represents the current dimension of the position embedding.

In MSA layer, we run k self-attention operations, called

“heads”, in parallel, and project their concatenated outputs.

We set Dh � D/k to ensure that the compute and number of

parameters constant when changing k. The MSA is computed as

follows:

MSA(z) � [SA1(z); SA2(z); . . . , SAk(z)]Umsa

where z ∈ RN×D is the input vector and Umsa ∈ Rk·Dh×D is an

linear projection matrix.

Protein feature extraction

Proteins are characterized by their amino acid sequences.

Amino acids include twenty normal types and unknown types,

and unknown types are considered as one type. Therefore, the

protein sequence consists of twenty-one different types amino

acids. Due to the few types of amino acids and the simple

representation of proteins, it becomes difficult for deep

learning models to learn the features.

We use a k-gram based method to effectively solve the

problem of insufficient model fit owing to the lack of amino

acid types. The overview of sliding window division and number

of types are shown in Figure 2. All proteins are k-gram segmented

and a corpus of protein sub-sequences is built. The proteins are

encoded by the numbering of the corpus library and each string is

embedded according to the number of amino acid classes. The

sub-sequence of a protein can be represented as Ei,sub ∈ R1×D.

The final protein representation is obtained by extracting N

strings based on the protein length feature as Ei ∈ RN×D. The

chemical semantics of sub-sequences can be captured by a

transformer encoder, which is the same as the one in

compound feature extraction. Finally, we acquire the proteins

feature map as Xp ∈ RN×D

Feature relearning module and model
optimization

CPI-GNN (Tsubaki et al., 2019) and GraphDTA (Nguyen

et al., 2021) directly concatenate the features of compounds and

proteins as the inter-action module, and then predict the results

by the fully connected layer. TransformerCPI (Chen et al., 2020)

feeds compound and protein features into the same transformer

encoder for predicting interactions. All these methods compress

the original high-dimensional features into vectors and lose the

features of large number of interaction relations. Our proposed

FR module can effectively retain the extracted features to obtain

high dimensional features without compression. The non-linear

features of the extracted features are learned byMLP and then are

extracted again by CNN which has a very powerful feature

aggregation capability. With FR, feature extraction of

compound images and protein sequences can mostly preserve

the original feature relationships. The feature map of a

compound represents the spatial structure information of a

drug molecule, and the feature map of a protein contains the

sequence information of a protein. The interaction of the pair can

be effectively extracted by the convolution operation on the

stacked feature maps of compounds and proteins. The

convolution kernel is convolved with molecular Information

in the first layer of the feature map and then convolved with

the protein sequence in the second layer in a summation

operation to obtain the interrelationship between that part of

the molecule and amino acids. In this way the molecular
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information in the image, the protein sequence information and

the interaction information between atoms and amino acids are

all captured.

Our FRmodule incudes a CNN block, a MLP block and a fully

connected layer. MLP were initially recognized for their powerful

feature characterization power in computer vision (Tolstikhin

et al., 2021). This small CNN block is similar to CNN Block in

compound feature extraction. After we get the deep representation

of compound and protein, we stack the two obtained feature maps

Xp and Xc to get Xout ∈ R2×N×D as the input of FR afterMLP layer.

FR module learning can be expressed as:

Xout � MLP(Conv1D(Conv2D(Xc;Xp)))
where Conv represents the operation of 1D convolution and 2D

convolution, respectively. Xc and Xp represent the feature maps

of compounds and proteins by learning, respectively and ;

represents the concatenating operation of features, here

spliced by channel dimension.

After relearning by MLP and CNN, we feed the final results

to a fully connected layer to get the classification result Pn. In

model optimization, we choose Adam algorithm to optimize our

model parameters. We set the binary cross-entropy as the loss

function, as follows:

Loss � − 1
N
∑N
n�1

(ynlog(Pn) + (1 − yn)log(1 − Pn))
where N is the total number of samples, and yn represents the

true label.

Experiments

In our experiment, we set learning rate to 0.001 and batch

size to 128. The model is implemented by PyTorch 1.8. We use a

server with i7 10700f, 64 GB RAM andNVIDIA 3090. The ranges

of our experimental parameters settings are shown in

Supplementary Table S1.

Dataset

We choose three datasets for CPI task: namely Human (Liu

et al., 2015), Celegans (Liu et al., 2015) and Davis (Davis et al.,

2011). Human and Celegans are highly credible datasets with

balanced positive and negative samples and are used by many

researchers as experimental datasets. Davis consists of wet lab

assay Kd values among 68 drugs and 379 proteins and drug-target

interaction pairs that have Kd values < 30 units are considered

positive (Davis et al., 2011). The sample distribution of these

datasets is shown in Table 1. For Human and Celegans, we

divided the training set, validation set and test set in the ratio of 8:

1:1. We divide the dataset of Davis into 2086, 3006 and

6011 according to MolTrans (Huang et al., 2021).

In addition, we conduct DDI experiments on the Biosnap

(Huang et al., 2020) dataset to verify the effectiveness of the CAT

method and FRmodule. There are 83 041samples and 1322 drugs

in Biosnap. The number of positive samples is 40,845.

CPI experiment

We compare our model with traditional machine learning

methods and deep learning methods on Human, Celegans and

Davis datasets. For each experiment, we randomly run five times

and then select the best model from the validation according to

the AUC value. The selected models are then tested in the test set

by validation. We use ROC-AUC (Area Under ROC Curve), PR-

AUC (Precision Under Recall Curve), Precision, Sensitivity

FIGURE 2
An overview of sliding window division method and types of strings of k-gram.

TABLE 1 Summary of the datasets.

Compounds Proteins Samples Pos Samples

Human 1709 2043 6212 3364

Celegans 1723 1708 7511 3893

Davis 68 379 11,103 1506
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(Recall) and F1 scores as metrics to measure the model

performance. Our methods were all randomized for

5 experiments, and the final result values were the mean and

standard deviation of the multiple results. Each experiment is

trained on the training set, the validation set is used to finetune

the network hyperparameters, and finally the model effect is

tested on the test set.

We compare CAT-CPI with traditional machine learning

methods including KNN (Cover and Hart, 1967), Random Forest

(RF) (Liaw and Wiener, 2002), L2 (Wright, 1995) and Support

Vector Machine (SVM) (Cortes and Vapnik, 1995) on Human

and Celegans, and the results are shown in Table 2. From Table 2,

CAT-CPI is clearly superior to machine learning methods.

In addition, wemake a comparison with the latest methods of

deep learning model. The deep learning methods we compared

are as follows:

The traditional machine learning methods are: RF, SVM,

Gradient Boosting Decision Tree (GBDT) (Friedman, 2001) and

Logistic Regression (LR) algorithm.

GNN-CPI (Tsubaki et al., 2019) selects molecular fingerprint

information and distance matrix of molecules as the feature input

of compounds, and then uses GNN network to fuse the two

information for learning. We set the same hyperparameters and

data model for the experiments.

DeepDTA (Öztürk et al., 2018) uses CNN for feature

extraction of SMILES and protein sequences for predicting the

affinity values. We add a sigmoid activation function layer at the

end to turn it into a binary classification model for the DTI

task and set the same hyperparameters for experimental

comparison.

DeepConv-DTI (Lee et al., 2019) uses a CNN module and a

global maximum pooling approach to extract local features of

protein sequences and then uses a fully connected layer for

feature learning on ECFP4. We obtain the same drug

fingerprint ECFP4 and then set the same hyperparameters as

the original paper for the experiments.

TransformerCPI (Chen et al., 2020) uses molecular

sequences and distance matrices as compound feature inputs,

and then constructs a Transformer encoder to learn the

relationship between compound features and protein features.

We construct the same sequence learning encoder and set the

same hyperparameters for comparison experiments.

PWO-CPI (Qian et al., 2022) uses drug molecule image as

feature sources and uses word2vec to encoder protein sequences.

We build CNNmodule with the same process and convolutional

kernels of the same size for comparison experiments.

MolTrans (Huang et al., 2021) constructs a large corpus and

encoded the syllogisms, and then used a Transformer for

semantic learning.

The comparison results are shown in Figure 3, CAT-CPI

outperforms all of these deep leaning methods in terms of AUC

and Precision.

Both Human and Celegans datasets are balanced datasets.

To further investigate the robustness of the model, we compare

with the other methods on the Davis dataset, which is an

unbalanced dataset, as shown in Table 3. It is worth noting

that we can see that the results of the random forest approach to

machine learning are better than most of the deep learning

approaches. Because random forests then process high-

dimensional data, each tree can handle unbalanced data

independently of each other. Therefore, on the Davis dataset,

random forest method’s performance is better than many other

methods. Our main method of comparison is Moltrans, which

is the state-of-the-art method on Davis dataset. The results

indicate that CAT-CPI is significantly better than the other

methods in all metrics.

Although PWO-CPI works on the balanced datasets as

shown in Figure 3 and Table 3 shows it is not as good as

other methods. To find out the reason of it, we further

explored the molecular images used as inputs. Figure 4 shows

the molecular images of salicylic acid and phenyl salicylate

obtained by Rdkit (Landrum, 2013). We can see that the two

molecular images have the same size, but the sizes of the same

functional group structure are different, for example, the size of

the benzene ring of the salicylic acid image is larger than the size

of it in the right image. Since the size of the functional group is

different, the size of receptive field needed by CNN to extract

same information is also different. This may lead to a weak

robustness of the model.

CAT-CPI introduces to learn the global features of image

molecules, which can effectively solve the problem of

inconsistent receptive field size. CAT-CPI can effectively

construct semantic relationships between different features

through a self-attention mechanism (Vaswani et al., 2017).

Thus, even if the size of functional group is different, the

position of the functional group in the whole compound

TABLE 2 The scores on Human dataset compared to traditional
machine learning methods.

Method ROC-AUC Precision Recall

Human KNN 0.860 0.927 0.798

RF 0.940 0.897 0.861

L2 0.911 0.913 0.867

SVM 0.910 0.966 0.969

Ours 0.986 ± 0.001 0.948 ± 0.002 0.971 ± 0.003

Celegans KNN 0.858 0.801 0.827

RF 0.902 0.821 0.844

L2 0.892 0.890 0.877

SVM 0.894 0.785 0.818

Ours 0.992 ± 0.001 0.974 ± 0.004 0.948 ± 0.003
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molecule is learned based on the semantic relationship of its

context. As shown in Figure 4 and Tables 2, 3 the results on the

three datasets demonstrate that CAT-CPI is quite robust.

DDI experiments

We use the compound feature extractor from the CAT-CPI

model to deal with the DDI task to further observe the

representation capability of molecular images and the feature

extraction capability of our model for molecular images. The

flowchart used for the DDI task is shown in Figure 5. The CNN

Block and transformer encoder used here are the same as those

used in the CPI task. We conduct experiment on Biosnap dataset

and the methods we compared to are as follows:

1. Logistic Regression (LR) (Wright, 1995): LR with

L2 regularization using representation generated from

sequential pattern miningalgorithm50.

2. Nat. Prot (Vilar et al., 2014): Uses a similarity-based matrix

heuristic method to build a standard model to predict DDI.

3. Mol2Vec (Jaeger et al., 2017): Applies Word2vec model to

generate a dense representation of chemical structures by

ECFP fingerprint.

4. MolVAE (Gómez-Bombarelli et al., 2016): Uses variable

autoencoders on SMILES and generates compact

representations by molecular property prediction assistance

tasks.

5. DeepDDI (Ryu et al., 2018): Is a task-specific chemical

similarity-based prediction model for DDI.

6. Caster (Huang et al., 2020): Is an end-to-end dictionary

learning framework and incorporates a specialized

representation for DDI task

The results of the DDI experiments are shown in Table 4 and

other methods results are form Caster (Huang et al., 2020). The

results show that our method achieves best predictive

performance on DDI across all metrics. This well

FIGURE 3
Comparison of CAT-CPI and other deep learning methods on Human (A) and Celegans (B) datasets.

TABLE 3 Comparison with other methods on Davis dataset.

Method ROC-AUC PR-AUC Recall

RF 0.907 0.481 0.831

SVM 0.821 0.185 0.799

GBDT 0.836 0.271 0.755

LR 0.835 ± 0.010 0.232 ± 0.023 0.699 ± 0.051

GNN-CPI 0.842 ± 0.006 0.269 ± 0.020 0.764 ± 0.045

DeepDTA 0.880 ± 0.007 0.302 ± 0.044 0.865 ± 0.020

DeepConv-DTI 0.884 ± 0.008 0.299 ± 0.039 0.880 ± 0.024

TransformerCPI 0.841 ± 0.001 0.227 ± 0.003 0.842 ± 0.004

PWO-CPI 0.848 ± 0.001 0.278 ± 0.001 0.884 ± 0.003

MolTrans 0.907 ± 0.002 0.404 ± 0.016 0.800 ± 0.022

CAT-CPI 0.920 ± 0.001 0.481 ± 0.001 0.888 ± 0.001

FIGURE 4
Images obtained by Rdkit based on SMILES sequences of
Salicylic acid and Phenyl salicylate.
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demonstrates the advantages of the image representation. CAT

feature extraction approach and the FR module are useful to

capture molecular features well. This provides a new approach to

DDI tasks and has better performance than previous approaches.

Ablation study

We conduct experiments based on the size of the images in

Davis dataset and the experimental results are shown in Table 5.

As can be seen from Table 5, the best results are obtained for the

same model parameters and computational quantities for

128 size images. Therefore, the size of the image chosen for

CAT-CPI is 128.

We conduct ablation studies on a balanced dataset (Human)

and an imbalanced dataset (Davis) with the following setup:

-CNN: We remove CNN Block in compound feature

extraction from CAT-CPI. We divide the image into

patches and flatten the patches and feed them into

transformer encoder.

-Trans: We remove transformer encoder in compound feature

extraction from CAT-CPI and further deepen the CNN Block.

-P_Trans: We remove the transformer encoder in protein

feature extraction from CAT-CPI and directly use the

embedding of sub-sequence as input of FR module.

-Word2vec: We use the word2vec model to replace our

k-gram method in CAT-CPI.

-FR: We remove our FR module from CAT-CPI and flatten

the feature map directly through the fully connected layer to

obtain the result.

From Table 6, we see CNN, transformer, k-gram and RF

module all contribute to the model final performance. From

Table 6, we observe that when replacing the k-gram method with

FIGURE 5
The flowchart of our DDI model. Two pictures are fed into same CNN Block and Transformer Encoder. Then the feature map is stacked to
obtain the prediction results by FR module.

TABLE 4 Results of DDI experiments on BIOSNAP dataset.

Method ROC-AUC PR-AUC F1

LR 0.802 ± 0.001 0.779 ± 0.001 0.741 ± 0.002

Nat.Port 0.853 ± 0.001 0.848 ± 0.001 0.714 ± 0.001

Mol2Vec 0.879 ± 0.006 0.861 ± 0.005 0.798 ± 0.007

MolVAE 0.892 ± 0.009 0.877 ± 0.009 0.788 ± 0.033

DeepDDI 0.886 ± 0.007 0.871 ± 0.007 0.817 ± 0.007

CASTER 0.910 ± 0.005 0.887 ± 0.008 0.843 ± 0.005

Ours 0.960 ± 0.002 0.938 ± 0.002 0.926 ± 0.001

TABLE 5 Experimental results of CAT-CPI on different size images.

Image_size AUC AUPRC Recall

3*64*64 0.901 ± 0.001 0.371 ± 0.001 0.904 ± 0.001

3*128*128 0.920 ± 0.001 0.481 ± 0.001 0.888 ± 0.001

3*256*256 0.918 ± 0.001 0.471 ± 0.002 0.870 ± 0.001

TABLE 6 Ablation study on Human and Davis datasets.

Method ROC-AUC PR-AUC Recall

Human CAT-CPI 0.986 ± 0.001 0.948 ± 0.002 0.971 ± 0.003

-CNN 0.980 ± 0.001 0.942 ± 0.004 0.942 ± 0.003

-Trans 0.982 ± 0.001 0.939 ± 0.001 0.936 ± 0.003

Word2vec 0.982 ± 0.001 0.925 ± 0.003 0.949 ± 0.003

-P_Trans 0.981 ± 0.001 0.954 ± 0.003 0.936 ± 0.003

-FR 0.966 ± 0.001 0.923 ± 0.002 0.955 ± 0.001

Davis CAT-CPI 0.920 ± 0.001 0.481 ± 0.001- 0.888 ± 0.023

-CNN 0.914 ± 0.003 0.473 ± 0.011 0.849 ± 0.007

-Trans 0.912 ± 0.004 0.443 ± 0.005 0.848 ± 0.001

Word2vec 0.908 ± 0.002 0.436 ± 0.003 0.881 ± 0.004

-P_Trans 0.918 ± 0.002 0.478 ± 0.004 0.856 ± 0.007

-FR 0.853 ± 0.004 0.305 ± 0.017 0.824 ± 0.022
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word2vec model to represent protein sequences, the ROC-AUC

and PR-AUC have dropped a lot. From -FR results, we Find that

the prediction results all show a significant decrease. Therefore,

relearning of features can indeed be effective in extracting more

information about interactions.

To further explore the effectiveness of molecular images as

input feature, we perform several experiments using molecular

graph and compound SMILES sequence as input. We use the

graph and sequence information as inputs to our model

according to GNN-CPI(Tsubaki et al., 2019) and DeepDTA

(Öztürk et al., 2018), and construct the model as our (GNN-

CPI) and our (DeepDTA), respectively.

Our(GNN-CPI): we extract the feature from molecular

fingerprint and distance matrix according to GNN-CPI, and

feed it into FR module, where we keep the MLP and the last fully

connected layer.

Our(DeepDTA): we map drug sequences to a uniform

dimension similar to CAT-CPI and then use an encoder for

semantic learning. Final result prediction is performed using the

FR module.

We conduct experiments on the Davis dataset with the same

network hyperparameters as in our model, and the experimental

results are shown in Table 7. We observe that both our (GNN-

CPI) and our (DeepDTA) perform better in all metrics than the

original methods. In general, CAT-CPI achieves the best results

in comparison with graph-based and sequence-based methods,

which proves the effectiveness of molecular images as input

feature.

To further validate the effect of the number of parameters

and the computational quantities of the model on the

experimental results. We conduct an experimental comparison

of the following methods:

PWO-CPI: Only CNN is used for feature extraction of

molecular images.

a) We use a transformer encoder to model the stacked

feature maps.

b) We use only an MLP block and do not apply CNNs in FR.

c) We use only CNNs and do not apply MLP block in FR.

d) We use the concatenation method instead of the stacking

method. We concatenate the feature maps of compounds and

proteins, and then perform feature learning using 1D CNNs

and an MLP block.

e) We follow the method of MolTrans to process the feature

map, and perform dot product of the two feature maps. Then

the features are learned by using 1D convolution and an MLP

block.

f) The input image is adjusted to 64*64, and a layer of

convolution is reduced when feature extraction is

performed on the image.

g) The input image is adjusted to 256*256, and a layer of

maximum pooling is added when feature extraction is

performed on the image.

Since PWO-CPI only uses CNN for local aggregation of

features, there is no operation for global feature extraction. The

experimentalcomparison results of the model parameters are

shown in Table 8. In order to obtain global features and

interaction information, PWO-CPI performs a large number

of fully connected layer calculations, which leads to increase

in the number of parameters, to the extent that it is larger than

the number of parameters in CAT-CPI. CAT-CPI uses CNNs

with the addition of self-attention calculations compared to

PWO-CPI. The number of parameters and the calculation

quantities in CAT-CPI are reduced while the performance is

improved significantly.

TABLE 7 Network component ablation experiments on Davis dataset.

Step ROC-AUC PR-AUC Recall

GNN-CPI23 0.840 ± 0.012 0.269 ± 0.020 0.696 ± 0.047

our (GNN-CPI) 0.890 ± 0.002 0.312 ± 0.003 0.816 ± 0.004

DeepDTA15 0.880 ± 0.007 0.302 ± 0.044 0.764 ± 0.045

our (DeepDTA) 0.908 ± 0.002 0.431 ± 0.002 0.845 ± 0.003

CAT-CPI 0.920 ± 0.001 0.481 ± 0.001 0.888 ± 0.001

TABLE 8 Results of model parameters and computational quantities ablation experiments on the Davis dataset.

Method Params (M) FLOPs ROC-AUC PR-AUC Recall

PWO-CPI 6.353 1.095G 0.835 ± 0.004 0.158 ± 0.003 0.798 ± 0.003

CAT-CPI 6.179 935.222M 0.920 ± 0.001 0.481 ± 0.001 0.888 ± 0.001

a) 2.440 486.932M 0.901 ± 0.002 0.358 ± 0.003 0.825 ± 0.002

b) 3.827 564.921M 0.854 ± 0.002 0.290 ± 0.001 0.782 ± 0.001

c) 2.113 931.159M 0.912 ± 0.001 0.441 ± 0.002 0.881 ± 0.001

d) 3.849 603.346M 0.883 ± 0.001 0.280 ± 0.002 0.860 ± 0.003

e) 5.881 586.045M 0.877 ± 0.001 0.285 ± 0.002 0.910 ± 0.002

f) 6.037 783.179M 0.901 ± 0.001 0.371 ± 0.001 0.904 ± 0.001

g) 6.179 959.602M 0.918 ± 0.001 0.471 ± 0.002 0.870 ± 0.001
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Although CAT-CPI has more parameters than other

methods, it obtains the best results. However, after removing

the MLP block from CAT-CPI (method c), the parameter

number is the lowest, but its accuracy still shows significant

advantages. It proves that CNN and stacking methods in FR can

greatly improve the model by adding a small number of

parameters. This can also prove that the selection of each

block used in our model is organized meticulously.

Robustness experiments

To test the robustness of the CAT-CPI in the face of changes in

the molecular images, we perform a random geometric

transformation of all compound images on the Davis dataset,

including training, validation and testing set, and re-train the

model. We have conducted 4 transformation tests, including

rotation, HorizontalFlip, VerticalFlip and reduction + translation.

In each test, each compound is transformed randomly. Our

geometric transformations include the following methods:

• Rotation: We randomly select 1/4 of the compounds to

rotate 90°, 1/4 of the compounds to rotate 180°, 1/4 of the

compounds to rotate 270° and keep the rest unchanged.

• HorizontalFlip: We randomly select 1/2 of the compounds

to flip horizontally and keep the rest unchanged.

• VerticalFlip: We randomly select 1/2 of the compounds to

flip vertically and keep the rest unchanged.

• Translation, size = (h, w):We first reduce the compound size

to h*w. Then we translate the compound in four directions

randomly: top-left, top-right, bottom-left, and bottom-right.

The translation distance is half of the difference between the

current compound size and the background size. We select

1/4 of the compounds to a top-left translation, 1/4 of the

compounds to a top-right translation, 1/4 of the compounds

to a bottom-left translation and the rest of the compounds to

a bottom-right translation.

Figure 6 shows examples of these transformation methods.

We do experiments using the same parameters of the model on

FIGURE 6
Different methods of handling compound images.

TABLE 9 Results of the geometric transformation on the Davis dataset.

Methods ROC-AUC PR-AUC Recall

Rotation 0.916 ± 0.001 0.489 ± 0.001 0.866 ± 0.001

HorizontalFlip 0.918 ± 0.001 0.488 ± 0.001 0.888 ± 0.001

VerticalFlip 0.916 ± 0.001 0.477 ± 0.001 0.867 ± 0.001

Translation, size = (96,96) 0.916 ± 0.001 0.483 ± 0.002 0.884 ± 0.002

Translation, size = (64,64) 0.911 ± 0.001 0.464 ± 0.001 0.863 ± 0.001

Translation, size = (48,48) 0.910 ± 0.001 0.423 ± 0.003 0.849 ± 0.002

Translation, size = (32,32) 0.908 ± 0.001 0.456 ± 0.001 0.860 ± 0.001
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Davis dataset. The experiments results are shown in Table 9.

From Table 9, we can see that the performance of the model does

decrease slightly after the geometric transformation.

To better assess the robustness of our model, we compare

with PWO-CPI which also uses the image-based method.

Moreover, PWO-CPI only uses CNN to extract compound

features and fuse compounds and proteins by concatenation.

Therefore, PWO-CPI should not have translation invariance

issue. To better understand whether the performance decrease

is due to translation invariance issue or compound changes, we

do the same transformation experiments using the PWO-CPI.

The comparison results are shown in Table 10.

In Table 10, we can see the comparison of the performance

degradation of CAT-CPI and PWO-CPI after the geometric

transformation. The performance of PWO-CPI also decreases

after transforming the compound images. In general, our model

is able to maintain satisfactory performance in the face of image

geometric transformations as well.

Conclusion

As the feasibility and effectiveness of the imagemethod has been

confirmed in PWO-CPI, we introduce CAT-CPI, an end-to-end

biological inspired molecular image-based model. Combining the

local learning capability of CNN and the global representation

capability of transformer to perform comprehensive

representation learning of molecular images. CAT-CPI extends

the word-based sequence representation of proteins to a sub-

sequence representation and uses an encoder to learn the

semantic relationships of sub-sequences. The FR module

addresses the limitation of targeting the representation of the

model without learning it completely. Comparing with other

methods in CPI or DDI experiments, CAT-CPI achieves

significantly improved performance on different datasets. For

future works, we plan to extend it to chemical sub-image

embedding and enhance features such as atomic information in

molecular images for future improvement. Overall, CAT-CPI

provides a novel approach to model optimization and contributes

chemical biology studies with useful guidance for further.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: Human and Celegans can be obtained

from TransformerCPI. DAVIS is available at http://staff.cs.utu.fi/

~aatapa/data/DrugTarget/; BIOSNAP is available at http://snap.

stanford.edu/biodata/datasets/10002/10002-ChG-Miner.html.

Author contributions

The study was designed by YQ and JW; QZ was responsible for

data collection and analysis. All authors were involved in the

experiments of the model and the analysis of the data results. All

authors reviewed the final draft and approved its submission.

Funding

Sponsored by Natural Science Foundation of Shanghai

(21ZR1475600 and 21ZR1421200).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

TABLE 10 Geometric transformation tests of PWO-CPI and CAT-CPI on the Davis dataset.

Methods CAT-CPI (AUC = 0.920) PWO-CPI (AUC = 0.848)

ROC-AUC AUC decrease ROC-AUC AUC decrease

Rotation 0.916 −0.004 0.845 −0.003

HorizontalFlip 0.918 −0.002 0.844 −0.004

VerticalFlip 0.916 −0.004 0.845 −0.003

Translation, size = (96,96) 0.916 −0.004 0.845 −0.003

Translation, size = (64,64) 0.911 −0.009 0.835 −0.013

Translation, size = (48,48) 0.91 −0.010 0.834 −0.014

Translation, size = (32,32) 0.908 −0.012 0.830 −0.018

Frontiers in Molecular Biosciences frontiersin.org12

Qian et al. 10.3389/fmolb.2022.963912

http://staff.cs.utu.fi/%7Eaatapa/data/DrugTarget/
http://staff.cs.utu.fi/%7Eaatapa/data/DrugTarget/
http://snap.stanford.edu/biodata/datasets/10002/10002-ChG-Miner.html
http://snap.stanford.edu/biodata/datasets/10002/10002-ChG-Miner.html
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.963912


affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmolb.

2022.963912/full#supplementary-material

References

Baevski, A., and Auli, M. 2018. Adaptive input representations for neural
language modeling. arXiv preprint arXiv:1809.10853.

Bagherian, M., Kim, R. B., Jiang, C., Sartor, M. A., Derksen, H., and Najarian, K.
(2021). Coupled matrix–matrix and coupled tensor–matrix completion methods
for predicting drug–target interactions. Brief. Bioinform. 22, 2161–2171. doi:10.
1093/bib/bbaa025

Bello, I., Zoph, B., Vaswani, A., Shlens, J., and Le, Q. V. (2019). Attention
augmented convolutional networks. Proc. Of IEEE/CVF Int. Conf. Comput. Vis.,
3286–3295.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S.
(2020). End-to-end object detection with transformers, European conference on
computer vision. Springer, 213–229.

Chen, L., Tan, X., Wang, D., Zhong, F., Liu, X., Yang, T., et al. (2020).
TransformerCPI: Improving compound–protein interaction prediction by
sequence-based deep learning with self-attention mechanism and label reversal
experiments. Bioinformatics 36, 4406–4414. doi:10.1093/bioinformatics/btaa524

Chen, X., Yu, G., Wang, J., Domeniconi, C., Li, Z., and Zhang, X. 2019. Activehne:
Active heterogeneous network embedding. Arxiv Preprint Arxiv:1905.05659.

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297. doi:10.1007/bf00994018

Cover, T., and Hart, P. (1967). Nearest neighbor pattern classification. IEEE
Trans. Inf. Theory 13, 21–27. doi:10.1109/tit.1967.1053964

Davis, M. I., Hunt, J. P., Herrgard, S., Ciceri, P., Wodicka, L. M., Pallares, G., et al.
(2011). Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29,
1046–1051. doi:10.1038/nbt.1990

Donald, B. R. (2011). Algorithms in structural molecular biology. MIT Press.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. 2020. An image is worth 16x16 words: Transformers for image recognition
at scale. Arxiv Preprint Arxiv:2010.11929.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting
machine. Ann. Of Statistics, 1189–1232. doi:10.1214/aos/1013203451

Gao, K. Y., Fokoue, A., Luo, H., Iyengar, A., Dey, S., and Zhang, P. (2018).
Interpretable drug target prediction using deep neural representation. Stockholm,
Sweden: Ijcai, 3371–3377.

Gawehn, E., Hiss, J. A., and Schneider, G. (2016). Deep learning in drug discovery.
Mol. Inf. 35, 3–14. doi:10.1002/minf.201501008

Gómez-Bombarelli, R., Duvenaud, D., Hernández-Lobato, J. M., Aguilera-
Iparraguirre, J., and Aspuru-Guzik, A. (2016). Automatic chemical design using
A data-driven continuous representation of molecules. ACS Central Sci. 4.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
et al. (2014). Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27.

Hu, H., Gu, J., Zhang, Z., Dai, J., and Wei, Y. (2018). Relation networks for object
detection. Proc. Of IEEE Conf. Comput. Vis. Pattern Recognit., 3588–3597.

Hu, H., Zhang, Z., Xie, Z., and Lin, S. (2019). Local relation networks for image
recognition. Proc. Of IEEE/CVF Int. Conf. Comput. Vis., 3464–3473.

Huang, K., Xiao, C., Glass, L. M., and Sun, J. (2021). Moltrans: Molecular
interaction transformer for drug–target interaction prediction. Bioinformatics 37,
830–836. doi:10.1093/bioinformatics/btaa880

Huang, K., Xiao, C., Hoang, T., Glass, L., and Sun, J. C. (2020). Caster: Predicting
drug interactions with chemical substructure representation. Proc. Of AAAI Conf.
Artif. Intell. 34, 702–709. doi:10.1609/aaai.v34i01.5412

Ioffe, S., and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. New York, NY: PMLR, 448–456.

Jaeger, S., Fulle, S., and Turk, S. (2017). Mol2vec: Unsupervised machine learning
approach with chemical intuition. J. Chem. Inf. Model. 58, 27–35. doi:10.1021/acs.
jcim.7b00616

Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J., and
Shoichet, B. K. (2007). Relating protein pharmacology by ligand chemistry. Nat.
Biotechnol. 25, 197–206. doi:10.1038/nbt1284

Kipf, T. N., and Welling, M. 2016. Semi-supervised classification with graph
convolutional networks. Arxiv Preprint Arxiv:1609.02907.

Lan, W., Wang, J., Li, M., Wu, F.-X., and Pan, Y. (2015). Predicting drug-target
interaction based on sequence and structure information. IFAC-Papersonline 48,
12–16. doi:10.1016/j.ifacol.2015.12.092

Landrum, G. (2013). Rdkit documentation. Release 1, 4.

Larsson, G., Maire, M., and Shakhnarovich, G. (2016). s. Arxiv Preprint Arxiv:
1605.07648.Fractalnet: Ultra-Deep neural networks without residual

Lee, I., Keum, J., and Nam, H. (2019). Deepconv-Dti: Prediction of drug-target
interactions via deep learning with convolution on protein sequences. PLoS
Comput. Biol. 15, E1007129. %@ 1553-734x. doi:10.1371/journal.pcbi.1007129

Li, J., Zheng, S., Chen, B., Butte, A. J., Swamidass, S. J., and Lu, Z. (2016). A survey
of current trends in computational drug repositioning. Brief. Bioinform. 17, 2–12.
doi:10.1093/bib/bbv020

Li, X., Han, P., Wang, G., Chen,W.,Wang, S., and Song, T. 2022. SDNN-PPI: Self-
Attention with deep neural networks effect on protein-protein interaction
prediction.

Liaw, A., and Wiener, M. (2002). Classification and regression by randomforest.
R. News 2, 18–22.

Liu, H., Sun, J., Guan, J., Zheng, J., and Zhou, S. (2015). Improving
compound–protein interaction prediction by building up highly credible
negative samples. Bioinformatics 31, I221–I229. doi:10.1093/bioinformatics/btv256

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). Swin transformer:
Hierarchical vision transformer using shifted windows. Arxiv Preprint Arxiv:
2103.14030.

Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang,W., et al. (2017). A network
integration approach for drug-target interaction prediction and computational drug
repositioning from heterogeneous information. Nat. Commun. 8, 1–13. doi:10.
1038/s41467-017-00680-8

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models. Proc. IcmlCiteseer 3.

Manoochehri, H. E., and Nourani, M. (2020). Drug-target interaction prediction
using semi-bipartite graph model and deep learning. BMC Bioinforma. 21, 1–16.

Meng, X., Wang, X., Zhang, X., Zhang, C., Zhang, Z., Zhang, K., et al. (2022). A
novel attention-mechanism based cox survival model by exploiting pan-cancer
empirical genomic information. Cells 11, 1421. %@ 2073-4409. doi:10.3390/
cells11091421

Nascimento, A. C., Prudêncio, R. B., and Costa, I. G. (2016). A multiple kernel
learning algorithm for drug-target interaction prediction. BMC Bioinforma. 17,
46–16. doi:10.1186/s12859-016-0890-3

Nguyen, A., Yosinski, J., and Clune, J. (2019). Understanding neural networks via
feature visualization: A survey. Explainable ai: Interpreting, explaining and
visualizing deep learning. Springer.

Nguyen, A., Yosinski, J., and Clune, J. 2016. Multifaceted feature visualization:
Uncovering the different types of features learned by each neuron in deep neural
networks. Arxiv Preprint Arxiv:1602.03616.

Nguyen, T., Le, H., Quinn, T. P., Nguyen, T., Le, T. D., and Venkatesh, S. (2021).
Graphdta: Predicting drug–target binding affinity with graph neural networks.
Bioinformatics 37, 1140–1147. doi:10.1093/bioinformatics/btaa921

Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature visualization. Distill 2,
E7. doi:10.23915/distill.00007

Öztürk, H., Özgür, A., and Ozkirimli, E. (2018). Deepdta: Deep drug–target
binding affinity prediction. Bioinformatics 34, I821–I829. doi:10.1093/
bioinformatics/bty593

Frontiers in Molecular Biosciences frontiersin.org13

Qian et al. 10.3389/fmolb.2022.963912

https://www.frontiersin.org/articles/10.3389/fmolb.2022.963912/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.963912/full#supplementary-material
https://doi.org/10.1093/bib/bbaa025
https://doi.org/10.1093/bib/bbaa025
https://doi.org/10.1093/bioinformatics/btaa524
https://doi.org/10.1007/bf00994018
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1038/nbt.1990
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1002/minf.201501008
https://doi.org/10.1093/bioinformatics/btaa880
https://doi.org/10.1609/aaai.v34i01.5412
https://doi.org/10.1021/acs.jcim.7b00616
https://doi.org/10.1021/acs.jcim.7b00616
https://doi.org/10.1038/nbt1284
https://doi.org/10.1016/j.ifacol.2015.12.092
https://doi.org/10.1371/journal.pcbi.1007129
https://doi.org/10.1093/bib/bbv020
https://doi.org/10.1093/bioinformatics/btv256
https://doi.org/10.1038/s41467-017-00680-8
https://doi.org/10.1038/s41467-017-00680-8
https://doi.org/10.3390/cells11091421
https://doi.org/10.3390/cells11091421
https://doi.org/10.1186/s12859-016-0890-3
https://doi.org/10.1093/bioinformatics/btaa921
https://doi.org/10.23915/distill.00007
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1093/bioinformatics/bty593
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.963912


Öztürk, H., Ozkirimli, E., and Özgür, A. 2019. Widedta: Prediction of drug-target
binding affinity. Arxiv Preprint Arxiv:1902.04166.

Pang, S., Zhang, Y., Song, T., Zhang, X., Wang, X., and Rodriguez-Patón, A.
(2022). Amde: A novel attention-mechanism-based multidimensional feature
encoder for drug–drug interaction prediction. Brief. Bioinform. 23, bbab545.
Bbab545 %@ 1467-5463. doi:10.1093/bib/bbab545

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., et al. (2018).
Image transformer. International conference on machine learning. New York, NY:
PMLR, 4055–4064.

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., et al. (2018). A
survey on deep learning: Algorithms, techniques, and applications. ACM Comput.
Surv. 51, 1–36. doi:10.1145/3234150

Qian, Y., Li, X., Wu, J., Zhou, A., Xu, Z., and Zhang, Q. (2022). Picture-word order
compound protein interaction: Predicting compound-protein interaction using
structural images of compounds. J. Comput. Chem. 43, 255–264. doi:10.1002/jcc.26786

Ryu, J. Y., Kim, H. U., and Sang, Y. L. (2018). Deep learning improves prediction
of drug–drug and drug–food interactions. Proc. Natl. Acad. Sci. U. S. A. 115,
E4304–E4311. doi:10.1073/pnas.1803294115

Shaw, P., Uszkoreit, J., and Vaswani, A. 2018. Self-attention with relative position
representations. Arxiv Preprint Arxiv:1803.02155.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T.,
et al. 2021. Mlp-Mixer: An all-mlp architecture for vision. Arxiv Preprint Arxiv:
2105.01601.

Tsubaki, M., Tomii, K., and Sese, J. (2019). Compound–protein interaction
prediction with end-to-end learning of neural networks for graphs and
sequences. Bioinformatics 35, 309–318. doi:10.1093/bioinformatics/bty535

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. Adv. Neural Inf. Process. Syst., 5998–6008.

Vilar, S., Uriarte, E., Santana, L., Lorberbaum, T., Hripcsak, G., Friedman, C., et al.
(2014). Similarity-based modeling in large-scale prediction of drug-drug
interactions. Nat. Protoc. 9, 2147–2163. doi:10.1038/nprot.2014.151

Wan, F., Hong, L., Xiao, A., Jiang, T., and Zeng, J. (2019). NeoDTI: Neural
integration of neighbor information from A heterogeneous network for discovering

new drug–target interactions. Bioinformatics 35, 104–111. doi:10.1093/
bioinformatics/bty543

Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F., et al. 2019. Learning deep
transformer models for machine translation. Arxiv Preprint Arxiv:1906.01787.

Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., et al. 2021. Pyramid
vision transformer: A versatile backbone for dense prediction without convolutions.
Arxiv Preprint Arxiv:2102.12122.

Wang, X., Zhang, Z., Zhang, C., Meng, X., Shi, X., and Qu, P. (2022). Transphos:
A deep-learning model for general phosphorylation site prediction based on
transformer-encoder architecture. Int. J. Mol. Sci. 23, 4263. %@ 1422-0067.
doi:10.3390/ijms23084263

Wright, R. E. 1995. Logistic regression.

Wu, Z., Cheng, F., Li, J., Li, W., Liu, G., and Tang, Y. (2017). Sdtnbi: An integrated
network and chemoinformatics tool for systematic prediction of drug–target
interactions and drug repositioning. Brief. Bioinform. 18, 333–347. doi:10.1093/
bib/bbw012

Yadav, A., and Vishwakarma, D. K. (2020). Sentiment analysis using deep
learning architectures: A review. Artif. Intell. Rev. 53, 4335–4385. doi:10.1007/
s10462-019-09794-5

Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kanehisa, M. (2008).
Prediction of drug–target interaction networks from the integration of chemical and
genomic spaces. Bioinformatics 24, I232–I240. doi:10.1093/bioinformatics/btn162

Yue, Y., and He, S. (2021). DTI-HeNE: A novel method for drug-target
interaction prediction based on heterogeneous network embedding. BMC
Bioinforma. 22, 418–420. doi:10.1186/s12859-021-04327-w

Zeiler, M. D., and Fergus, R. (2014). European conference on computer vision.
Springer, 818–833.Visualizing and understanding convolutional networks

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. (2019). Self-attention
generative adversarial networks. International conference on machine learning. New
York, NY: PMLR, 7354–7363.

Zhao, Z., Zhang, X., Zhou, H., Li, C., Gong, M., and Wang, Y. (2020). Hetnerec:
Heterogeneous network embedding based recommendation. Knowledge-Based Syst.
204, 106218. doi:10.1016/j.knosys.2020.106218

Frontiers in Molecular Biosciences frontiersin.org14

Qian et al. 10.3389/fmolb.2022.963912

https://doi.org/10.1093/bib/bbab545
https://doi.org/10.1145/3234150
https://doi.org/10.1002/jcc.26786
https://doi.org/10.1073/pnas.1803294115
https://doi.org/10.1093/bioinformatics/bty535
https://doi.org/10.1038/nprot.2014.151
https://doi.org/10.1093/bioinformatics/bty543
https://doi.org/10.1093/bioinformatics/bty543
https://doi.org/10.3390/ijms23084263
https://doi.org/10.1093/bib/bbw012
https://doi.org/10.1093/bib/bbw012
https://doi.org/10.1007/s10462-019-09794-5
https://doi.org/10.1007/s10462-019-09794-5
https://doi.org/10.1093/bioinformatics/btn162
https://doi.org/10.1186/s12859-021-04327-w
https://doi.org/10.1016/j.knosys.2020.106218
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.963912

	CAT-CPI: Combining CNN and transformer to learn compound image features for predicting compound-protein interactions
	Introduction
	Methods
	Compound feature extraction
	Protein feature extraction
	Feature relearning module and model optimization

	Experiments
	Dataset
	CPI experiment
	DDI experiments
	Ablation study
	Robustness experiments

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


