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Abstract

Purpose: The body mass index (BMI) is commonly used as a simple indicator of obesity; patients with early-stage
breast cancer who are obese (OB) per BMI measurements have been shown to have high postoperative recurrence
and low survival rates. On the other hand, it has been shown that lymphocytes present in the vicinity of malignant
growths that are involved in the tumors’ immune responses influence the efficacy chemotherapy. Therefore, we
hypothesized that OB patients with breast cancer have a lower density of tumor-infiltrating lymphocytes (TILs),
which may influence the therapeutic effect of preoperative chemotherapy (POC). In this study, we measured
pretreatment BMI and TILs in patients with breast cancer who underwent POC, examined the correlations between
these two factors, and retrospectively analyzed their therapeutic outcomes and prognoses.

Methods: The participants in this study were 421 patients with breast cancer who underwent surgical treatment
after POC between February 2007 and January 2019. The patient’s height and weight were measured before POC
to calculate the BMI (weight [kg] divided by the square of the height [m2]). According to the World Health
Organization categorization, patients who weighed under 18.5 kg/m2 were classified as underweight (UW), those
≥18.5 kg/m2 and > 25 kg/m2 were considered normal weight (NW), those ≥25 kg/m2 and < 30 kg/m2 were
overweight (OW), and those ≥30 kg/m2 were OB. The TILs were those lymphocytes that infiltrated the tumor
stroma according to the definition of the International TILs Working Group 2014.

Results: The median BMI was 21.9 kg/m2 (range, 14.3–38.5 kg/m2); most patients (244; 64.5%) were NW. Among all
378 patients with breast cancer, the TIL density was significantly lower in OB than in NW and OW patients (vs. NW:
p = 0.001; vs. OW: p = 0.003). Furthermore, when examining patients with each breast cancer type individually, the
OS of those with TNBC who had low BMIs was significantly poorer than that of their high-BMI counterparts (log
rank p = 0.031).
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Conclusions: Our data did not support the hypothesis that obesity affects the tumor immune microenvironment;
however, we showed that being UW does affect the tumor immune microenvironment.

Keywords: Breast cancer, Body mass index, Tumor-infiltrating lymphocytes, Preoperative chemotherapy, Tumor
immune microenvironment

Background
Obesity has long been cited as a poor prognostic factor
in patients with breast cancer [1–4]. The body mass
index (BMI) is commonly used as a simple indicator of
obesity; patients with early-stage breast cancer who are
obese (OB) per BMI measurements have been shown to
have high postoperative recurrence and low survival
rates. One of the causes for this is that levels of estrogen,
insulin, insulin-like growth factor, and cytokines that
promote tumor growth are increased in OB patients
with breast cancer [5–7]. Another cause is that obesity-
associated chronic inflammation and hypoxia are present
in tumor tissues [8–10]. Furthermore, there have been
some studies in recent years showing that pathological
complete response (pCR) rates in OB patients with
breast cancer who received chemotherapy remained low
owing to the abovementioned factors [11–14].
It has been shown that lymphocytes present in the

vicinity of malignant growths that are involved in the tu-
mors’ immune responses influence the efficacy chemo-
therapy [15–18]. These ‘tumor-infiltrating lymphocytes’
(TILs) have also been reported in patients with breast
cancer [19, 20]. Furthermore, it has been reported that
the densities of TILs differ depending on the tumor sub-
type [21]; specifically, their density is higher in hormone
receptor-negative breast cancer [22, 23]. While there are
few reports of other factors affecting TILs, a role for
obesity in tumor immunity has been suggested for some
time [24, 25]. However, there are still few published
studies of the correlation between BMI and TILs.
Therefore, we hypothesized that BMI affects prognosis

because of differences in the immune microenviron-
ment. In this study, we measured pretreatment BMI and
TILs in patients with breast cancer who underwent
POC, examined the correlations between these two fac-
tors, and retrospectively analyzed their therapeutic out-
comes and prognoses.

Methods
Patients
The participants in this study were 421 patients with
breast cancer who underwent surgical treatment after
POC at the Osaka City University Hospital between Feb-
ruary 2007 and January 2019. All patients were patho-
logically diagnosed with breast cancer by core needle
biopsy or vacuum-assisted biopsy. Afterward, the expres-
sion levels of estrogen receptor (ER), progesterone

receptor (PgR), human epidermal growth factor receptor
2 (HER2), and Ki67 were evaluated via immunohisto-
chemistry and classified into three subtypes as described
previously [26]. Hormone receptor-positive breast cancer
(HRBC) was defined as a tumor positive for ER and/or
PgR. HER2-enriched breast cancer (HER2BC) was de-
fined as ER-negative, PgR-negative, and HER2-positive.
Finally, triple-negative breast cancer (TNBC) was de-
fined as ER-, PgR-, and HER2-negative. Prior to POC,
computed tomography, ultrasonography, and bone scin-
tigraphy were used to assess breast cancer progression.
The patient’s height and weight were measured before
POC to calculate the BMI (weight [kg] divided by the
square of the height [m2]). According to the World
Health Organization categorization, patients who
weighed under 18.5 kg/m2 were classified as underweight
(UW), those ≥18.5 kg/m2 and > 25 kg/m2 were consid-
ered normal weight (NW), those ≥25 kg/m2 and < 30 kg/
m2 were overweight (OW), and those ≥30 kg/m2 were
OB. The first half of POC consisted of four courses of
FEC100 (which includes 500mg/m2 fluorouracil, 100
mg/m2 epirubicin, and 500 mg/m2 cyclophosphamide)
every 3 weeks. In the second half, 12 courses of 80 mg/
m2 paclitaxel were administered weekly; moreover,
weekly (2 mg/kg) or tri-weekly (6 mg/kg) trastuzumab
was also administered if the tumor was HER2-positive
[27–29]. Imaging was repeated after POC but before sur-
gery to evaluate the therapeutic effect according to the
Response Evaluation Criteria in Solid Tumors [30]. Pa-
tients with clinical partial and complete responses were
defined as “responders” when calculating the objective
response rate (ORR), while those assessed to have clin-
ical stable disease and clinical progressive disease were
defined as “non-responders”. Either mastectomy or
breast-conserving surgery was performed based on the
degree of breast cancer progression before and after
POC while also considering the patient’s wishes [31].
The definition of a pCR followed the National Surgical
Adjuvant Breast and Bowel Project B-18 protocol as “the
complete disappearance of the invasive components of
the lesion with or without intraductal components, in-
cluding that in the lymph nodes” [32]. Standard adjuvant
therapy was administered to the tumor subtype and
chosen surgical procedure. Overall survival (OS) was de-
fined as the interval between surgery and death from
any cause, while disease-specific survival (DSS) was de-
fined as the interval between surgery and death from
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breast cancer. The median follow-up time was 1881 days
(range, 63–4551 days) from surgery.

Histopathological evaluation of TIL density
TIL density was evaluated within the biopsy tissue used
to diagnose breast cancer. The TILs were those lympho-
cytes that infiltrated the tumor stroma according to the
definition of the International TILs Working Group
2014 [15]. The density of TILs was calculated from the
average of five random fields of view as described by the
Working Group [15]. Furthermore, the cutoff value for
TIL density was set at 10%, and patients were divided
into four groups based on this density (score = 3, > 50%;
score = 2, > 10–50%; score = 1, ≤10%; and score = 0, ab-
sent TILs) (Supplementary Fig. 1), as described previ-
ously [33, 34].

Statistical analysis
All statistical analyses were performed using the JMP
version 15 software package (SAS, Tokyo, Japan). The
distribution of TIL density according to the BMI cat-
egory was evaluated using Student’s t-test. Pearson’s chi-
square test was used to evaluate the correlation between
two groups of clinicopathological features. Analyses of
disease-free survival (DFS), OS, and DSS were performed
using the Kaplan-Meier method; results were compared
using the log-rank test. The hazard ratios (HRs) and 95%
confidence intervals were calculated using the Cox pro-
portional hazards model, and multivariable analysis was
performed using a Cox regression model. P-values < 0.05
were defined as significant.

Results
Clinicopathological features
Of the original 421 participants of this study, 43 were
excluded because TILs could not be evaluated on their
biopsy tissue samples (Table 1). The median age of the
remaining 378 patients was 56 years (range, 24–78
years). The median tumor diameter was 28.7 mm (range,
9.2–119.8 mm), with skin infiltration present in 60 pa-
tients (15.9%). No lymph node metastases were found in
132 of the patients (34.9%). There were 159 patients
(42.1%) who had HRBC and 93 (24.6%) who had
HER2BC; the remaining 126 patients (33.3%) had TNBC.
Three hundred thirty-seven patients responded to treat-
ment; the ORR was 89.2% and the pCR rate was 33.9%.
Moreover, 169 patients (44.7%) had a high TIL density.
The median BMI was 21.9 kg/m2 (range, 14.3–38.5 kg/
m2); most patients (244; 64.5%) were NW.
The correlation between pathological response and

clinicopathological factors was examined (Supplemen-
tary Table 1). In all cases, small tumors (p = 0.021) and
no skin infiltration (p < 0.001) were significantly more
likely to achieve pCR. As breast cancer subtypes, ER
negative (p < 0.001), PgR negative (p < 0.001), HER2 posi-
tive (p = 0.002), and high Ki67 (p = 0.005) were signifi-
cantly more likely to achieve pCR, so HER2BC (p <
0.001) and TNBC (p = 0.031) were significantly more
likely to have pCR. When examined with HER2BC and
TNBC, skin infiltration in HER2BC had a significant ef-
fect on pCR (p = 0.006).
The correlation between TILs and clinicopathological

factors was examined (Supplementary Table 2). Com-
pared to patients with breast cancer who had higher TIL

Table 1 Clinicopathological features of 378 patients who were treated with preoperative chemotherapy

Parameters (n = 378) Number of patients (%)

Age (years old) 56 (24–78)

Tumor size (mm) 28.7 (9.2–119.8)

Skin infiltration Negative / Positive 318 (84.1%) / 60 (15.9%)

Lymph node metastasis N0 / N1 / N2 / N3 132 (34.9%) / 140 (37.0%) / 71 (18.8%) / 35 (9.3%)

Estrogen receptor Negative / Positive 223 (59.0%) / 155 (41.0%)

Progesterone receptor Negative / Positive 301 (79.6%) / 77 (20.4%)

HER2 Negative / Positive 238 (63.0%) / 140 (37.0%)

Ki67≤ 14% / > 14% 121 (32.0%) / 257 (68.0%)

Intrinsic subtype HRBC / HER2BC / TNBC 159 (42.1%) / 93 (24.6%) / 126 (33.3%)

Objective response rate Non-Responders / Responders 41 (10.8%) / 337 (89.2%)

Pathological response Non-pCR / pCR 250 (66.1%) / 128 (33.9%)

TILs Low / High 209 (55.3%) / 169 (44.7%)

Body mass index (kg/m2) 21.9 (14.3–38.5)

Body mass index categorized Underweight / Normal / Overweight / Obese 49 (13.0%) / 244 (64.5%) / 66 (17.5%) / 19 (5.0%)

HER: human epidermal growth factor receptor. HRBC: hormone receptor-positive breast cancer (ER+ and/or PgR+). HER2BC: human epidermal growth factor
receptor 2-enriched breast cancer (ER-, PgR-, and HER2+). TNBC: triple negative breast cancer (ER-, PgR-, and HER2-). pCR: pathological complete response. TILs:
tumor-infiltrating lymphocytes

Takada et al. BMC Cancer         (2021) 21:1129 Page 3 of 13



densities, those with lower densities more frequently had
skin infiltration (p = 0.005), ER positivity (p < 0.001), PgR
positivity (p < 0.001), HER2 negativity (p = 0.015), and
lower Ki67 (p < 0.001). Hence, the proportions of pa-
tients with HER2BC and TNBC were significantly
smaller in the low TIL density group than in the high
TIL density group (p < 0.001 and p = 0.019, respectively).
Patients in the low TIL density group had a significantly
lower ORR (p = 0.001) and pCR rate (p < 0.001) than did
their counterparts in the high TIL density group. Thera-
peutic outcomes were significantly poorer among pa-
tients with low TILs than among those with high TILs
even when patients with TNBC (ORR: p = 0.016; pCR
rate: p = 0.008) and HER2BC (ORR: p = 0.023; pCR rate:
p = 0.018) were analyzed separately.

Relationship between BMI and TILs
Among all 378 patients with breast cancer, the TIL
density was significantly lower in OB than in NW and
OW patients (vs. NW: p = 0.001; vs. OW: p = 0.003) (Fig.
1). In particular, OB patients with HRBC had signifi-
cantly lower TIL densities than did those in the other
three BMI categories (vs. UW: p = 0.029; vs. NW: p =
0.001; vs OW: p = 0.028). On the other hand, NW pa-
tients with HER2BC had significantly higher TIL dens-
ities than did OB and OW patients (vs. OB; p = 0.025, vs.
OW; p = 0.032). However, among patients with TNBC,
those who were UW tended to have lower TIL densities
than did those who were OW, although the difference
was not significant (p = 0.077).

Correlation between BMI and clinicopathological factors
We next examined the correlation between BMI and
clinical pathological factors given that our abovemen-
tioned data suggested that TIL density may be lower in
patients with breast cancer who were UW and OB
(Table 2). We found that patients who were UW had a
significantly higher frequency of skin infiltration than
did those who were NW/OW (p = 0.012) while the rate
of PgR positivity was not significantly different (p =
0.085). Moreover, TIL density tended to be lower in UW
patients (p = 0.097). Additionally, OB patients had a sig-
nificantly higher frequency of skin infiltration (p = 0.004)
and of PgR positivity (p = 0.043) than did NW/OW pa-
tients. Patients with TNBC tended to be less frequent in
the OB group (p = 0.098) while TIL density also tended
to be lower (p = 0.073).
Among patients with HER2BC, those who were UW

tended to have a higher pCR rate than those in other
BMI categories (p = 0.065), despite their tendency to
have a lower TIL density (p = 0.070) (Supplementary
Table 3). Moreover, patients with HER2BC whose BMIs
were > 25 kg/m2 had a higher frequency of lymph node
metastasis than did those with BMIs < 25 kg/m2 (p =
0.039). No correlation was found between BMI and
TILs, ORR, or pCR.
Finally, among patients with TNBC, those who were

UW had significantly lower TILs (p = 0.035) and a sig-
nificantly lower ORR (p = 0.003) than did non-UW
counterparts (Table 3); no significant difference was ob-
served in the pCR rate (p = 0.602). When using a BMI

Fig. 1 Comparison of tumor-infiltrating lymphocytes (TILs) density by differences in BMI categorized (UW; underweight, NW; normal weight, OW;
overweight, OB; obese) by box-plot diagrams. X indicates the average value. All two groups were analyzed by Student’s t-test. Between the two
groups not shown is p > 0.1. The p-value between the two groups without the p-value is greater than 0.1. A all case, B hormone receptor
positive breast cancer (HRBC), C HER2-enriched breast cancer (HER2BC), D triple-negative breast cancer (TNBC)
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Table 2 Difference in clinicopathological features due to body mass index categorized
Body mass index categorized p

value
Body mass index categorized p

valueUnderweight
(n = 49)

Nomal / Overweight
(n = 310)

Nomal / Overweight(n = 310) Obese(n = 19)

Age (years old) 0.928

≤ 60 33 (67.3%) 209 (67.4%) 209 (67.4%) 13 (68.4%)

> 60 16 (32.7%) 101 (32.6%) 0.992 101 (32.6%) 6 (31.6%)

Tumor size (mm) 0.267

≤ 20.0 9 (18.4%) 51 (16.5%) 51 (16.5%) 5 (26.3%)

> 20.0 40 (81.6%) 259 (83.5%) 0.738 259 (83.5%) 14 (73.7%)

Skin infiltration 0.004

Negative 36 (73.5%) 270 (87.1%) 270 (87.1%) 12 (63.2%)

Positive 13 (26.5%) 40 (12.9%) 0.012 40 (12.9%) 7 (36.8%)

Lymph node status 0.751

Negative 17 (34.7%) 109 (35.2%) 109 (35.2%) 6 (31.6%)

Positive 32 (65.3%) 201 (64.8%) 0.949 201 (64.8%) 13 (68.4%)

Estrogen receptor 0.117

Negative 28 (57.1%) 187 (60.3%) 187 (60.3%) 8 (42.1%)

Positive 21 (42.9%) 123 (39.7%) 0.673 123 (39.7%) 11 (57.9%)

Progesterone receptor 0.043

Negative 35 (71.4%) 254 (81.9%) 254 (81.9%) 12 (63.2%)

Positive 14 (28.6%) 56 (18.1%) 0.085 56 (18.1%) 7 (36.8%)

HER2 0.982

Negative 31 (63.3%) 195 (62.9%) 195 (62.9%) 12 (63.2%)

Positive 18 (36.7%) 115 (37.1%) 0.961 115 (37.1%) 7 (36.8%)

Ki67 0.409

≤ 14% 11 (22.4%) 102 (32.9%) 102 (32.9%) 8 (42.1%)

> 14% 38 (77.6%) 208 (67.1%) 0.143 208 (67.1%) 11 (57.9%)

Intrinsic subtype HRBC 0.054

non-HRBC 28 (57.1%) 184 (59.4%) 184 (59.4%) 7 (36.8%)

HRBC 21 (42.9%) 126 (40.6%) 0.770 126 (40.6%) 12 (63.2%)

Intrinsic subtype HER2BC 0.688

non- HER2BC 38 (77.6%) 232 (74.8%) 232 (74.8%) 15 (78.9%)

HER2BC 11 (22.4%) 78 (25.2%) 0.683 78 (25.2%) 4 (21.1%)

Intrinsic subtype TNBC 0.098

non- TNBC 32 (65.3%) 204 (65.8%) 204 (65.8%) 16 (84.2%)

TNBC 17 (34.7%) 106 (34.2%) 0.945 106 (34.2%) 3 (15.8%)

Objective response rate 0.476

Non-Responders 8 (16.3%) 32 (10.3%) 32 (10.3%) 1 (5.3%)

Responders 41 (83.7%) 278 (89.7%) 0.215 278 (89.7%) 18 (94.7%)

Pathological response 0.103

Non-pCR 29 (59.2%) 205 (66.1%) 205 (66.1%) 16 (84.2%)

pCR 20 (40.8%) 105 (33.9%) 0.343 105 (33.9%) 3 (15.8%)

TILs 0.073

Low 32 (65.3%) 163 (52.6%) 163 (52.6%) 14 (73.7%)

High 17 (34.7%) 147 (47.4%) 0.097 147 (47.4%) 5 (26.3%)

HER: human epidermal growth factor receptor. HRBC: hormone receptor-positive breast cancer (ER+ and/or PgR+). HER2BC: human epidermal
growth factor receptor 2-enriched breast cancer (ER-, PgR-, and HER2+). TNBC: triple negative breast cancer (ER-, PgR-, and HER2-). pCR:
pathological complete response. TILs: tumor-infiltrating lymphocytes
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cutoff of 25 kg/m2 or 30 kg/m2, the TIL density tended
to be lower among patients with the lower BMIs than in
those with the higher values (p = 0.077 and p = 0.100, re-
spectively); however, no significant differences in ORR
or pCR were observed.

Differences in prognosis due to pCR and TILs
Differences in prognosis due to pCR and TILs were ana-
lyzed by Kaplan-Meier curve and log-rank test. In all
cases, the pCR group showed a significant prolongation
of DFS compared to the non-PCR group (log rank p <
0.001) (Supplementaty Fig. 2). When divided into sub-
types, this difference was found in HER2BC (log rank
p = 0.013) and TNBC (log rank p = 0.001), but not in
HRBC (log rank p = 0.243). In all cases, OS and DSS
were significantly longer in the pCR group than in the
non-PCR group (OS; log rank p = 0.008) (Supplemen-
taty Fig. 3) (DSS; log rank p = 0.014) (Supplementaty
Fig. 4). In the prognostic analysis of OS and DSS by
subgroup, the significant difference was observed only in

TNBC (both OS and DSS; p = 0.001) (Supplementaty
Figs. 3, 4).
Next, prognosis analysis by Tils was performed. Re-

garding DFS, the results were similar to those examined
by pCR, that is, the high TILs group showed a significant
prolongation compared to the low TILs group in all case
(log rank p = 0.002), HER2BC (log rank p = 0.012) and
TNBC (log rank p = 0.007) (Supplementaty Fig. 5). Re-
garding OS and DSS, no significant difference was ob-
served in all cases (OS; log rank p = 0.194)
(Supplementaty Fig. 6) (DSS; log rank p = 0.244) (Sup-
plementaty Fig. 7). However, when examined by sub-
type, TNBC showed a significant prolongation of OS
and DSS in the high TILs group compared to the low
TILs group (both OS and DSS; p = 0.028) (Supplemen-
taty Fig. 6, 7).

Impact of BMI on prognosis
The DFS of all patients with breast cancer was analyzed
with respect to their BMIs, but no significant difference

Table 3 Difference in clinicopathological features due to body mass index categorized in TNBC

hba Body mass index (kg/m2) p
value

Body mass index (kg/m2 p
value

Body mass index (kg/m2) p
value≤ 18.5

(n = 17)
> 18.5
(n = 109)

≤ 25
(n = 98)

> 25
(n = 28)

≤ 30
(n = 123)

> 30
(n = 3)

Age (years old) 0.258

≤ 60 11 (64.7%) 78 (71.6%) 67 (68.4%) 22 (78.6%) 86 (69.9%) 3 (100.0%)

> 60 6 (35.3%) 31 (28.4%) 0.564 31 (31.6%) 6 (21.4%) 0.296 37 (30.1%) 0 (0.0%)

Tumor size (mm) 0.433

≤ 20.0 4 (23.5%) 17 (15.6%) 18 (18.4%) 3 (10.7%) 20 (16.3%) 1 (33.3%)

> 20.0 13 (76.5%) 92 (84.4%) 0.414 80 (81.6%) 25 (89.3%) 0.338 103 (83.7%) 2 (66.7%)

Skin infiltration 0.519

Negative 13 (76.5%) 98 (89.9%) 88 (89.8%) 23 (82.1%) 108 (87.8%) 3 (100.0%)

Positive 4 (23.5%) 11 (10.1%) 0.112 10 (10.2%) 5 (17.9%) 0.270 15 (12.2%) 0 (0.0%)

Lymph node status 0.952

Negative 4 (23.5%) 36 (33.0%) 32 (32.7%) 8 (28.6%) 39 (31.7%) 1 (33.3%)

Positive 13 (76.5%) 73 (67.0%) 0.434 66 (67.3%) 20 (71.4%) 0.682 84 (68.3%) 2 (66.7%)

Ki67 0.695

≤ 14% 2 (11.8%) 28 (25.7%) 24 (24.5%) 6 (21.4%) 29 (23.6%) 1 (33.3%)

> 14% 15 (88.2%) 81 (74.3%) 0.210 74 (75.5%) 22 (78.6%) 0.737 94 (76.4%) 2 (66.7%)

Objective response rate 0.504

Non-Responders 6 (35.3%) 10 (9.2%) 14 (14.3%) 2 (7.1%) 16 (13.0%) 0 (0.0%)

Responders 11 (64.7%) 99 (90.8%) 0.003 84 (85.7%) 26 (92.9%) 0.317 107 (87.0%) 3 (100.0%)

Pathological response 0.777

Non-pCR 9 (52.9%) 65 (59.6%) 58 (59.2%) 16 (57.1%) 72 (58.5%) 2 (66.7%)

pCR 8 (47.1%) 44 (40.4%) 0.602 40 (40.8%) 12 (42.9%) 0.847 51 (41.5%) 1 (33.3%)

TILs 0.100

Low 12 (70.6%) 47 (43.1%) 50 (51.0%) 9 (32.1%) 59 (48.0%) 0 (73.7%)

High 5 (29.4%) 62 (56.9%) 0.035 48 (49.0%) 19 (67.9%) 0.077 64 (52.0%) 3 (100.0%)

TNBC triple negative breast cancer, pCR pathological complete response, TILs tumor-infiltrating lymphocytes
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was found (log rank p = 0.545) (Fig. 2). Similar results
were found when categorizing patients by their breast
cancer types. On univariate analysis of DFS, no signifi-
cant differences were found regardless of the BMI cut-
off value (UW vs. NW/OW/OB: p = 0.191, HR = 0.680;
UW/NW vs. OW/OB: p = 0.314, HR = 0.772; UW/NW/
OW vs. OB: p = 0.435, HR = 1.395) (Supplementary
Table 4).
No significant differences in OS were found between

patients with all types of cancer when categorized ac-
cording to BMI (log rank p = 0.345). However, on uni-
variate analysis, UW tended to be associated with a
shorter OS (UW vs. NW/OW/OB: p = 0.055, HR =
0.476) (Supplementary Table 5). Moreover, UW was
associated with a significantly poorer DSS than the other
BMI categories (UW vs. NW/OW/OB: p = 0.021, HR =
0.398) (Supplementary Table 6).
Furthermore, when examining patients with each

breast cancer type individually, the OS of those with
TNBC who had low BMIs was significantly poorer than
that of their high-BMI counterparts (log rank p = 0.031)
(Fig. 3). The cause of all deaths among patients with
TNBC was breast cancer; as such, DSS data were identi-
cal (log rank p = 0.031) (Fig. 4). Univariate analysis of
DFS for patients with TNBC showed that those with
UW tended to have poorer prognoses than did those of
other BMI categories (UW vs. NW/OW/OB: p = 0.056,
HR = 0.457). UW contributed to significantly shorter OS

and DSS than did the other categories (UW vs. NW/
OW/OB: p = 0.017, HR = 0.299) (Table 4). However,
BMI was not an independent prognostic factor on multi-
variate analysis; moreover, no correlation between BMI
and prognosis was found for patients with HER2BC spe-
cifically (Supplementary Table 7).

Discussion
As mentioned above, obesity portends a poor prognosis
for patients with breast cancer owing to the secretion of
various hormones and cytokines, thereby causing
chronic inflammatory conditions [5–10]. However,
obesity was found not to be a poor prognosis factor in
our study; in fact, OB patients with TNBC had improved
prognoses. One explanation is that this study was
performed at a single institution in East Asia; while the
BMI distribution of our subjects was not markedly
different from those in other studies from this part of
the continent, OB patients are fewer in proportion than
in Europe and the United States. Over 30% of patients
with breast cancer are classified as OB in Europe and
New Zealand [4, 11, 13, 35], compared to approximately
5% in East Asia [36–38]. One of the reasons that obesity
is associated with poor prognosis among patients with
breast cancer is suggested to be the lower rate of chemo-
therapy; for example, one study found that 20% of
patients with breast cancer who had BMIs greater than

Fig. 2 Kaplan-Meier stratification curve based on BMI categorized (UW; underweight, NW; normal weight, OW; overweight, OB; obese) for disease-
free survival (DFS). A all case, B hormone receptor positive breast cancer (HRBC), C HER2-enriched breast cancer (HER2BC), D triple-negative
breast cancer (TNBC)
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Fig. 3 Kaplan-Meier stratification curve based on BMI categorized (UW; underweight, NW; normal weight, OW; overweight, OB; obese) for overall
survival (OS). A all case, B hormone receptor positive breast cancer (HRBC), C HER2-enriched breast cancer (HER2BC), D triple-negative breast
cancer (TNBC)

Fig. 4 Kaplan-Meier stratification curve based on BMI categorized (UW; underweight, NW; normal weight, OW; overweight, OB; obese) for disease-
specific survival (DFS). A all case, B hormone receptor positive breast cancer (HRBC), C HER2-enriched breast cancer (HER2BC), D triple-negative
breast cancer (TNBC)
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Table 4 Univariate and multivariate analysis with respect to DFS, OS or DSS in TNBC

Disease-free survival

Univarite analysis Multivariate analysis

Parameters Hazard ratio 95% CI p value Hazard ratio 95% CI p value

Age at opetation (years old)≤ 60 vs > 60 1.002 0.491–1.925 0.994

Tumor size (mm)≤ 20.0 vs > 20.0 0.924 0.434–2.277 0.850

Skin infiltration Negative vs Positive 2.912 1.302–5.883 0.011 2.518 1.092–5.311 0.032

Lymph node status Negative vs Positive 1.466 0.741–3.160 0.281

Ki67≤ 14% vs > 14% 1.413 0.684–3.294 0.367

Objective response rate Non-Responders vs Responders 0.157 0.081–0.320 < 0.001 0.213 0.102–0.462 < 0.001

Pathological response Non-pCR vs pCR 0.286 0.122–0.590 < 0.001 0.427 0.176–0.929 0.031

TILs Low vs High 0.424 0.218–0.797 0.008 0.661 0.330–1.288 0.226

Body mass index (kg/m2)≤ 18.5 vs > 18.5 0.457 0.227–1.022 0.056 0.604 0.290–1.377 0.218

Body mass index (kg/m2)≤ 25.0 vs > 25.0 0.565 0.213–1.251 0.170

Body mass index (kg/m2)≤ 30.0 vs > 30.0 0.775 0.044–3.577 0.794

Overall survival

Univarite analysis Multivariate analysis

Parameters Hazard ratio 95% CI p value Hazard ratio 95% CI p value

Age at opetation (years old)≤ 60 vs > 60 0.722 0.236–1.844 0.514

Tumor size (mm)≤ 20.0 vs > 20.0 0.836 0.309–2.907 0.752

Skin infiltration Negative vs Positive 4.423 1.675–10.643 0.004 3.957 1.395–10.667 0.011

Lymph node status Negative vs Positive 2.741 0.927–11.706 0.071 2.794 0.908–12.208 0.076

Ki67≤ 14% vs > 14% 2.090 0.707–8.928 0.199

Objective response rate Non-Responders vs Responders 0.088 0.036–0.213 < 0.001 0.104 0.037–0.294 < 0.001

Pathological response Non-pCR vs pCR 0.129 0.020–0.446 < 0.001 0.246 0.038–0.913 0.035

TILs Low vs High 0.376 0.142–0.905 0.028 0.813 0.284–2.201 0.685

Body mass index (kg/m2)≤ 18.5 vs > 18.5 0.299 0.124–0.788 0.017 0.645 0.248–1.832 0.393

Body mass index (kg/m2)≤ 25.0 vs > 25.0 1.035 0.338–2.643 0.947

Body mass index (kg/m2)≤ 30.0 vs > 30.0 – – 0.266

Disease specific survival

Univarite analysis Multivariate analysis

Parameters Hazard ratio 95% CI p value Hazard ratio 95% CI p value

Age at opetation (years old)≤ 60 vs > 60 0.722 0.236–1.844 0.514

Tumor size (mm)≤ 20.0 vs > 20.0 0.836 0.309–2.907 0.752

Skin infiltration Negative vs Positive 4.423 1.675–10.643 0.004 3.957 1.395–10.667 0.011

Lymph node status Negative vs Positive 2.741 0.927–11.706 0.071 2.794 0.908–12.208 0.076

Ki67≤ 14% vs > 14% 2.090 0.707–8.928 0.199

Objective response rate Non-Responders vs Responders 0.088 0.036–0.213 < 0.001 0.104 0.037–0.294 < 0.001

Pathological response Non-pCR vs pCR 0.129 0.020–0.446 < 0.001 0.246 0.038–0.913 0.035

TILs Low vs High 0.376 0.142–0.905 0.028 0.813 0.284–2.201 0.685

Body mass index (kg/m2)≤ 18.5 vs > 18.5 0.299 0.124–0.788 0.017 0.645 0.248–1.832 0.393

Body mass index (kg/m2)≤ 25.0 vs > 25.0 1.035 0.338–2.643 0.947

Body mass index (kg/m2)≤ 30.0 vs > 30.0 – – 0.266

DFS disease-free survival, OS overall survival, DSS disease specific survival, TNBC triple negative breast cancer, CI confidence intervals, pCR pathological complete
response, TILs tumor-infiltrating lymphocytes
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30 kg/m2 received reduced doses of chemotherapy [39].
It was also reported that OB patients with breast cancer
have improved pCR rates and more favorable
progression-free survival when they receive full (un-
capped) doses of neoadjuvant chemotherapy [40]. An-
other study found that obesity was associated with a
better prognosis among patients with hormone receptor-
negative breast cancer but with a worse prognosis
among those with HRBC [41]. These data support our
own findings.
Conversely, being UW was associated with a poor

prognosis among patients with TNBC. A number of
studies from Europe and the United States investigated
the relationship between UW and the prognosis of pa-
tients with breast cancer, although UW and NW were
commonly considered a single group because of the rela-
tively scarcity of the former [12–14]. The proportions of
subjects with breast cancer in those geographic areas
who were UW were 1–2% [11, 35]. However, UW pa-
tients with breast cancer are frequently found in Asia,
and their clinicopathological features have been explored
[37, 42–44]. These studies did not confirm the existence
of associations between UW and prognosis owing to
some inconsistencies between them. Depending on the
study, UW patients were found to be younger [37, 43],
have smaller tumors [37, 42, 43], rarely have lymph node
metastases [37, 42], and have lower histologic grades
[37]; one study showed them to have more frequent
HER2 positivity [44], another found them to have more
frequent hormone receptor positivity [37], and two
others found them to be more frequently hormone
receptor-negative [42, 43]. Regarding prognosis, a num-
ber of studies, including one pooled analysis, demon-
strated poor survival outcomes not only in OB patients
with breast cancer but also in UW patients [11, 37–39,
43–50]. However, there were difference in each subtype;
some studies found that UW patients with HRBC had
poorer prognoses [47–49] and that those with HER2BC
or TNBC did not [47, 49]. One study found that UW pa-
tients with HER2BC had poor prognoses [37]. In con-
trast, our study found that UW was associated with a
poor prognosis only in patients with TNBC.
The cause of poor prognosis among UW patients with

breast cancer has been speculated on for some time. For
example, one group found that UW is associated with a
higher frequency of tumor progression [38]; however,
such progression was not marked in other studies (in-
cluding ours). Another study found that chemotherapy
was frequently incomplete in UW patients [41], but our
data suggested that this did not cause poorer prognosis
because there were only a few patients who were unable
to complete chemotherapy in our study. Some investiga-
tors cited the more aggressive breast cancer characteris-
tics among younger patients, who comprised a large

proportion of UW subjects, as a reason for poor progno-
sis [37, 43, 46, 47]; however, this was also not supported
by our data. Others posited that the immune system is
dysfunctional in UW individuals owing to chronic mal-
nutrition and micronutrient deficiency [43, 51, 52]. Add-
itionally, the effects of inflammatory reactions
accompanied by cytokine expression and systemic im-
mune reactions were considered [37, 48]; however, such
studies did not identify the causal relationship between
poor prognoses of patients with breast cancer and UW.
Our study was able to demonstrate that the tumor
microenvironment in UW patients may be more tumor-
permissive owing to the low TIL density.
There are still few reports examining the correlation

between BMI and TILs. In a report examining only
TNBC, no significant correlation was found between
BMI and TILs, but it was found that the prognostic ef-
fect for higher TILs weakened in obese patients [53].
One previous report reported that CD3 + lymphocytes
were significantly reduced in obese breast cancer pa-
tients, affecting the therapeutic effect of immunotherapy
[54]. The report further shows that obesity reduces cyto-
toxic T lymphocytes and increases macrophages and
PD-1-positive lymphocytes that promote tumor growth
with in vivo studies in mice. Other studies also reported
that obesity caused changes in tumor-related macro-
phages, creating a tumor microenvironment in which tu-
mors tend to grow [55, 56]. In other words, obesity may
be more influenced by changes in the proportion of sub-
types than changes in the density of TILs. In this study,
TILs were examined using HE-stained specimens. As
previously reported, it is judged that a subset analysis of
TILs by immunohistochemical staining is also necessary.
Beyond that, it may be necessary to analyze gene expres-
sion in the cancer itself and the cancerous stromal part.
Elucidation of these is our task. However, in this study,
not only TNBC but also HRBC and HER2BC are men-
tioned, and the therapeutic effect of the same regimen is
examined, so it is judged to be valuable.
The largest limitation in our study was the small num-

ber of OB and UW patients with breast cancer. Post-
diagnosis weight gain is also known to increase the risk
of breast cancer recurrence [1, 57, 58], but we did not
examine changes in body weight over time. Additionally,
there may have been some BMI-associated confounding
factors such as age, given that the frequency of UW pa-
tients with breast cancer was high among younger sub-
jects [37, 43]. It has been reported that TILs are lower
among the elderly than among younger individuals [59];
therefore, the composition of the immune microenviron-
ment may change with age. No correlation was found
between BMI and age in this study, although this should
be considered with caution. Comorbidities, smoking, al-
cohol, and physical activity can also influence BMI, but
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these factors were not investigated in our study. How-
ever, in recent years, immunotherapy has been clinically
used for various carcinomas. Among them, there are
some reports that the therapeutic effect is high in obese
patients [60–62]. It is also reported that the relationship
between BMI and therapeutic effect is contradictory be-
tween cell-mediated antineoplastic agents and immuno-
therapy [61]. As a consideration of the cause, there is a
report that considers the exhaustion of immunity associ-
ated with chronic inflammation due to obesity [60].
There is also a report that the expression of PD-1 of
TILs is increased by increasing BMI [54], and the in-
volvement of clinically used immunotherapy is deeply
suspected.

Conclusion
Our data did not support the hypothesis that obesity af-
fects the tumor immune microenvironment; however,
we showed that being UW does affect the tumor im-
mune microenvironment.
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