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ABSTRACT
White nose syndrome (WNS) is caused by the psychrophilic fungus Pseudogymnoascus destructans that
can grow in the environment saprotrophically or parasitically by infecting hibernating bats. Infections
are pathological in many species of North American bats, disrupting hibernation and causing
mortality. To determine what fungal pathways are involved in infection of living tissue, we examined
fungal gene expression using RNA-Seq. We compared P. destructans gene expression when grown in
culture to that during infection of a North American bat species, Myotis lucifugus, that shows high
WNS mortality. Cultured P. destructans was grown at 10 to 14 C and P. destructans growing in vivo was
presumably exposed to temperatures ranging from 4 to 8 C during torpor and up to 37 C during
periodic arousals. We found that when P. destructans is causing WNS, the most significant differentially
expressed genes were involved in heat shock responses, cell wall remodeling, and micronutrient
acquisition. These results indicate that this fungal pathogen responds to host-pathogen interactions
by regulating gene expression in ways that may contribute to evasion of host responses. Alterations
in fungal cell wall structures could allow P. destructans to avoid detection by host pattern recognition
receptors and antibody responses. This study has also identified several fungal pathways upregulated
during WNS infection that may be candidates for mitigating infection pathology. By identifying host-
specific pathogen responses, these observations have important implications for host-pathogen
evolutionary relationships in WNS and other fungal diseases.
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Introduction

Fungal pathogens have emerged as major threats to biodi-
versity1 and human health.2 The diversity of these infec-
tious eukaryotes and their hosts present new challenges in
characterizing the interactions between host, pathogen,
and the environment that lead to pathogenesis. One suc-
cessful approach is to use systems biology to compare
whole-transcriptome changes in gene expression between
the pathogen infecting the host, the host without the
pathogen, and the pathogen without the host.3-5 This dual
RNA-Seq approach can be used to identify genetic factors
from the pathogen that contribute to host colonization
and manipulation of host-pathogen interactions.

Among fungal emerging infectious diseases, white-nose
syndrome (WNS) in bats has spread from Eurasia, where
it is endemic, to North America,6-8 where it is decimating
several species of hibernating bats. Susceptible species,
such as the little brown myotis (Myotis lucifugus) have

shown population declines up to 90% in affected hiber-
nacula.9-11 WNS is caused by Pseudogymnoascus destruc-
tans, a psychrophilic fungus that grows in cold
hibernacula and causes cutaneous infections in bats while
they hibernate. During WNS, P. destructans invades the
skin tissue, forming subcutaneous lesions identified as
cupping erosions by histopathology.12 The infection dis-
rupts the hibernation behavior of susceptible bats and
leads to more frequent arousals from torpor, premature
energy depletion, electrolyte imbalance, and death.13-16

WNS does not affect all species of bats equally.Many, but
notall,NorthAmericanspeciesarebeingseverelyaffected,17,18

while most European bats can host P. destructans infections,
but have low mortality from WNS.19-22 Coevolution of P.
destructans and Eurasian bats, such as Daubenton’s myotis
(M. daubentonii), appears to have adapted these populations
to a commensal or parasitic relationship with lower pathol-
ogy.8 North American bats, on the other hand, have yet to
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benefit fromsuchselectionagainstextirpationof thehost spe-
cies23 and some species face the possibility of regional extinc-
tions.10,18,24 The virulence of the P. destructans infection is
controlledbyacombinationoftheenvironment(i.e.,tempera-
ture and humidity of the hibernaculum), the host (and the
host’sresponsetoinfection),andthepathogen(andthepatho-
gen’sresponsetothehost).25Inthisstudy,wefocusonthethird
component of this epidemiological triangle by dissecting the
genetic components that allow P. destructans to infect hosts
andbecomeavirulentpathogen.

Whether P. destructans remains a commensal parasite
or becomes pathogenic is determined by host-pathogen
interactions.8,26 We have previously examined the host
response of the WNS-susceptible M. lucifugus to P.
destructans infection in the wing membrane and found
robust gene expression changes in the host during hiber-
nation.27 We now shift our focus to characterize previ-
ously hypothesized virulence attributes of the fungus
that include immune evasion, nutrient acquisition, stress
responses, and tissue invasion.28,29 We measured P.
destructans gene expression at the whole-transcriptome
level, comparing expression patterns between the fungus
when growing in culture and when infecting a North
American bat species.

Results

Two different groups of samples were used to measure
gene expression in P. destructans for this study (Table 1).
Gene expression during infection of M. lucifugus was
measured in the MyLu samples of wing tissue from 6
individual P. destructans- infected M. lucifugus collected
60–120 minutes after arousal from hibernation in caves in
Kentucky, USA. Gene expression in P. destructans during
infection was compared with 4 samples from the 20631–
21 strain of P. destructans growing in culture at 10–14�C
for 23 d on Sabouraud dextrose agar plates (Table 1).

Comparison of infected and uninfected bats

Prior to comparing the expression of P. destructans
genes during host infection to those in culture, we

confirmed that infection levels in host tissues were suf-
ficient to measure pathogen gene expression by quanti-
fying the number of RNA-Seq reads that mapped to
the P. destructans transcriptome (Table S1). Compared
to a group of samples from M. lucifugus not infected
with P. destructans (Figure S1), the samples from the
infected bats from Kentucky showed significantly
higher levels of P. destructans transcripts (t D 8.84, p
< 0.00001). In the wing samples from infected bats,
we found that 5990 § 324 P. destructans genes were
expressed at a minimum count of 1, representing 63%
of all P. destructans genes (Table S1). These samples
expressed 13 512 § 357 M. lucifugus genes, represent-
ing 52% of all bat genes. Using a minimum of 1 count
in any sample, the cultured samples expressed 8825
genes and the wing samples expressed 7264 genes of
9575 known P. destructans genes (Table S1). These
results indicate that sufficient read depth was obtained
in this data set to measure P. destructans gene expres-
sion, at least for the majority of genes.

Comparison of P. destructans gene expression
during WNS and culture

Using both hierarchical clustering (Fig. 1A) and princi-
pal component analysis (Fig. 1B), we found that the pat-
terns of P. destructans gene expression were similar in
each group of samples (cultured or WNS). We observed
a small batch effect between the cultured samples that
were grown at different times and sequenced differently
(Table 1). We also found that samples from bats KY19
and KY23, which came from a different cave in the same
county as bats KY06, KY07, and KY11,27 clustered sepa-
rately from these samples and from sample KY39, which
came from a different county. These results suggest that
some of the differences in gene expression that we
observe within the 2 groups could be due to variations in
the environmental conditions or genetic differences
between the P. destructans isolated growing in different
hibernacula. However, the largest differences appear to
be due to the different growth conditions between cul-
ture and growth on bats.

Table 1. RNA-Seq data sets used for analysis and RSEM expected counts.

Group Sample SRA Accession Sequencing Reads post-trim P. destructans counts M. lucifugus counts Percent Pd

MyLu KYMYLU06W SRR1916825 PE 101 bp 19 289 825 99 055 5 190 125 1.9%
KYMYLU07W SRR1916826 PE 101 bp 18 862 520 121 838 5 379 370 2.2%
KYMYLU11W SRR1916827 PE 101 bp 19 302 516 98 878 5 034 500 1.9%
KYMYLU19W SRR1916842 PE 101 bp 17 642 460 123 139 4 535 156 2.6%
KYMYLU23W SRR1916830 PE 101 bp 14 997 956 85 249 3 599 787 2.3%
KYMYLU39W SRR1916832 PE 101 bp 17 609 994 59 888 4 252 402 1.4%

Culture SRR1270148 PE 50 bp 22 792 423 13 820 072
SRR1270408 PE 50 bp 24 400 308 15 080 834
SRR1270412 PE 101 bp 107 250 955 63 836 991
SRR1270417 SE 51 bp 27 402 575 18 301 930
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We then compared P. destructans gene expression
during WNS infection of M. lucifugus to the 20631–21
strain of P. destructans grown in culture using both
edgeR (Fig. 2, 3A, 3B) and DESeq2 (Fig. 3C). Because
of the lower depth of sequencing for the WNS sam-
ples, we then filtered the results to exclude any P.
destructans genes that were not expressed in at least 2
of the 6 MyLu samples. With a cutoff of 0.001 for
FDR and a 2-fold minimum change, similar results
were obtained using these 2 different analysis methods
(Fig. 3D), with the majority of the genes identified as

differentially expressed by edgeR also being identified
by DESeq2.

Using the subset of genes identified by both edgeR
and DESeq2, 94 P. destructans genes were identified as
more highly expressed during WNS infection of M. luci-
fugus, and 117 genes were more highly expressed in P.
destructans growing in culture (Fig. 3D, Table S2). Using
our Trinotate annotation, we identified 39 genes that
showed significant changes in expression during WNS
whose putative functions could contribute to virulence
by affecting tissue invasion, the heat shock response,
nutrient acquisition, immune evasion, and other path-
ways (Table 2).

We specifically examined the expression levels of
secreted proteases, because they have been implicated in
the pathogenesis of WNS.30,31 Protease genes were iden-
tified by homology and by PFAM analysis32 and the
expression of these genes was compared in the 5 culture
samples and 6 M. lucifugus WNS samples (Table S2).
Table 3 lists selected protease genes and demonstrates
that the genes for subtilase-family proteases are more
highly expressed during culture than during tissue inva-
sion. Other proteases are highly expressed during host
infection, such as VC83_01361, the P. destructans homo-
log of the Aspergillus fumigatus major allergen Aspf2,
show lower gene expression when P. destructans is grow-
ing in culture.

To further explore the functional pathways that regu-
late infection, gene ontology enrichment analysis was
performed using the genes identified by edgeR at a maxi-
mum FDR of 0.05 and minimum fold-change of 2. We
examined the annotated functions of P. destructans genes
upregulated in eitherM. lucifugus infections or in culture
(Table 4). This analysis determined that several pathways
involved in peptide and nitrogen metabolism are signifi-
cantly enriched in P. destructans during infection (FDR
< 0.05). While growing in culture, P. destructans showed
enrichment of oxidation-reduction and transport path-
ways (FDR < 0.001) and depletion of other metabolic
pathways (FDR < 0.05).

Discussion

We determined how parasitism affects the expression
patterns of P. destructans genes by comparing expression
levels between the fungus in culture and during host
infection. We used dual RNA-Seq data and an approach
that simultaneously mapped the reads to both host and
pathogen transcriptomes followed by the removal of
reads that mapped to host transcripts. This approach
allowed for the estimation of expression levels of P.
destructans genes with high levels of confidence by using
RSEM to control for the uncertainty of multi-mapped

Figure 1. Gene expression of P. destructans in culture and when
infecting M. lucifugus. (a) Hierarchical clustering of differentially
expressed P. destructans trimmed mean of M-values (TMM)-nor-
malized gene expression levels using Pearson correlation com-
plete-linkage clustering with Euclidean distances. Scale shows
Pearson correlation coefficient. Vertical breaks in the heatmap
indicate clustering supported by bootstrap analysis at a confi-
dence of 99% and the horizontal break indicates separate cluster-
ing of the different groups of samples. (b) Principal component
analysis of global P. destructans gene expression using log2-trans-
formed TMM-normalized expression levels. The principal compo-
nents PC1 and PC2 represent 96% and 2% of the variance in the
data, respectively. Triangles represent the MyLu samples and
circles represent the culture samples.
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reads. We compared gene expression changes of the cul-
tured 20631–21 North American strain of P. destructans
to infection of a na€ıve North American species. Although
the data set had limited read depth for P. destructans
genes in the M. lucifugus samples, we observed signifi-
cant differential gene expression in 211 genes, or 2.2% of
the 9575 known P. destructans genes. This initial study

has validated this approach to identifying changing pat-
terns of pathogen gene expression. Future studies will be
needed to overcome some of the limitations of the cur-
rently available data sets by using greater read depth for
the dual RNA-Seq data, better matching environmental
conditions in vitro to those in hibernacula, and using the
identical isolate of P. destructans for both data sets.

Figure 2. Expression levels of differentially expressed P. destructans genes. Heatmaps show the expression level in counts per million
(CPM) of (a) the 94 P. destructans genes upregulated in the MyLu samples compared with the Culture samples or (b) the 117 genes upre-
gulated in the Culture samples compared with the MyLu samples. Genes were identified as differentially expressed (FDR < 0.001) by
both edgeR and DESeq2 and expressed (CPM > 0) in at least 2 of the MyLu samples. The scale is log10 CPM with a maximum of 4.5 (a)
or 4.1 (b).
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Future work could also compare changes in P. destruc-
tans gene expression during infection of North American
or European bat species that show more resistance to
WNS mortality thanM. lucifugus.8,19,20,33,34

As expected, we found that the transition from abiotic
to parasitic growth was accompanied by many changes
in P. destructans gene expression. Differences in temper-
ature and humidity could also contribute to the differen-
ces in gene expression that we observed. Some of the
gene expression changes are also presumably due to

alterations in nutrient availability, such as the increased
expression of lipase (VC83_00616) in vivo due to the
high lipid content of mammalian skin. Although the cul-
tured P. destructans was not grown on the same substrate
that it would find in the environment, many of the gene
expression changes that we observed appear consistent
with adaptation to the host environment, rather than
changes due to nutrient sources. For example, the
increased expression of heat shock genes is consistent
with the response to arousal from torpor to euthermic

Figure 3. Differential P. destructans gene expression in culture and when infecting M. lucifugus. (a) Expression of P. destructans genes is
compared by edgeR between culture and M. lucifugus infection with an MA plot. The mean expression level (log2 counts per million
(CPM)) and the fold change (log2 FC) are shown for each gene. Genes more highly expressed in culture are on the upper half of the
graph and those more highly expressed in M. lucifugus tissue in the lower half. Blue points indicate differential expression (FDR � 0.001
determined by edgeR) that are expressed in at least 2 MyLu samples. Red points indicate significant differential expression for genes
that were not expressed in at least 2 MyLu samples. An interactive version of this graph is available as Data Set S2. After unzipping File
S2 and opening the html file in a web browser, hover over each point to view the annotation metadata for that gene and the expression
level (in log2CPM) for each sample. Individual genes can be found by searching, for example by entering VC83_01361 in the search box.
(b) Expression of P. destructans genes is compared by edgeR between culture and M. lucifugus infection with a volcano plot. The fold
change (log2) and the FDR (log10) are shown for each gene. Genes more highly expressed in culture are on the right half of the graph
and those more highly expressed in M. lucifugus tissue in the left half. Blue points indicate differential expression (FDR � 0.001 deter-
mined by edgeR), with colors as for (a). An interactive version of this graph is available as Data Set S3 and can be manipulated as
described above. (c) Expression of P. destructans genes is compared by DESeq2 between culture and M. lucifugus infection with an MA
plot. The mean expression level and the fold change (log2) are shown for each gene. The red line indicates equal expression and the
blue line indicate a 2-fold change. Genes more highly expressed in culture are on the upper half of the graph and those more highly
expressed in M. lucifugus tissue in the lower half. Red points indicate differential expression (FDR � 0.001 determined by DESeq2). (d) A
Venn diagram compares the number of P. destructans genes identified as differentially expressed by edgeR and DESeq2. The number of
genes shared by edgeR and DESeq2, or unique to each method, are shown using a maximum FDR of 0.001 and minimum fold change
of 2 for genes upregulated in M. lucifugus infections or upregulated in culture after removing genes not expressed in at least 2 of the
MyLu samples. Table S2 lists results for all P. destructans genes.
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body temperatures that occurred 60 to 120 minutes
before collecting theM. lucifugus samples.27 Correspond-
ingly, a single sample from a bat that was allowed to
become euthermic only briefly did not show upregula-
tion of P. destructans heat shock genes (unpublished
results). Thermal stress caused by a febrile response in
the human host has been shown to activate a heat shock
response in Candida albicans, preventing deleterious
protein unfolding and aggregation.35 This heat shock
response could be important for fungal survival in our

system, as bats arouse to euthermic temperatures several
times throughout hibernation (thus several times
throughout P. destructans infection), and susceptible
populations arouse from torpor more frequently during
WNS.13,14,36

Consistent with a response of the pathogen to evade
host immune recognition, we also found large increases
and decreases in expression of genes involved in fungal
cell wall structures (Table 2). The fungal cell wall is com-
posed of an inner layer of chitin, a middle layer of

Table 2. Selected P. destructans genes differentially expressed between culture and WNS-affected M. lucifugus that have putative func-
tions implicated in fungal virulence.

edgeR DESeq2

Genea Full Name BLASTXb FCc FDRd Culte WNSe FDRf

Secreted Enzymes
VC83_01361 Major allergen Asp f 2 ALL2_ASPFU 36.0 1.11E-09 53.2 2044.8 7.80E-16
VC83_00616 Lipase 1 LIP1_GEOCN 9.1 1.84E-05 31.3 290.5 1.27E-07

Heat Shock Response
VC83_02553 30 kDa heat shock protein HSP30_NEUCR 29.4 9.69E-07 249.4 7737.6 3.63E-09
VC83_07843 Hsp70 nucleotide exchange factor FES1 FES1_NEUCR 19.0 8.14E-08 19.1 378.4 9.52E-12
VC83_00970 Heat shock protein 78, mitochondrial HSP78_SCHPO 12.4 4.17E-06 126.8 1643.3 1.15E-08
VC83_00522 Protein psi1 PSI1_SCHPO 9.9 5.21E-06 42.2 431.6 1.90E-08
VC83_01964 Heat shock protein hsp88 HSP88_NEUCR 9.5 2.15E-05 291.4 2874.6 2.03E-07
VC83_08137 Heat shock protein hsp98 HSP98_NEUCR 9.0 7.52E-05 449.0 4178.2 3.60E-06
VC83_01046 Heat shock 70 kDa protein 2 HSP72_PARBA 7.3 2.04E-04 2430.7 18 564 8.05E-06
VC83_02466 Uncharacterized protein C1711.08 YNY8_SCHPO 5.3 1.41E-04 104.3 571.7 2.61E-07
VC83_08187 Heat shock protein 82 HSP82_AJECA 4.3 1.91E-03 989.3 4490.9 7.48E-05
VC83_09034 Unchar. J domain-containing protein C63.13 YCJD_SCHPO 4.3 3.20E-03 61.6 272.2 6.18E-04
VC83_06435 Heat shock protein sti1 homolog STI1_SCHPO 4.1 2.03E-03 192.3 830.4 6.31E-05

Ion Homeostasis
VC83_01360 Zinc-regulated transporter 1 ZRT1_YEAST 18.6 5.62E-08 91.1 1801.3 1.61E-12
VC83_07026 Calcium-transporting ATPase 3 ATC3_SCHPO 11.7 2.53E-04 125.6 1481.6 7.19E-05
VC83_00191 Putative Copper transporter protein (PFAM) 10.3 2.37E-05 112.5 1225.7 6.78E-07
VC83_06862 Calcium-transporting ATPase 3 ATC3_SCHPO 6.2 4.74E-05 36.3 231.6 9.40E-07
VC83_01014 Calcium-transporting ATPase 2 ATC2_SCHPO 3.4 2.64E-03 193.9 698.9 5.31E-06
VC83_04094 Metal homeostasis factor ATX1 ATX1_YEAST ¡3.6 4.37E-03 87.6 25.1 1.06E-03
VC83_00736 Na(C)/H(C) antiporter 1 NAH1_ZYGRO ¡6.2 4.25E-07 522.8 88.4 1.23E-09

Cell Wall Remodeling
VC83_03500 Spherulin-1A SR1A_PHYPO 22.2 9.41E-05 31.4 758.3 6.99E-06
VC83_07867 Uncharacterized protein AFUA_6G02800 YA280_ASPFU 21.2 8.97E-08 169.0 3783.0 5.93E-11
VC83_00788 Endochitinase 1 CHI1_APHAL 11.6 2.07E-04 106.9 1327.3 1.93E-05
VC83_07327 Probable glucan endo-1,3-b-glucosidase eglC EGLC_NEOFI 6.5 1.93E-03 221.5 1489.4 4.95E-04
VC83_04729 Endochitinase 1 CHI1_COCIM 6.3 8.24E-05 83.2 553.7 5.69E-07
VC83_07145 Mannan endo-1,6-a-mannosidase DCW1 DCW1_YEAST 5.9 2.51E-05 74.0 450.7 7.40E-09
VC83_05104 Chitin synthase 4 CHS4_NEUCR ¡3.4 8.74E-04 397.1 121.7 1.56E-05
VC83_09076 Glucan 1,3-b-glucosidase EXG1_COCCA ¡3.5 1.99E-04 1722.2 512.6 6.20E-10
VC83_00261 Mannan endo-1,6-a-mannosidase DFG5 DFG5_CANAL ¡3.8 3.97E-03 145.4 39.1 3.12E-03
VC83_08448 Protein SUR7 SUR7_CANAL ¡10.1 1.43E-03 726.2 71.1 5.55E-03
VC83_05292 Cell wall mannoprotein CIS3 CIS3_YEAS7 ¡14.8 3.30E-05 97.9 6.8 1.76E-04
VC83_01650 Mannan endo-1,6-a-mannosidase DCW1 DCW1_YEAST ¡15.4 1.18E-06 106.0 7.0 8.53E-07

Other
VC83_06039 Putative heme-binding peroxidase CCPR2_ASPFU 7.5 4.90E-03 42.7 340.3 2.49E-03
VC83_00225 Putative cryptochrome DASH, mitochondrial CRYD_NEUCR 7.5 2.15E-05 18.2 140.4 5.05E-07
VC83_06307 Squalene monooxygenase ERG1_CANAL 4.5 2.51E-04 40.5 188.4 1.24E-07
VC83_03222 Probable GTP cyclohydrolase-2 RIB1_SCHPO 4.1 7.67E-04 44.1 189.4 2.58E-06
VC83_01624 Leptomycin B resistance protein pmd1 PMD1_SCHPO 3.8 3.55E-03 164.9 662.7 4.06E-04
VC83_06509 Thioredoxin reductase TRXB_NEUCR 3.1 2.03E-03 49.8 163.1 8.71E-07
VC83_08771 Probable transporter MCH5 MCH5_YEAST ¡4.2 2.18E-04 177.5 45.3 8.53E-07

Notes. aP. destructans gene (Drees et al. 2016).
bBLAST hit with the lowest E-value in the Swissprot database. Only homologs with E < 1E-04 were considered.
cFold change in gene expression of the WNS samples compared with the culture samples determined by EdgeR. Negative values indicate higher expression in the
culture samples. Dashed lines separate genes with higher expression in WNS from genes with higher expression in culture.
dAdjusted p-value of differential expression determined by edgeR after Benjamini-Hochberg FDR correction.
eMean normalized expression level (TPM) in culture or WNS samples determined by DESeq2.
fAdjusted p-value of differential expression determined by DESeq2 after Benjamini-Hochberg FDR correction.
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b-glucans, and an outer layer of mannose. The cell wall
provides rigidity and structure, however is also highly
dynamic. The pattern recognition receptor Dectin-1 has
been shown to be a receptor for fungal 1,3-b glucans and
1,6-b glucans,37,38 thus cell wall components serve to
alert the mammalian immune system of a fungal patho-
gen. We have observed that Dectin-1 and several other
C-type lectin domain family members are significantly

upregulated in bat tissues infected with P. destructans.27

Consistent with this host observation, we detected signif-
icant alterations in P. destructans enzymes predicted to
be involved in fungal cell wall remodeling (Table 2).
VC83_00788 and VC83_04729, homologs of Endochiti-
nase 1, an enzyme which randomly cleaves and breaks
down chitin, are upregulated 11.6 and 6.3-fold, respec-
tively, while VC83_05104, a homolog of Chitin synthase

Table 3. Expression of selected P. destructans protease genes.

edgeR DESeq2

Genea Full Name BLASTXb FCc FDRd Culte WNSe FDRf

Subtilase-family Proteases
VC83_09074 Subtilisin-like protease 3 (Destructin-3) SUB3_PSED2 1.8 0.66 29.3 51.6 0.67
VC83_06062 Subtilisin-like protease 2 (Destructin-1) SUB2_PSED2 ¡1.3 0.78 502.4 375.4 0.80
VC83_07090 Subtilisin-like protease Spm1 SPM1_MAGO7 ¡1.5 0.30 2056.9 1421.4 0.12
VC83_06607 Protease Kexin 2 KEX2_CANAW ¡2.3 0.05 147.8 66.9 0.04
VC83_04892 Subtilisin-like protease 1 (Destructin-2) SUB1_PSED2 ¡3.0 0.33 5800.6 1962.1 1.00
VC83_02181 Tripeptidyl-peptidase sed2 SED2_ASPFU ¡5.5 0.0011 791.6 152.6 0.0045

Other Putative Secreted Proteases
VC83_01361 Major allergen Aspf2 ALL2_ASPFU 36.0 1.11E-09 53.2 2044.8 7.80E-16
VC83_03800 Disintegrin and metalloprotease domain-containing protein B ADMB_ASPFU 2.8 0.0044 94.6 277.4 1.50E-10
VC83_02385 Zinc metalloprotease ZmpB ZMPB_STRPN 2.5 0.15 23.6 58.7 0.01
VC83_08633 Threonine aspartase 1 TASP1_HUMAN 2.2 0.27 10.4 24.2 0.14
VC83_05359 Calpain-like protease palB PALB_EMENI 1.8 0.24 41.7 74.8 0.05
VC83_03810 Carboxypeptidase Y homolog ARB_06361 SCPE_ARTBC 1.9 0.53 11.0 20.5 0.37

aP. destructans gene (Drees et al. 2016).
bBLAST hit with the lowest E-value in the Swissprot database. Only proteins with E < 1E-04 were considered.
cFold change in gene expression of the WNS samples compared with the culture samples determined by EdgeR. Negative values indicate higher expression in the
culture samples. A dashed line separate genes with higher expression in WNS from genes with higher expression in culture.
dAdjusted p-value of differential expression determined by edgeR after Benjamini-Hochberg FDR correction.
eMean normalized expression level (TPM) in culture or WNS samples determined by DESeq2.
fAdjusted p-value of differential expression determined by DESeq2 after Benjamini-Hochberg FDR correction.

Table 4. Gene ontology analysis of P. destructans pathways altered during WNS.

GO Category Biological Process E/P1 Ratio in study2 p FDR3

Upregulated during WNS infection
GO:0006518 peptide metabolic process e 23/410 2.49E-08 <0.001
GO:0006412 translation e 21/410 9.07E-08 <0.001
GO:0043043 peptide biosynthetic process e 21/410 1.90E-07 <0.001
GO:0043603 cellular amide metabolic process e 23/410 5.57E-07 0.002
GO:0042254 ribosome biogenesis e 8/410 1.04E-06 0.002
GO:0043604 amide biosynthetic process e 21/410 1.58E-06 0.002
GO:0022613 ribonucleoprotein complex biogenesis e 8/410 2.59E-06 0.002
GO:0044085 cellular component biogenesis e 8/410 1.16E-05 0.008
GO:0034645 cellular macromolecule biosynthetic process e 28/410 2.62E-05 0.012
GO:1901566 organonitrogen compound biosynthetic process e 31/410 2.82E-05 0.012
GO:0044271 cellular nitrogen compound biosynthetic process e 34/410 9.20E-05 0.028

Upregulated in culture
GO:0055114 oxidation-reduction process e 75/846 2.42E-07 <0.001
GO:0055085 transmembrane transport e 56/846 1.09E-06 <0.001
GO:0044710 single-organism metabolic process e 119/846 8.21E-06 0.002
GO:0090304 nucleic acid metabolic process p 18/846 3.19E-05 0.004
GO:0006396 RNA processing p 1/846 5.71E-05 0.01
GO:0046483 heterocycle metabolic process p 31/846 6.80E-05 0.01
GO:0072350 tricarboxylic acid metabolic process e 7/846 7.88E-05 0.012
GO:1901360 organic cyclic compound metabolic process p 33/846 0.00011 0.024
GO:0006139 nucleobase-containing compound metabolic process p 27/846 0.00013 0.032
GO:0034641 cellular nitrogen compound metabolic process p 42/846 0.00013 0.032
GO:0016070 RNA metabolic process p 11/846 0.00017 0.046

1Enrichment (e) or purification (p) detected. Enrichment indicates that the GO category is more highly represented than expected by chance and purification indi-
cates that the category is underrepresented.
2Number of differentially expressed genes in this category compared with total differentially expressed genes.
3Adjusted p-value of enrichment or purification after Benjamini-Hochberg FDR correction.
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4 is downregulated 3.4-fold in P. destructans during
infection compared with culture. Two homologs to Glu-
can endo-1,3-b glucosidases were differentially regulated;
VC83_07327 was upregulated in P. destructans during
infection while VC83_09076 was upregulated during cul-
ture. These enzymes presumably regulate cell wall b-gly-
can turnover and catabolism of b-glycans39 by removal
of non-reducing terminal glucosyl residues from saccha-
rides and glycosides.

Additionally, 3 Mannan endo-1,6-a mannosidases
that were differentially expressed between P. destructans
actively infecting a host and growing in culture (Table 2).
Two were upregulated in culture (VC83_00261 and
VC83_01650), and one was upregulated during WNS
(VC83_07145). Mannan endo-1,6-a mannosidases are
required for normal synthesis of the cell wall and alkaline
pH-induced hypha formation, as well as being responsi-
ble for random hydrolysis of a-mannosidic linkages in
unbranched mannans.40 It is likely that the changes in
Glucan endo-1,3-b glucosidase and Mannan endo-1,6-a
mannosidase gene expression that we observed upon the
switch from abiotic growth to host colonization leads to
substantial alterations in the cell wall structures. The
resulting differences in saccharide and glycoside branch-
ing patterns in the cell wall could make the pathogen less
recognizable to the mammalian immune system.

Alternatively, these changes in cell wall enzyme gene
expression could be due to changes in metabolic path-
ways that accompany the shift from abiotic to infectious
niches. Different carbon sources can modulate cell wall
structure and virulence in C. albicans.41,42 It is possible
that changes in cell wall structures are caused by differ-
ences in metabolism when infecting bats, rather than
direct adaptation to the host.

Alterations in cell wall structures also accompany
shifts in the morphological growth type of fungi, such as
a shift from yeast to hyphal phase in C. albicans.37 How-
ever, P. destructans grows vegetatively as hyphae on both
Sabouraud’s dextrose agar medium in culture,43,44 and
when forming cupping erosions in the wing tissue of the
host.12,19 Thus there is no difference in morphotype
between our cultured and WNS P. destructans samples
that might explain the dramatic alterations in expression
of cell wall remodeling enzymes that we observed. Con-
sequently, we propose that changes in the b¡glucan
landscape on the fungal surface via cell wall remodeling
are a mechanism of immune evasion for P. destructans,
similar to other fungal pathogens.45

Alterations of the cell wall during infection could
explain the ineffectiveness of antibodies that recognize
the cell wall of cultured P. destructans in providing pro-
tection from WNS.46,47 These results may also explain
why immunization with either cultured P. destructans or

a b-glucan vaccine48 did not affect the susceptibility of
M. lucifugus to WNS (J. Johnson, J. McMichael, D.
Reeder, and K. Field, unpublished). The antigens pro-
vided by these immunizations may not be present on the
surface of P. destructans during infection because of
changes in the cell wall structure that accompany the
transition from abiotic to parasitic growth.

Because tissue invasion is a hallmark characteristic of
P. destructans infections during WNS, we expected that
expression of genes involved in degradation of the extra-
cellular matrix would be upregulated. Unexpectedly, we
found that the previously characterized subtilase-family of
secreted proteases30,31 showed lower expression in
P. destructans during infection than in culture. Instead,
the homolog of the A. fumigatus vacuolar protease, major
allergen Aspf2, showed high levels of expression during
infection of M. lucifugus and was significantly upregulated
compared with culture conditions. This suggests that
other proteases may be better targets for preventing colo-
nization than the subtilase-family proteases, although the
possible role of Aspf2 in tissue invasion remains
unknown. It is also plausible that subtilase-family pro-
teases are regulated at a post-transcriptional level or are
used by the fungus primarily during initial colonization.
Therefore, further proteomic and expression time-course
experiments may prove useful to further dissect the infec-
tion. Nevertheless, the abundant expression of Aspf2,
known to be an A. fumigatus allergen in humans,49 sug-
gests that further investigation of IgE-mediated allergic
reactions during WNS may be warranted.

Infection of hosts was also associated with changes in
expression for several genes involved in the transport or
homeostasis of metal ions, including zinc, iron, and cop-
per. This fungal response may be due to limited availabil-
ity of some of these micronutrients in the host, which is
likely sequestering metal ions as a form of nutritional
immunity.27,50 Changes in micronutrient acquisition gene
expression appear to be associated with host colonization,
including increased expression of the zinc transporter
Zrt1, the copper homeostasis factor ATX1, and a putative
copper transporter, as well as the unexpected loss of side-
rophore import using MirB.51 Homeostasis of these
micronutrients is essential for normal fungal metabolism
and for the ability of the pathogen to respond to the oxi-
dative stress activated by the host immune response.50

However, our gene ontology analysis (Table 4) indicates
that genes involved in oxidation-reduction pathways are
more highly expressed during growth in culture than host
colonization. Enrichment of pathways involving peptide
metabolism and translation in P. destructans infecting
bats (Table 4) indicates that host colonization demands
higher levels of protein expression than abiotic growth.
Competition between the host and pathogen for
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micronutrients and the generation of oxidative stress
likely varies over the course of infection52 and further
study is needed to dissect this time course.

Together, these results provide a model of gene
expression changes in P. destructans that accompany the
transitions from abiotic to parasitic growth (Figure 4).
This model provides a framework to understand how the
pathogen responds with phenotypic plasticity to the
environment and its host to adopt a virulent phenotype.
Our results also suggest approaches to minimize viru-
lence and/or colonization by targeting immune evasion,
micronutrient acquisition, tissue invasion, or the heat
shock response. Efforts to understand why some species
are more susceptible to WNS than others will require
further examination of host-pathogen interactions to
determine if the pathogen responds differently in hosts
that exhibit lower WNS susceptibility.

Materials and methods

Sample collection

Two different data sets were used for this study (Table 1).
The samples for the first data set (MyLu) consisted of
wing tissue from 6 individual P. destructans- infected M.
lucifugus (little brown myotis) collected 60–120 minutes
after arousal to euthermy from hibernation from caves in
Kentucky, USA, as described previously.27 Hibernacula

temperatures were 4–6 C at the time of collection and,
based on our previous experience, we estimate that skin
temperature varied between 4 and 8 C during torpor and
up to 37 C during periodic arousals. The second data set
was obtained from the North American 20631–21 strain
of P. destructans growing in culture by D. Akiyoshi and
A. Robbins (Department of Infectious Disease and Global
Health, Cummings School of Veterinary Medicine, Tufts
University). The 20631–21 strain of P. destructans was
obtained from D. Blehert (National Wildlife Health Cen-
ter, US. Geological Survey, Madison, WI, USA). The fun-
gus was grown in culture at 10–14�C for 23 d on
Sabouraud dextrose agar plates (BD Diagnostics,
#221180) (Table 1). Sabouraud dextrose agar contains
nutrient sources of dextrose, pancreatic digest of casein,
and peptic digest of animal tissue. RNA was isolated using
a Qiagen RNeasy Lipid Tissue Kit after disruption of the
cells using Zymos BashingBead Lysis Tubes and a bead
beater on maximum speed for 30 sec for 3 times and
then 20 sec once, with cooling on ice between each.

RNA sequencing

RNA sequencing was performed using Illumina sequenc-
ing as summarized in Table 1. Prior to analysis all data
sets were quality trimmed using Trimmomatic v.0.3553

with the parameters SLIDINGWINDOW:4:5 LEAD-
ING:5 TRAILING:5 MINLEN:25. For samples with
paired-end sequencing, only reads with both pairs
remaining after trimming were used for further analysis.
Analysis of the reads using FastQC v0.11.554 and the
results of STAR mapping indicate that there are no sig-
nificant differences in the quality of the RNA in any of
the cultured samples from the MyLu samples.

Differential expression analysis

The quality trimmed reads were aligned using STAR
v.2.5.1b55 to the concatenated genomes of M. lucifugus
and P. destructans. For M. lucifugus, we used genome
assembly Myoluc2.0 and gene models from Ensembl
release 84.56 For P. destructans, we used the genome
assembly and gene models from Drees et al..57 RSEM
v1.2.2958 was then used to apply an expectation maximi-
zation algorithm to predict gene expression counts for
each transcript. The expected count matrix for all sam-
ples is available in Data Set S1. To determine if the num-
ber of reads mapped to P. destructans transcripts
provided sufficient statistical power to detect differential
expression of these genes, we used Scotty59 to analyze the
expected counts generated by RSEM. We determined
that 65% of P. destructans genes expressed at a minimum
of 4-fold change could be detected with a p-value cutoff

Figure 4. Model of the P. destructans gene expression changes
that accompany WNS. Gene expression changes by P. destructans
are compared for abiotic and parasitic growth. The changes in
gene expression that we found are associated with these phases
are indicated.
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of 0.05. Transcripts per million (TPM) was calculated by
normalizing read counts for the length of each transcript
and adjusting for the library size of mapped reads for
each sample.58 The M. lucifugus transcripts were then
removed from the analysis and differential expression
was determined using only P. destructans transcripts.

Differential expression between conditions was deter-
mined using either DESeq2 v1.10.160 or edgeR v.3.12.161

after normalizing across samples using the trimmed
mean of M-values (TMM) method62 and a minimum
expression level of 2 TPM combined across all samples.
False discovery rate (FDR) was used to control for multi-
ple comparisons using the Benjamini-Hochberg proce-
dure.63 Hierarchical clustering was performed using
R stats package v3.3.1 with Pearson correlation
complete-linkage clustering of Euclidean distances. Clus-
tering was confirmed by bootstrap analysis using pvclust
v2.0–064 at an a level of 99% and 100 000 iterations.
Genes without expression (expected count < 1) in at
least 2 MyLu samples were excluded from the final anal-
ysis. Annotations for each gene were determined by
using Trinotate v3.0, NCBI BLAST v2.2.29C65 with the
UniProtKB/SwissProt database (E-value cutoff of 1 £
10¡4), and InterProScan v.5.20–59.0.66 Gene ontology
annotations were extracted from the InterProScan results
and gene ontology enrichment analysis was performed
using GOATOOLS v0.6.967 with enrichment or purifica-
tion measured by Fisher’s exact test after FDR correction.
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