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Abstract
Objective Androgen deprivation therapy alters body composition promoting a significant loss in skeletal muscle (SM) 
mass through inflammation and oxidative damage. We verified whether SM anthropometric composition and metabolism 
are associated with unfavourable overall survival (OS) in a retrospective cohort of metastatic castration-resistant prostate 
cancer (mCRPC) patients submitted to 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography 
(FDG PET/CT) imaging before receiving Radium-223.
Patients and methods Low-dose CT were opportunistically analysed using a cross-sectional approach to calculate SM and 
adipose tissue areas at the third lumbar vertebra level. Moreover, a 3D computational method was used to extract psoas 
muscles to evaluate their volume, Hounsfield Units (HU) and FDG retention estimated by the standardized uptake value 
(SUV). Baseline established clinical, lab and imaging prognosticators were also recorded.
Results SM area predicted OS at univariate analysis. However, this capability was not additive to the power of mean HU 
and maximum SUV of psoas muscles volume. These factors were thus combined in the Attenuation Metabolic Index (AMI) 
whose power was tested in a novel uni- and multivariable model. While Prostate-Specific Antigen (PSA), Alkaline Phos-
phatase (ALP), Lactate Dehydrogenase and Hemoglobin, Metabolic Tumor Volume, Total Lesion Glycolysis and AMI were 
associated with long-term OS at the univariate analyses, only PSA, ALP and AMI resulted in independent prognosticator 
at the multivariate analysis.
Conclusion The present data suggest that assessing individual 'patients' SM metrics through an opportunistic operator-
independent computational analysis of FDG PET/CT imaging provides prognostic insights in mCRPC patients candidates 
to receive Radium-223.
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Introduction

Prostate cancer (PC) represents the most common solid 
male malignancy in the western world [1]. The clinical 
behaviour of PC is widely heterogeneous, ranging from 
hormone-responsive disease to a highly aggressive and 

treatment-resistant one [1, 2]. This latter setting is often 
characterized by a metastatic diffusion combined with 
the loss of hormone sensitivity configuring the clinical 
scenario of metastatic castration-resistant prostate can-
cer (mCRPC). In these patients, several treatment options 
can improve the overall survival (OS) when added to the 

androgen-deprivation therapy (ADT), including the adminis-
tration of alpha-emitting radionuclides such as Radium-223 
[3–9].

The phase III Alpharadin in Symptomatic Prostate Cancer 
Patients (ALSYMPCA) trial recruited patients with mCRPC 
with exclusive bone metastases who received Radium-223 
compared to placebo, showing a significantly improved OS 
in the treated group [10]. Nevertheless, this result was only 
partially confirmed in clinical practice during the last decade 
[11–13]. Among the possible explanations of this discrep-
ancy, concerns have been raised about the criteria used for 
the selection of candidates for this treatment [14]. Therefore, 
defining prognostic factors able to identify mCRPC patients 
who will most likely benefit from Radium-223 since base-
line, potentially improving this difficult selection process, 
represents a challenging and crucial issue.

In this scenario, a few studies showed that imaging of 18F‐
Fluorodeoxyglucose (FDG) uptake with Positron Emission 
Tomography/Computed Tomography (PET/CT) provides 
prognostic insights in advanced mCRPC, potentially guiding 

the systemic treatment selection [15–17]. In particular, the 
higher is FDG retention in skeletal lesions, the lower are the 
chances of response to Radium-223 [16, 17]. Nevertheless, 
PET/CT imaging may opportunistically provide a series of 
data related to the normal tissues of mCRPC patients, whose 
analysis might provide prognostic insights independent of 
the tumour itself.

Among these variables, sarcopenia recently gained atten-
tion as a prognosticator in PC [18–21]. Sarcopenia defines a 
systematic loss of skeletal muscle (SM) mass that decreases 
below two standard deviations of normal healthy adults [22]. 
The analysis of the SM area at the level of the third lumbar 
vertebra (L3) in CT images has already proved to represent 
an accurate procedure to identify sarcopenia [23]. However, 
given the multifactorial aetiology underlying muscle wast-
ing, including systemic inflammation [24], FDG PET/CT 
might represent a potential better descriptor of this muscle 
disorder.

On these bases, the present study aimed to assess whether 
SM mass, SM metabolism or their eventual combination, 



375Annals of Nuclear Medicine (2022) 36:373–383 

1 3

opportunistically derived from FDG PET/CT imaging, are 
associated with unfavourable OS in a cohort of mCRPC 
patients’ candidates to Radium-223 therapy.

Materials and methods

Study population and design

We performed a retrospective analysis of all consecutive 
mCRPC patients treated with Radium-223 from January 
2015 to November 2021 at IRCCS Ospedale Policlinico San 
Martino of Genoa, Italy. CRPC was defined as a serum tes-
tosterone level of < 50 ng/dl following pharmaceutical cas-
tration. All recruited patients were submitted to FDG PET/
CT before receiving Radium-223 for prognostic purposes, 
as indicated by the national guidelines [25]. The study was 
performed according to the Declaration of Helsinki, Good 
Clinical Practice, and local ethical regulations. The local 
ethical committee of Regione Liguria approved the study 
(Regional Ethical Committee of Liguria—registration num-
ber 590/2020). All patients enrolled in the study signed a 
written informed consent at the time of FDG PET/CT and 
at the time of each Radium-223 administration, encompass-
ing the use of anonymized data for retrospective research 
purposes.

Imaging and treatment procedures

FDG PET/CT was performed according to the European 
Association of Nuclear Medicine (EANM) Guidelines [26]. 
Briefly, after a minimum 6-h fasting, a dose of 4.8–5.2 MBq 
of FDG per kilogram of body weight was injected through 
a peripheral vein catheter. Patients were placed in a quiet 
room and instructed to remain still. Data acquisition 
started ≥ 60 min after tracer injection. Patients underwent 
low-dose CT from the skull base to the thighs for attenua-
tion-correction and anatomic localization of the FDG-avid 
lesions, followed by PET imaging. PET/CT studies were 
performed with two different PET/CT systems (Hirez-Bio-
graph 16; Siemens Medical Solutions, Munich, Germany 
and Biograph mCT Flow; Siemens Medical Solutions, 
Munich, Germany). Standard parameters used were CT: 
80 mA, 120 kV without contrast; 2.5 min per bed-PET-step 
of 15 cm; the reconstruction was performed in a 128 × 128 
matrix and with a 60 cm field-of-view. PET images recon-
struction was obtained using ordered subset expectation 
maximization (OSEM) algorithms, and attenuation cor-
rection was performed using the CT raw data. The entire 
CT dataset was fused with the 3-dimensional PET images 
using an integrated software interface (Syngo Image Fusion; 
Siemens Erlangen, Germany) to create anatomical images 
superimposed with FDG uptake.

Radium-223 (55 KBq/kg) was intravenously administered 
every four weeks and continued until disease progression, 
unacceptable toxicity, death, or patient choice up to six 
cycles. According to the current EANM guidelines, chemo-
therapy, Abiraterone, or Enzalutamide were discontinued 
before the first Radium-223 administration, while patients 
continued receiving androgen deprivation therapy [27]. 
As part of our standard protocol, patients were clinically 
followed-up until death or patient choice after treatment 
completion.

Anthropometric measurements on FDG PET/CT 
images

Anthropometric measurements were performed on PET/
CT images using a cross-sectional and a 3D computational 
approach.

The cross-sectional areas of subcutaneous fat (HU: − 190 
to − 30), visceral fat (HU: − 150 to − 50), and SM (HU: − 29 
to 150) from the low-dose CT of PET/CT scan at the level of 
L3 were calculated using a validated freely available online 
software (www. CoreS licer. com) [28]. For SM cross-sec-
tional analysis, two consecutive images were recorded in the 
L3 plane. The sum of the cross-sectional areas of all SM was 
calculated, averaged, and divided by the square of the height 
(termed Skeletal Muscle Index, SMI). The formula used 
was: SMI = L3 SM cross-sectional area  (cm2)/height2(m2) 
[29]. The occurrence of sarcopenia was defined according 
to international consensus definitions of an SMI < 55  cm2/
m2 for men [29]. Adipose tissue area was calculated as the 
sum between visceral and subcutaneous fat areas. Visceral-
to-subcutaneous fat ratio (VSR) and visceral fat-to-muscle 
ratio (VMR) were also calculated.

To improve the accuracy of the anthropometric evaluation, 
an in-house validated operator-independent 3D computational 
approach based on the Hough transform was also applied [30, 
31]. This method can extract the entire recognizable psoas 
muscles volume from the low-dose CT images of PET/CT 
scans instead of a single muscle slice at the level of L3. This 
approach extracts the Psoas volume from its insertion in 
L2-L3 to the L5-S1 symphysis plane. Extracted volumes, aver-
age Psoas HU (HUmean) and HUmean Standard Deviation 
(HUmean SD) can be thus extracted from the entire muscles 
in an operator-independent fashion. The extracted binary mask 
can also be translated to the corresponding FDG PET data to 
calculate maximum and mean Standardized Uptake Values 
(SUV) from the entire Psoas muscles volumes of interest.

Prognostic clinical and imaging data collection

Baseline established prognosticator included patient's 
age, Gleason Score (GS), International Society of Uro-
logical Pathology (ISUP) grade group at diagnosis, serum 

http://www.CoreSlicer.com
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Prostate-Specific Antigen (PSA), alkaline phosphatase (ALP) 
and lactate dehydrogenase (LDH) at diagnosis and at the time 
of imaging, the number of bone metastases at bone scan, the 
number of previous lines of systemic treatment, and the even-
tual prior chemotherapy. The maximum standardized uptake 
value (SUVmax) of the hottest metastatic lesion was obtained 
from FDG PET/CT images. A volume of interest was then 
drawn using an SUV-based automated contouring program 
with an isocounter threshold based on 40% of the SUVmax 
[32]. The sum of all metastatic lesions identified the total 
Metabolic Tumor Volume (MTV). In contrast, the sum of the 
products between volume and the corresponding SUVmean 
of each lesion determined the Total Lesion Glycolysis (TLG).

Statistical analyses

The descriptive analyses were conducted using absolute fre-
quency and percentage for categorical variables and by median 
and range for quantitative variables. Continuous data are 
expressed as mean ± SD. The study's primary endpoint was 
the overall survival (OS), which was defined as the time from 
FDG PET/CT imaging until death from any cause, censored at 
last follow-up for patients who were alive. The Kaplan–Meier 
(KM) method was used to estimate the survival curve of OS 
[33]. Differences were considered statistically significant 
when the p value (p) was < 0.05. Univariate and multivariate 
analyses were performed, assessing clinical, laboratory and 
imaging parameters in correlation with OS, using Cox pro-
portional hazard regression model, estimating hazard ratios 
(HRs) and their 95% confidence interval (CI). Only factors 
with a p < 0.10 at the univariable analysis were evaluated in 
the multivariable analyses for OS. All statistical analyses were 
performed using the software IBM‐SPSS release 23 (IBM, 
Armonk, USA) and MedCalc release 12 (MedCalc Software, 
Mariakerke, Belgium).

Results

Patients' characteristics

Seventy mCRPC patients were included in the analysis. 
Patients' and treatment characteristics are summarised in 
Table 1. The mean age was 74.81 ± 8.4 years, and patients 
with ≥ 75 years were 45.7% of the entire cohort. At the time 
of diagnosis, 35/70 (50%) and 37/70 (53%) had GS ≥ 8 and 
were metastatic, respectively. Among all patients, 19% 
received Radium-223 as second-line therapy, while 33.3% 
and 47.6% received Radium-223 as the third or further 
line, respectively. Most patients had previously received 
chemotherapy (58.7%). At the time of data cut-off (Novem-
ber 2021), with a median follow-up of 8.6 months, 46/70 

(65.7%) of patients were dead, and the median OS (mOS) 
was 11.5 months (Fig. 1).

Cross‑sectional versus computational analysis of SM 
composition

All 70 mCRPC enrolled patients were classified as radiologi-
cally sarcopenic and the mean SMI of the study cohort was 
34.27 ± 6.2. Results from univariate and multivariate analy-
ses, including body weight, BMI, cross-sectional and 3D 
computational body composition parameters, are reported 
in Table 2. Bodyweight and BMI did not correlate with OS. 
Among the cross-sectional body composition parameters, 
SM area significantly correlated with OS, while SMI, adi-
pose tissue area, VSR, and VMR did not reach significance. 
Among the 3D computational body composition param-
eters, psoas HUmean and psoas SUVmax resulted prog-
nostic, while psoas volume, psoas HUmean SD and Psoas 
SUVmean did not predict OS.

Specifically, lower SM area, low HUmean and high SUV-
max were associated with a poor OS, suggesting that the 
inferior long-term outcome is predicted by the reduction in 
SM body content, SM density as well as by the increased 
SM FDG uptake. The multivariate model including SM 
area (< 102.8 vs ≥ 102.8  cm2), psoas HUmean (< 29.5 
vs ≥ 29.5), and psoas SUVmax (< 3.9 vs ≥ 3.9) identified 
psoas HUmean and SUVmax as independent predictors of 
longterm OS (both with p ≤ 0.01).

Association of structural and metabolic SM 
composition parameters and OS

Results from Kaplan–Meier analyses of HUmean and 
SUVmax, are reported in Fig. 2A, B. The combination of 
the parameters mentioned above allowed us to identify a 
novel composite index, which categorized the enrolled 
cases in two groups with different risks as it follows: low 
risk (including cases with neither HUmean < 29.55 nor 
SUVmax > 3.89 and cases with HUmean < 29.55 or SUV-
max > 3.89, n = 49), and high risk (HUmean < 29.55 and 
SUVmax > 3.89, n = 21). Given both attenuation and meta-
bolic parameters as determinants, the obtained index was 
named Attenuation Metabolic Index (AMI). Kaplan–Meier 
curves for AMI are represented in Fig. 2C. Median OS was 
16.5 months (95% CI 9.03–23.97 months), and 5.6 months 
(95% CI 3.81–7.45 months) for the low and the high AMI 
groups, respectively (p < 0.0001). When included in a mul-
tivariate model containing acknowledged clinical, lab and 
imaging prognosticators, AMI resulted in an independent 
predictor of long-term OS (Table 3).
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Discussion

A growing body of literature suggests that the efficacy 
of Radium-223 is closely dependent on pre-treatment 
'risk stratification [14]. Therefore, several studies investi-
gated many potential baseline prognostic factors, whose 

application might optimize the patient's selection process 
[34]. Coherently with the existing literature, in the present 
study we observed a prognostic role of baseline PSA, ALP, 
LDH, and haemoglobin in a cohort of mCRPC candidates 
to receive Radium-223 [35–41]. Similarly, in agreement 
with the existing literature [16, 17], the extent and meta-
bolic activity of the metastatic burden, as described by MTV 
and TLG derived from FDG PET/CT images, predicted OS. 
On the other hand, we observed that baseline SM structural 
and metabolic metrics as well as their combination correlate 
with long-term survival, regardless of the clinical, lab and 
imaging descriptors of the tumour extension. These data can 
be opportunistically obtained from FDG PET/CT images, 
without additional imaging examination costs or radiation 
exposure.

In the last years, there has been an increasing interest in 
assessing opportunistic biomarkers from routine, standard 
of care imaging. An emblematic example is represented by 
the imaging-based assessment of sarcopenia, which has been 
correlated with long-term OS in a wide range of solid can-
cers [42]. The occurrence of sarcopenia has also been related 
to the increased risk of postsurgical complications [43] and 
systemic treatment toxicity [44], leading to the notion that 

Table 1  Patients' characteristics Clinical characteristics n (%)

Median age, years (range) 74.77 (51.7–89.1)
Median weight, kg (range) 80.00 (54–119)
Median Body Mass Index (BMI) 26.93 (18.5–38.6)
International Society of Urological Pathology (ISUP) grade group
 Gleason Score < 8 23/70 (32.8%)
 Gleason Score ≥ 8 35/70 (50%)
 Missing 12/70 (17.2%)

Metastases at diagnosis
 No 33/70 (47.2%)
 Yes 37/70 (52.8%)

Lab tests at diagnosis
 Prostate Specific Antigen (PSA, ng/mL) 329.87 ± 1561.9

Prior chemotherapy
 No 12/70 (17.2%)
 Yes 51/70 (72.8%)
 Missing 7/70 (10%)

Lab tests at the time of FDG PET/CT imaging
 Hemoglobin (g/dL) 11.49 ± 1.8
 Prostate Specific Antigen (PSA, ng/mL) 391.46 ± 946.7
 Alkaline phosphatase (AP, U/L) 234.45 ± 271.72
 Lactate dehydrogenase (LDH, U/L) 322.36 ± 322.63
 Neutrophil to lymphocyte ratio (NLR) 5.24 ± 4.3

FDG PET/CT parameters
 Standardized Uptake Value (SUVmax) of the hottest bone lesion 8.19 ± 4.2
 Metabolic Tumor Volume (MTV,  cm3) 523.96 ± 591.4
 Total Lesion Glycolysis (TLG) 2207.47 ± 2982.8

Fig. 1  Kaplan–Meier survival function of the study cohort
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assessing the sarcopenic status before treatment may guide 
customised strategies and support tailored treatment deci-
sion-making. A robust prognostic impact of sarcopenia has 
also been shown in PC, in which this condition is present 
in over 60% of patients [21, 45, 46]. However, at the later 
stages of the disease (i.e., in heavily pre-treated mCRPC), 
the prevalence of sarcopenia can be considerably increased 
[21, 45]. Coherently, in the present study, all the enrolled 
patients met the radiological criteria for sarcopenia. This 
finding suggests that the use of the conventional radiological 

definition of sarcopenia may be an inaccurate prognosticator 
at these stages. On these bases, we extended the conven-
tional anthropometric evaluation of body composition to a 
vast range of cross-sectional and computational parameters.

From the methodological point of view, this approach 
allowed us to observe that the 3D computational analysis of 
SM overcomes the cross-sectional assessment in terms of 
the prediction of the long-term OS. This difference might 
be related to the higher reproducibility of volumetric meth-
ods compared to cross-sectional area measures, given to the 

Table 2  Uni- and multivariable Cox regression analyses including cross-sectional and 3D computational body composition metrics

Statistically significant differences were indicated in bold

Variables Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

Clinical data Body weight (kg)
  < 80 1.00 (ref)
  ≥ 80 0.76 (0.42–1.37) 0.362

Body Mass Index (BMI)
  < 26.9 1.00 (ref)
  ≥ 26.9 1.41 (0.78–2.53) 0.244

Cross-sectional data Skeletal muscle index (SMI,  cm2/m2)
  < 33.7 1.00 (ref)
  ≥ 33.7 0.64 (0.35–1.16) 0.147

SM Area  (cm2)
  < 102.8 1.00 (ref)
  ≥ 102.8 0.44 (0.24–0.79) 0.007

Adipose tissue area
  < 423.3 1.00 (ref)
  ≥ 423.3 0.82 (0.46–1.47) 0.521

Visceral-to-subcutaneous fat ratio (VSR)
  < 1.32 1.00 (ref)
  ≥ 1.32 1.40 (0.78–2.51) 0.258

Visceral fat-to-muscle ratio (VMR)
  < 2.24 1.00 (ref)
  ≥ 2.24 1.28 (0.71–2.29) 0.406

3D computational data Psoas Volume  (cm3)
  < 165.4 1.00 (ref)
  ≥ 165.4 0.63 (0.35–1.15) 0.137

Psoas HUmean
  < 29.5 1.00 (ref) 1.00 (ref)
  ≥ 29.5 0.53 (0.29–0.97) 0.040 0.44 (0.23–0.82) 0.010

Psoas HUmean Standard Deviation (DS)
  < 39.6 1.00 (ref)
  ≥ 39.6 1.42 (0.78–2.57) 0.246

Psoas SUVmax
  < 3.9 1.00 (ref) 1.00 (ref)
  ≥ 3.9 2.51 (1.37–4.57) 0.003 2.95 (1.57–5.53) 0.001

Psoas SUVmean
  < 1.1 1.00 (ref)
  ≥ 1.1 1.73 (0.96–3.11) 0.067
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operator-independency of the latter approach. Further, imag-
ing measures from a single axial section may not be repre-
sentative of measures derived using volumetric analyses, as 
already documented in other solid tumours [47] as well as in 
anthropometric evaluations [48]. Finally, the computational 
analysis allowed us to extract FDG PET/CT-derived param-
eters from SM volumes.

The observed prognostic power of FDG-based meas-
ures of SM is of potential interest from the pathophysi-
ological perspective. Indeed, it has been suggested that 
the reduction of SM HUmean in mCRPC (reflecting the 
increase in fat content) may result from the prolonged 
androgen deprivation, as castrate levels of testosterone 
may lead to reduced muscle mass and increased subcuta-
neous and visceral adipose tissue [49]. However, given the 
observed prognostic value of the increased FDG uptake 
in the sarcopenic SM, we presume that this phenom-
enon might also involve the occurrence of SM inflam-
mation. Indeed, several previous studies highlighted the 
occurrence of a systemic inflamed state in heavily pre-
treated mCRPC [11, 17, 39, 50]. On the other hand, a 
direct causal role of inflammation has been shown in the 
age-related decline of SM mass [51]. Consistently, a few 
previous studies correlated SM FDG uptake with clini-
cal conditions possibly mediated through inflammatory 
mechanisms [52–55]. On the one side, the inflamed SM 
might be FDG-avid due to the high content in inflamma-
tory infiltrates. Alternatively, given the oxidative environ-
ment promoted by SM inflammation [56], the increased 
FDG uptake may at least partially reflect the activation 
of NADPH generation by a pentose phosphate pathway 
selectively located within the endoplasmic reticulum, as 
previously documented in cancer cells [57, 58], neurons 
[59], astrocytes [60], cardiomyocytes [61], and, more 
importantly, in the SM [62, 63].

The present study has some limitations. First, as in any 
retrospective study we cannot a priori exclude the eventual 
occurrence of selection biases. However, we enrolled a nat-
uralistic group of mCRPC patients' candidates to receive 
Radium-223 aiming to reflect the real-world clinical prac-
tice. This choice allowed us to identify a cohort of mCRPC 
with a remarkably high prevalence of sarcopenia. This result 
might be related to the late stage of the disease of patients 
receiving Radium-223 in the clinical practice, which is at 
least partially related to the restriction use promoted by the 
European Medical Agency (EMA) in 2018 [64]. However, 
we cannot assume the same prevalence of sarcopenia as gen-
eralizable to a broader group of mCRPC patients. Similarly, 
given the retrospective enrolment we are unable to estimate 
the exact duration of ADT prior to initiation of Radium-223 
in enrolled patients. Owing to the documented correlation 
between ADT duration and SM loss [49] further studies are 
warranted to estimate the impact of this variable on obtained 
results. As a final consideration, CT-derived SM metrics 
were obtained from the low-dose CT of FDG PET/CT stud-
ies instead of using high-resolution CT. However, given the 
results of a recent study by Albano et al. [65], showing a 
strong correlation between SM metrics derived from low- 
and high-dose CT, we assume that this choice might have 
had a low impact on the reproducibility of our results.

Conclusion

The present data suggest that assessing individual patients 
SM metrics through an operator-independent computational 
analysis of FDG PET/CT data may potentially guide custom-
ised strategies and support tailored treatment decision-mak-
ing in mCRPC patients candidates to receive Radium-223.

Fig. 2  Kaplan–Meier curves for 
OS according to SM attenua-
tion, metabolic metrics and their 
combination in the Attenua-
tion Metabolic Index (AMI). 
Kaplan–Meier curves for overall 
survival (OS) according to 
SM HUmean (Panel A), SM 
SUVmax (Panel B), and their 
combination in the Attenuation 
Metabolic Index (AMI, Panel 
C)
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Table 3  Uni- and multivariable 
Cox regression analyses 
including clinical, lab and 
imaging data

Statistically significant differences were indicated in bold

Variables Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

PSA at diagnosis
  < 12.34 ng/mL 1.00 (ref)
  ≥ 12.34 ng/mL 0.72 (0.39–1.31) 0.289

International Society of Urological Pathology (ISUP) grade group
 GS < 8 1.00 (ref)
 GS ≥ 8 1.56 (0.82–3.06) 0.189

Metastases at diagnosis
 No 1.00 (ref)
 Yes 1.03 (0.57–1.86) 0.921

Previous chemotherapy
 No 1.00 (ref)
 Yes 0.96 (0.53–1.74) 0.906

Number of previous lines of therapy for CRPC
 1 1.00 (ref)
 2 0.91 (0.01–3.53)
  ≥ 3 1.06 (0.01–3.33) 0.963

PSA at the time of FDG PET/CT
  < 52.64 ng/mL 1.00 (ref) 1.00 (ref)
  ≥ 52.64 ng/mL 3.48 (1.79–6.73) 0.0001 2.72 (1.25–5.90) 0.011

ALP at the time of FDG PET/CT
  < 110 IU/L 1.00 (ref) 1.00 (ref)
  ≥ 110 IU/L 5.61 (2.50–12.54) 0.0001 2.07 (1.01–4.29) 0.049

LDH at the time of FDG PET/CT
  < 229 IU/L 1.00 (ref)
  ≥ 229 IU/L 2.46 (1.26–4.783) 0.008

Hemoglobin at the time of FDG PET/CT
  ≥ 11.7 g/dL 1.00 (ref)
  < 11.7 g/dL 3.12 (1.64–5.89) 0.001

NLR at the time of FDG PET/CT
  < 3.73 1.00 (ref)
  ≥ 3.73 1.39 (0.76–2.54) 0.285

MTV
  < 250.8  cm3 1.00 (ref)
  ≥ 250.8  cm3 2.51 (1.37–4.61) 0.003

TLG
  < 771 1.00 (ref)
  ≥ 771 2.56 (1.37–4.76) 0.003

Attenuation Metabolic Index (AMI)
 Low risk 1.00 (ref) 1.00 (ref)
 High risk 5.19 (2.47–10.09) 0.0001 3.12 (1.30–7.47) 0.010
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