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Elastin-derived peptide VGVAPG decreases differentiation of mouse embryo
fibroblast (3T3-L1) cells into adipocytes
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Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow,
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ABSTRACT
Elastin is a highly elastic protein present in connective tissue. As a result of protease activity, elastin
hydrolysis occurs, and during this process, elastin-derived peptides (EDPs) are released. One of the
constitutively repeating elastin and EDP building sequences is the hexapeptide VGVAPG. Therefore,
the aim of our research was to define the effect of VGVAPG peptide on adipogenesis in a mouse 3T3-
L1 cell line. 3T3-L1 cells were differentiated according to a previously described protocol and exposed
to increasing concentrations of VGVAPG or VVGPGA peptide. The obtained results showed that
VGVAPG peptide does not stimulate reactive oxygen species (ROS) production, caspase-1 activation,
and 3T3-L1 cell proliferation. In the second part of the experiments, it was proved that VGVAPG
peptide decreased lipid accumulation as measured by oil red O staining, which was confirmed by the
profile of increased expression markers of undifferentiated preadipocytes. In our experiments, 10 nM
VGVAPG added for differentiating to adipocytes increased the expression of Pref-1, serpin E1, and
adiponectin as compared to rosiglitazone (PPARγ agonist)-treated group and simultaneously
decreased the expression of VEGF and resistin as compared to the rosiglitazone-treated group. The
obtained results show that VGVAPG peptide sustains 3T3 cells in undifferentiated state.

Abbreviations: DMSO: dimethyl sulphoxide; EBP: elastin-binding protein; EDPs: elastin-derived
peptides; FBS: foetal bovine serum; Glb1: gene for beta-galactosidase; LDL: low-density-
lipoprotein; PAI-1 (Serpin E1): plasminogen activator inhibitor-1; PBS: phosphate-buffered saline;
PPARγ: peroxisome proliferator-activated receptor gamma; Pref-1: preadipocyte factor 1; ROS:
reactive oxygen species; VEGF-A: vascular endothelial growth factor-A; VGVAPG: Val-Gly-Val-Ala-
Pro-Gly; β-Gal: beta-galactosidase; ORO: oil red O; IBMX: 3-isobutyl-1-methylxanthine; H2DCFDA:
2ʹ,7ʹ-dichlorodihydrofluorescein diacetate; DMEM: Dulbecco’s Modified Eagle’s Medium; VVGPGA:
Val-Val-Gly-Pro-Gly-Ala.
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1. Introduction

Elastin is a highly elastic protein that occurs in con-
nective tissue. Together with microfibrils, they are the
main building blocks of elastin fibres. Skin, lung tissue,
tendons, ligaments, and walls of blood vessels are rich
in elastin [1]. This protein is synthesized in fibroblasts,
chondroblasts, endothelial cells, and smooth muscle
cells [2–5]. In physiological conditions, elastin-rich
extracellular matrix (ECM) is slowly degraded; how-
ever, this process is accelerated during ageing or patho-
logical conditions such as inflammation,
atherosclerosis, and carcinogenesis in the breast, skin,
and lung [6–9]. Elastin is degraded by proteolytic
enzymes produced by monocytes, thrombocytes, neu-
trophils, lymphocytes, smooth muscle cells, skin fibro-
blasts, certain malignant tumour cells, and cells of
adipose tissue [10–16]. As a result of protease activity,

elastin hydrolysis occurs, and during this process, elas-
tin-derived peptides (EDPs) are released [17]. One of
the constitutively repeating elastin and EDP building
sequences is the hexapeptide valine-glycine-valine-
alanine-proline-glycine (VGVAPG) [18]. This peptide
interacts with cells through a 67-kDa elastin-binding
protein (EBP) located on the cell surface [18]. EBP is
a catalytically inactive form of the alternatively spliced
gene for β-galactosidase (GLB1 gene) [19,20].
The second receptor for the VGVAPG peptide is galec-
tin-3, which also has an important role in cell–ECM
interactions [21]. Galectin-3 is mostly expressed in
inflammatory cells [22,23]; however, its expression has
been linked with tumour progression, and cancer
aggressiveness [24–26]. There are several intracellular
signalling pathways elicited by the EDP. The elastin
receptor complex is linked to the G proteins which
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activation, opening of L-type calcium channels, and
sequential activation of tyrosine kinases: FAK, c-Src,
platelet-derived growth factor receptor kinase and
then Ras-Raf- MEK1/2-ERK1/2 phosphorylation cas-
cade [27].

It has been shown that EDPs and/or VGVAPG
induce some biological effects such as cell proliferation,
migration, differentiation, and inflammation through
EBP activation [2,28–30]. Recently, it has been reported
that VGVAPG peptide affects peroxisome proliferator-
activated receptor gamma (PPARγ) mRNA and protein
expression [31]. Furthermore, similar to EDPs, PPARγ
is involved in cell proliferation, migration, and differ-
entiation and most importantly in adipocyte differen-
tiation [32]. Moreover, PPARγ is directly related to
obesity in rodents, resulting in the overexpression of
PPARγ in adipose tissue [33]. Adipocytes are charac-
terized by secretion of many proteins such as adipo-
cyte-derived vascular endothelial growth factor-A
(VEGF-A) whose level is increased in obesity [34];
adiponectin related to insulin resistance [35]; preadipo-
cyte factor 1 (Pref-1) that prevents fibroblasts from
differentiation (adipose tissue generation) [36]; adi-
pose-tissue secretory factor (ADSF/resistin) involved
in low-density lipoprotein (LDL) level regulation [37];
and plasminogen activator inhibitor-1 (PAI-1/serpin
E1) that plays a major role in insulin resistance [38].
All these proteins are also closely related to obesity,
diabetes, atherosclerosis, or other conditions such as
heart diseases. Hence, research studies are necessary
to clarify the expression of these proteins in adipocytes.
In addition to their role in glucose and lipid metabo-
lism, adipocytes respond differentially to physiological
indications or metabolic stress by releasing endocrine
factors that regulate diverse processes, such as energy
expenditure, appetite control, glucose homoeostasis,
insulin sensitivity, inflammation and tissue repair
[39]. Furthermore, reactive oxygen species (ROS) have
been implicated as a contributor to both the onset and
progression of insulin resistance and obesity, which are
also associated with chronic low-grade inflammation
[40]. To date, studies on the significance of VGVAPG
peptide in the formation and metabolism of adipose
tissue are limited. Blaise and team (2013) described that
EDPs are involved in the development of insulin resis-
tance in mice [41]. Moreover, Robert and colleagues,
demonstrated that the concentration of anti-EDP anti-
bodies of IgG is increased threefold in type 2 diabetic
patients compared with the control population [42–44].

Therefore, the aim of our research was to determine
the effect of VGVAPG peptide on adipogenesis in 3T3-
L1 cell line that can function as an in vitro model for
lipid accumulation.

2. Materials and methods

2.1. Reagents

Dulbecco’s Modified Eagle’s Medium (DMEM) without
phenol red (10–013-CVR) and phosphate-buffered sal-
ine without calcium and magnesium (PBS) were pur-
chased from Corning (Manassas, VA, USA). Trypsin,
rosiglitazone, oil red O (ORO), Ac-YVAD-pNA (cas-
pase-1 substrate), resazurin, penicillin, streptomycin,
amphotericin B, 3-isobutyl-1-methylxanthine (IBMX),
dexamethasone, insulin, RIPA buffer (product number
R0278 – 50 mM Tris-HCl, pH 8.0, with 150 mM sodium
chloride, 1.0% Igepal CA-630 (NP-40), 0.5% sodium
deoxycholate, and 0.1% sodium dodecyl sulphate), 2ʹ,7ʹ-
dichlorodihydrofluorescein diacetate (H2DCFDA), and
dimethyl sulphoxide (DMSO) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). VGVAPG and
VVGPGA peptides were synthesized by LipoPharm.pl
(Gdańsk, Poland). Foetal bovine serum (FBS) was pur-
chased from EURx (Gdańsk, Poland). Ki67 (EM1473)
was purchased from Fine Biotech (Wuhan, China).
Proteome profiler mouse adipokine array (ARY013)
was purchased from R&D Systems, Inc. (Minneapolis,
MN, USA). Stock solutions of VGVAPG and VVGPGA
peptides were prepared in DMSO and then added to the
DMEM medium. The final concentration of DMSO in
the culture medium was always 0.1%.

2.2. 3T3-L1 cell culture, differentiation procedure,
and treatment

Mouse embryonic fibroblast cell line 3T3-L1 was
obtained from the American Type Culture Collection
(ATCC, distributor: LGC Standards, Łomianki,
Poland). The 3T3-L1 cell line was maintained in
DMEM supplemented with 10% FBS, 100 U/mL peni-
cillin, 0.10 mg/mL streptomycin, and 250 ng/mL
amphotericin B. The cells were maintained at 37°C in
a humidified atmosphere with 5% CO2. The cells were
seeded in 96-well culture plates at a density of 6 × 103

cells/well and in 6-well culture plates at a density of
3 × 105 cells/well, and then initially cultured before the
experiment for 24 h. Subsequently, the medium was
replaced with a fresh one by increasing the concentra-
tions (1, 10, 50, and 100 nM and 1, 10, 50, and 100 µM)
of VGVAPG or VVGPGA, respectively. The levels of
ROS, caspase-1 activation, resazurin reduction, and
Ki67 protein expression were then measured.

Differentiation procedure was assessed according to
Zebisch et al. (2012) with slight modifications [45]
Briefly, 3T3-L1 cells were routinely cultured in basal
medium (DMEM containing 10% FBS, 100 U/mL
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penicillin, 0.10 mg/mL streptomycin, and 250 ng/mL
amphotericin B). The cells were seeded in 48-well plates
at a density of 3 × 104 cells/well (for ORO staining) or
in 6-well plates at a density of 3 × 105 cells/well (for
protein). Forty-eight hours after seeding (day 2), cell
differentiation was induced by changing the medium to
basal medium containing 0.5 mM IBMX, 0.25 µM dex-
amethasone, and 1 µg/mL insulin. The experimental
groups were negative control (without rosiglitazone),
positive control with 2 µM rosiglitazone, and groups
treated with 10 nM VGVAPG or 10 nM VVGPGA.
After 48 h, the medium was changed to basal medium
containing 1 µg/mL insulin for the next 48 h. After this
time, the cell culture medium was again changed to
basal medium, and the procedure was repeated after
every two days. At 14 day (measured from cell seeding),
ORO staining (48-well plates) and cell harvesting
(6-well plates) were performed.

2.3. Production of ROS induced by VGVAPG
peptide

The method for ROS determination is based on the oxida-
tion of the fluorogenic dye 2ʹ,7ʹ-dichlorodihydrofluorescein
diacetate (H2DCFDA), which is added to the cells before
treatment with the studied peptide [46]. In the experiment,
the cells were seeded in 96-well plates in DMEM medium
supplemented with 10% FBS. After 24 h, the medium was
replaced with DMEM without FBS containing the fluoro-
genic dye at 5 μM concentration for 45 min. The dye was
then removed, and a series of dilutions of VGVAPG pep-
tide (1 nM–100 µM) inDMEMsupplementedwith 1% FBS
were added to the plate. To assess the ability ofVGVAPGor
VVGPGA to induce ROS production in 3T3-L1 cells, fluor-
escence was measured after 3, 6, 24, and 48 h. Amicroplate
reader (FilterMax F5) was used to measure the maximum
excitation and emission spectrum at 485 nm and 535 nm
wavelengths, respectively.

2.4. Caspase-1 activity

Caspase-1 activity was assessed according to Nicholson
et al. [47]. To measure caspase-1 activity, the cells were
plated on 96-well plates and exposed to increasing
concentrations of VGVAPG or VVGPGA peptides.
Controls with or without DMSO vehicle were included
in the experimental design to determine the effect of
DMSO (results not shown). After thawing (−80ºC), the
cells were lysed using lysis buffer (50 mM HEPES, pH
7.4, 100 mM NaCl, 0.1% CHAPS, 1 mM EDTA, 10%
glycerol, and 10 mM DTT) at 10°C for 10 min. The

lysates were incubated in the caspase-1 substrate Ac-
YVAD-pNA at 37°C. After 30 min, the absorbance of
the lysates at 405 nm was measured using a microplate
reader (FilterMax F5). The amount of the colorimetric
product was continuously monitored for 120 min.

2.5. Resazurin reduction assay

To determine changes in the level of cell metabolism/
proliferation stimulated by VGVAPG, we used the
redox dye resazurin. Depending on the metabolic activ-
ity of the cells, the dye shows both colorimetric and
fluorometric changes. The metabolically active cells
reduce nonfluorescent resazurin to fluorescent resoru-
fin [48]. The cells were seeded on 96-well plates and
exposed to increasing concentrations of VGVAPG or
VVGPGA peptides at 24 h after seeding. After 48 or
72 h of incubation, the medium was removed and
replaced with a new one (DMEM containing 1% FBS
and 10% resazurin). The plates were then incubated for
60 min. Following this incubation, fluorescence was
measured using a microplate reader (FilterMax F5) at
the maximum excitation and emission spectrum of
530 nm and 590 nm wavelengths, respectively.

2.6. Enzyme-linked Immunosorbent Assay (ELISA)
for Ki67

The level of Ki67 protein was determined after 48 h of
exposure to 1, 10, 50, and 100 nM and 1, 10, 50, and
100 µM of VGVAPG or VVGPGA treatment, respec-
tively, by enzyme-linked immunosorbent assay
(ELISA). These proteins were specifically detected by
ELISA and subsequently subjected to quantitative sand-
wich enzyme immunoassay. The assay was performed
according to the manufacturer’s instructions. Briefly,
a 96-well plate was precoated with monoclonal antibo-
dies specific to Ki67. Standards and the collected cell
extracts were added to the wells and incubated for
90 min at 37°C. Next, after removing the liquid,
100 µL of biotinylated detection antibodies were
added for 60 min. After 3 times washing to remove
any unbound substances, horseradish peroxidase-
conjugated avidin was added. Following additional
washing, 90 µL of substrate solution was added to the
wells for 15 min. Then, 50 µL of the reaction termina-
tion solution was added, and the absorbance was mea-
sured at 450 nm. The obtained values were
proportional to the amount of Ki67. The total protein
concentration was determined in triplicate in each sam-
ple by using a Thermo Fisher NanoDrop device.
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2.7. Oil Red O (ORO) staining and quantification

Oil red O (ORO) staining was performed according to
Zebish et al. with slight modifications [45]. To perform
the staining of cells, 1 day before the experiment,
a stock solution of ORO was prepared by dissolving 1
g of ORO in 100 mL of absolute isopropanol. The
prepared solution was left standing overnight on
a stirrer at room temperature. The solution was then
filtered through a filter paper. The working solution
was prepared just before staining by mixing the stock
solution with distilled water (3:2). The cells were
washed twice with PBS and incubated for 1 h at room
temperature in a 10% formalin solution. After incuba-
tion, the cells were washed twice with distilled water
and once with 60% isopropanol. The cells were then
incubated with the working solution of the ORO dye
for 15 min. The cells were washed 5 times with distilled
water, and after the 5th wash, the cells were photo-
graphed. The cells were then washed three times with
60% isopropanol. Finally, the cells were washed with
100% isopropanol. The samples were then transferred
to new 96-well plates to measure absorbance at 450 nm.
The blank was 100% isopropanol.

2.8. Proteome profiler mouse adipokine array

Briefly, cells were collected in RIPA buffer, and protein
concentration was determined using a Thermo Fisher
NanoDrop device. A protein profiler membrane was pre-
pared according to the manufacturer’s protocol. Next,
equal amounts of protein (500 µg/mL) from the experi-
mental group (Control – undifferentiated; Rosiglitazone –
positive control, cell differentiated with 2 µM rosiglitazone;
VVGPGA – cell differentiated with 10 nM VVGPGA,
VGVAPG – cell differentiated with 10 nM VGVAPG)
were mixed with 15 μL of reconstituted mouse adipokine
detection antibody cocktail and incubated at room tem-
perature for 1 h. The sample/antibody mixtures were
added to 4-well plates and incubated overnight at 2–8°C
on a rocking platform shaker. On the next day, the mem-
branes were washed in a wash buffer two times for 10 min.
After this step, the membranes were incubated with strep-
tavidin-HRP antibody for 30 min at room temperature on
a rocking platform shaker. After washing for three times,
the chemiluminescent reagent was added to each mem-
brane and incubated for 1 min. In the last step, the mem-
branes were placed in a C-DiGit Blot Scanner (LI-COR)
and scanned for chemiluminescence. Quantification of
protein band densitometry was carried out using ImageJ
1.52a software.

2.9. Statistical analysis

Data are presented as mean ± SD of three independent
experiments. Each treatment was repeated six times (n = 6)
andmeasured in triplicate. The data were normalized to the
vehicle-treated control cells and presented as percentage of
control. The data were analysed by one-way analysis of
variance (ANOVA) followed by Tukey’s multiple compar-
ison procedure ***p < 0.001, **p < 0.01, and *p< 0.05 vs. the
control were considered statistically significant.

3. Results

3.1. Measurement of ROS production

After 3T3-L1 cell treatment with increasing concentra-
tions of VGVAPG or VVGPGA peptides, no changes
were found in ROS production in all studied time
intervals (3, 6, 24, and 48 h) (Figure 1(a,b).

3.2. Measurement of caspase-1 activity

After 3T3-L1 cell treatment with increasing concentra-
tions of VGVAPG or VVGPGA peptides, no significant
changes were found in caspase-1 activity in both 24 and
48 h time intervals (Figure 1(c,d)).

3.3. Measurement of cell metabolism

After 3T3-L1 cell treatment with increasing concentra-
tions of VGVAPG or VVGPGA peptides, no significant
changes were found in the resazurin reduction assay in
both 48 and 72 h time intervals (Figure 1(e,f)).

3.4. Measurement of Ki67 protein level

After 48 h of 3T3-L1 cell exposure to increasing con-
centrations of VGVAPG or VVGPGA peptide, no sig-
nificant changes were found in Ki67 protein expression
level (Figure 2).

3.5. Measurement of lipid accumulation by ORO
staining

After 14 days of differentiation using IBMX, dexametha-
sone, insulin, and other appropriate compounds (increas-
ing concentrations of VGVAPG or VVGPGA or 2 µM
rosiglitazone), ORO staining and its quantification were
performed. Undifferentiated 3T3-L1 cells (Undif); cells
differentiated using only IBMX, dexamethasone, and
insulin (Control); and cells differentiated using IBMX,
dexamethasone, and insulin and increasing
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concentrations of VVGPGA or VGVAPG (1, 10, 50, and
100 nM and 1, 10, 50, 100 µM, respectively) did not
accumulate lipid (Figure 3). In cells differentiated using
IBMX, dexamethasone, insulin, and 2 µM rosiglitazone
(Positive Control), lipid accumulation significantly
increased as compared to that in Control without rosigli-
tazone (increase by 38.57%). In differentiated 3T3-L1 cells
with VGVAPG concentrations in range of 1–100 nM and
1 µM peptide, lipid accumulation decreased as compared
to that in Control (decrease from 50.01% to 34.54%).
However, VGVAPG peptide treatment in the range of
10–100 µM did not affect lipid accumulation as compared
to that in Control (Figure 3).

3.6. Proteome profiler mouse adipokine array

After 14 days of differentiation using IBMX, dexametha-
sone, insulin, and other appropriate compounds (10 nM

VGVAPG, 10 nM VVGPGA, or 2 µM rosiglitazone),
protein quantification with the proteome profiler array
was performed. Two controls (Control: undifferentiated
cells and VVGPGA Control: cells differentiated with
10 nM VVGPGA – that peptide that does not activate
EBP) were used. Cells differentiated with rosiglitazone
were used as a positive control (Figure 4).

VGVAPG peptide decreased the expression of adi-
ponectin as compared to that in Control and VVGPGA
cells. However, rosiglitazone caused a higher reduction
of adiponectin expression than VGVAPG peptide.

Further, VGVAPG peptide decreased the expression
of VEGF compared to that in Control and VVGPGA
cells, but rosiglitazone significantly increased VEGF
expression in 3T3-L1 cells.

In cells treated with IBMX, dexamethasone, insulin,
and VGVAPG or VVGPGA, the expression of Pref-1
was increased significantly as compared to that in

Figure 1. Effect of the increasing concentrations of VGVAPG or VVGPGA peptides on ROS production (a and b), activity of caspase-1
(c and d), and resazurin reduction (e and f). Measurement were performed after 3, 6, 24, and 48 h for ROS; after 24 and 48 h for
caspase-1 activity; and after 48 and 72 h for resazurin reduction assay in mouse 3T3-L1 cell line. Data are expressed as mean ± SD of
three independent experiments, each of which comprised six replicates per treatment group.
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undifferentiated cells. However, Pref-1 expression was
lower in cells treated with VGVAPG than in cells
treated with VVGPGA. Pref-1 expression was not
detected in the group treated with rosiglitazone.

The expression level of resistin did not differ in Control
and VVGPGA cells. Cells treated with VGVAPG peptide
showed increased level of resistin expression. Resistin
expression was much higher in cells treated with rosiglita-
zone than in the VGVAPG peptide-treated group.

In cells treated with VGVAPG peptide, the expression
of serpin E1 was similar to that of undifferentiated cells
and much higher than that in cells treated with VVGPGA
or rosiglitazone. The lowest expression of serpin E1 was
noted in the rosiglitazone-treated group (Figure 4).

4. Discussion

It is well known that EDPs or VGVAPG increase ROS
production in different cells such asmurinemonocytes and
astrocytes, human fibroblasts, and neuroblastoma (SH-
SY5Y) cells [49–53]. Moreover, ROS are key signalling
molecules that play an important role in the progression
of inflammatory disorders. Interleukin-1 beta (IL-1β) is
one of the key pro-inflammatory cytokines in an organism
[54]. IL-1β is formed when its inactive precursor pro-IL-1β
is activated by limited proteolysis through the interleukin-
1-beta-converting enzyme (ICE), which is currently known
as caspase-1 [55]. ROS activation can initiate or result in an
inflammation process in which caspase-1 plays an impor-
tant role [56]. Caspase-1 is a member of the intracellular
cysteine protease family that mediates inflammation and

activates IL-1β and IL-18 [57]. Mice lacking IL-18 become
obese and insulin resistant, and both IL-1β and IL-18 play
a role in overall energy balance [58]. Moreover, it has been
reported that inmouse with caspase-1 knocked out, obesity
develops similar to mice with IL-18 deficiency [59].
Interestingly, the IL-18 protein level is upregulated in the
adipose tissue of obese mice [60]. Furthermore, ROS pro-
duction and/or inflammation process can initiate cell death
and decrease cell metabolism, but in some cases,
a contrasting effect might be observed and metabolism
and/or cell proliferation could increase [61,62]. Our data
show that VGVAPG peptide did not increase ROS produc-
tion and induce caspase-1 activation and cell proliferation
in all studied concentrations and time intervals in 3T3-L1
cell line. To date, previous studies have shown that EDPs
and/or VGVAPG peptide increase the production and/or
secretion inflammatory markers such as IL-1α, IL-1β, and
IL-6 in ligamentum flavum cells, synovial cells, and mela-
noma cell lines [63–65]. On the other hand, our previous
studies show that VGVAPG peptide increases the expres-
sion of PPARγ and decreases the expression of nuclear
factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and production of IL-1β in mouse astrocytes in
a PPARγ-dependent manner, which suggest that the effect
of VGVAPG is tissue dependent [31,66]. Interestingly, our
latest study revealed that caspase-1 activity increases, which
suggests that this caspase does not play an inflammatory
role in mouse astrocytes [66].

ORO staining and its quantification are a recognized
marker for determining the maturity of adipocytes [67].
This method is based on a correlation between higher

Figure 2. Effect of the increasing concentrations of VGVAPG or VVGPGA peptides on the expression of Ki67 protein. Ki67 level was
measured by the ELISA method after 48 h of exposure of 3T3-L1 cell line to the studied peptides. Data are expressed as mean ± SD
of three independent experiments, each of which comprised six replicates per treatment group.
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values of ORO dye in the fully matured adipocytes than in
less differentiated or undifferentiated cells. This method
has been successfully validated, indicating that the ORO
assay can be used to analyse adipocyte differentiation [68–
70]. Our obtained data show that VVGPGA peptide did
not induce lipid accumulation in 3T3-L1 cells, while
VGVAPG peptide in the range of 1 nM to 1 µM decreased
lipid accumulation as compared to that in control. Based
on the obtained data from ORO measurement for further
research, we chose 10 nM VGVAPG peptide as the con-
centration to evaluate the level of activated proteins during
the differentiation process in adipocytes.

During the differentiation process in preadipocytes, the
expression profile of proteins changed in 3T3-L1 cell line.
Our data show that VGVAPG peptide altered the expres-
sion profile of Pref-1, serpin E1, adiponectin, VEGF, and
resistin which are the key proteins involved in developing

obesity and/or insulin resistance. In our experimental
model, VGVAPG peptide increased the expression of
Pref-1, serpin E1, and adiponectin as compared to rosigli-
tazone, which is a PPARγ agonist used to trigger differen-
tiation of 3T3-L1 cells into mature adipocytes. It is well
known that Pref-1 is highly expressed in 3T3-L1 cells but
shows reduced expression during adipocyte differentiation
[71]. Therefore, Pref-1 serves as an excellent marker for
preadipocytes. Pref-1 is also an inhibitor of adipogenesis,
and its constitutive expression inhibits 3T3-L1 adipocyte
differentiation [36]. Moreover, in our experiments

Figure 3. Effect of the increasing concentrations of VGVAPG or
VVGPGA (a) peptides on lipid accumulation in 3T3-L1 cell line.
Undif – undifferentiated cells; Control – cells differentiated with
IBMX, dexamethasone, insulin, without rosiglitazone; Rosi –
positive control, differentiated cells with IBMX, dexamethasone,
insulin and 2 µM rosiglitazone; groups treated with VGVAPG or
VVGPGA were differentiated with IBMX, dexamethasone, insulin
and appropriate concentration of VGVAPG or VVGPGA. ORO
staining (b) and quantification were performed after 14 days
of differentiation.

Figure 4. Effect of 10 nM VGVAPG or VVGPGA peptides on the
protein expression profile in 3T3-L1 cell line. Control – undiffer-
entiated cells; Rosiglitazone – positive control, cells differentiated
with IBMX, dexamethasone, insulin, and 2 µM rosiglitazone;
VGVAPG – cells differentiated with IBMX, dexamethasone, insulin,
and 10 nM VGVAPG; VVGPGA – negative control VVGPGA peptide
that does not activate EBP, cells differentiated with IBMX, dexa-
methasone, insulin, and 10 nM VVGPGA (a). Protein measurement
was performed after 14 days of differentiation. Densitometry was
performed by ImageJ 1.52a software (b).
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VGVAPG peptide increased PAI-1 (synonym serpin E1)
expression, which is linked to obesity and insulin resistance
[72]. Liang et al. (2006) reported that the overexpression of
PAI-1 by adenovirus-mediated gene transfer in 3T3-L1
adipocytes inhibited differentiation and reduced PPARγ
expression [72]. Finally, compared to the rosiglitazone-
treated group, VGVAPG peptide increased adiponectin
expression in 3T3-L1 cells. Adiponectin produced by adi-
pocytes is an important vascular protective adipocytokine
that possesses antidiabetic, antiatherogenic, and anti-
inflammatory properties [73]. Furthermore, adiponectin
is an important insulin-sensitizing adipocytokine that is
downregulated in insulin resistance and obesity, and
replenishment of this protein in adiponectin-deficient
state improves insulin sensitivity [74]. Additionally, leptin,
adiponectin, and glucose transporter type 4 (Glut 4) are the
major target genes in adipose tissue for PPARγ, and there-
fore, they are essential for maintaining homoeostasis of
carbohydrate metabolism. It was shown that any disorders
related to the regulation of these genes may contribute to
the development of obesity due to the important role of
these genes in hunger regulation (leptin), glucose transport
(Glut 4), and insulin susceptibility (adiponectin) [75–79].

In our experimental model, VGVAPG peptide
decreased the expression of VEGF and resistin compared
to that observed in the rosiglitazone-treated group.
Vascular endothelial growth factor (VEGF) is the family
of secreted polypeptides, characterized as cysteine-knot
superfamily of hormones, including VEGF-A and others,
which are formed by alternative splicing process [80].
VEGF is recognized as a key factor in normal and abnormal
angiogenesis and regulates multiple biological responses in
endothelial cells, including cell proliferation, migration,
survival, and production of vasoactive mediators [81]. For
example, VEGF-A released from adipocytes promotes
angiogenesis and thereby ameliorates the local hypoxia-
induced adipose inflammation and insulin resistance [82].
Our data suggest that reducing VEGF expression by
VGVAPG could reduce angiogenesis in adipose tissue.

The last studied protein resistin promotes 3T3-L1 pre-
adipocyte differentiation and is an important mediator of
obesity-induced insulin resistance; moreover, this protein
could be secreted by adipocytes and is involved in insulin
regulation [83]. According to literature data, the level of
resistin increases in 3T3-L1 during the differentiation pro-
cess [84]. On the other hand, in adult/mature adipocytes,
resistin levels were shown to be decreased by rosiglitazone,
and ligand-induced PPARγ activation strongly downregu-
lated resistin expression; thus, this protein has been pro-
posed as a therapeutic target of PPARγ ligands, which are
used clinically to improve insulin sensitivity [85–87]. In our
study, the VGVAPG peptide decreased the expression of
resistin as compared to that in rosiglitazone-treated cells.

Because resistin is strictly controlled by PPARγ activation,
our data allow to assume that VGVAPG peptide by inter-
action with this receptor can control resistin gene expres-
sion [88]. Interaction between PPARγ and VGVAPG has
been proven in our previous study, in which VGVAPG
peptide was shown to affect PPARγ expression and
PPARγ-mediated effects in mouse astrocytes and SH-
SY5Y cells [31,49]. As mentioned above, PPARγ is
involved in resistin expression, which is strictly related to
obesity and type 2 diabetes. To date, Blaise and co-workers
(2013) described that EDPs are involved in the develop-
ment of insulin resistance in mice [41]. Moreover, several
papers, demonstrated that the concentration of anti-EDP
antibodies of IgG is increased three fold in type 2 diabetic
patients compared with the control population [42–44].
Based on that we believed that, VGVAPG peptide affecting
the PPARγ pathway could first prevent the maturation of
preadipocytes and next make it difficult to break insulin
resistance. According to available literature data which
described mechanisms of action EDPs and PPARγ we
hypothesized that in our experimental model VGVAPG
could interfere with MAP-kinase [27,89]. MAP-kinase is
commonly known as an agent taking part in many cell
types differentiation processes, such as: adipocytes [90],
osteocytes [91] or neurons [92], therefore we think that
VGVAPG can affect differentiation process of 3T3-L1 cells
in PPARγ-MAPK-dependent way.

Taking into account all the above data, our obtained
results show that VGVAPG peptide sustains 3T3 cells in
less undifferentiated state. This could potentially have
many repercussions such as preventing maturation of pre-
adipocytes, possibility of carcinogenesis in undifferentiated
cells, and making it difficult to break insulin resistance.

5. Conclusions

The present study is the first to describe that VGVAPG
peptide does not increase ROS production and induce
caspase-1 activation and cell proliferation in all studied
time intervals in 3T3-L1 cell line. Moreover, VGVAPG
peptide decreased lipid accumulation measured by
ORO assay and increased the expression of Pref-1,
serpin E1 and adiponectin as compared to that in
rosiglitazone (PPARγ agonist used to trigger differen-
tiation of 3T3-L1 cells)-treated group, while simulta-
neously decreasing the expression of VEGF and
resistin. Our obtained results show that VGVAPG pep-
tide sustains 3T3 cells in less undifferentiated state
(Figure 5). However, because of the lack of sufficient
data explaining the molecular mechanism of action of
VGVAPG peptide in adipose tissue, more studies are
necessary on this topic.
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Highlights

● VGVAPG peptide does not stimulate ROS pro-
duction and activation of caspase-1 in 3T3-L1 cells

● VGVAPG peptide does not induce proliferation of
3T3-L1 cells

● VGVAPG peptide decreases differentiation of
3T3-L1 cells into adipocytes

● VGVAPG peptide decreases lipid accumulation as
measured by ORO assay

● VGVAPG peptide increases expression of Pref-1, ser-
pin E1 and adiponectin as compared to rosiglitazone

● VGVAPG peptide decreases expression of VEGF
and resistin as compared to rosiglitazone
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