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Abstract

S-glutathionylation, the reversible formation of mixed disulfides between glutathione(GSH) and cysteine residues in
proteins, is a specific form of post-translational modification that plays important roles in various biological processes,
including signal transduction, redox homeostasis, and metabolism inside cells. Experimentally identifying S-glutathionyla-
tion sites is labor-intensive and time consuming, whereas bioinformatics methods provide an alternative way to this
problem by predicting S-glutathionylation sites in silico. The bioinformatics approaches give not only candidate sites for
further experimental verification but also bio-chemical insights into the mechanism of S-glutathionylation. In this paper, we
firstly collect experimentally determined S-glutathionylated proteins and their corresponding modification sites from the
literature, and then propose a new method for predicting S-glutathionylation sites by employing machine learning methods
based on protein sequence data. Promising results are obtained by our method with an AUC (area under ROC curve) score
of 0.879 in 5-fold cross-validation, which demonstrates the predictive power of our proposed method. The datasets used in
this work are available at http://csb.shu.edu.cn/SGDB.

Citation: Sun C, Shi Z-Z, Zhou X, Chen L, Zhao X-M (2013) Prediction of S-Glutathionylation Sites Based on Protein Sequences. PLoS ONE 8(2): e55512.
doi:10.1371/journal.pone.0055512

Editor: Sue Cotterill, St. Georges University of London, United Kingdom

Received December 26, 2011; Accepted December 30, 2012; Published February 13, 2013

Copyright: � 2013 Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Dr. XMZ was partly supported by National Natural Science Foundation of China (91130032, 61103075) and Innovation Program of Shanghai Municipal
Education Commission (13ZZ072). Dr. LC was supported by National Natural Science Foundation of China (91029301, 61134013), and JSPS/CSTP through the
FIRST Program, Shanghai Pujiang Program, Chief Scientist Program of SIBS from CAS (2009CSP002). CS was supported by Graduate Innovation Funding of
Shanghai University (Grant No. SHUCX102039). Drs. ZZS and XZ were partially funded by National Institutes of Health (R01 CA155069-01, and R01 LM010185-02).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: XZhou@tmhs.org (XZ); lnchen@sibs.ac.cn (LC); zhaoxingming@gmail.com (XMZ)

Introduction

S-Glutathionylation, the reversible formation of protein mixed

disulfides between cysteine residues and glutathione(GSH), is an

important form of posttranslational modification that occurs

during oxidative stress as well as under normal physiological

conditions [1–4]. When exposed to reactive oxygen/nitrogen

species (ROS/RNS), S-glutathionylation is induced along with

other forms of thiol oxidation (e.g., sulfenic, sulfinic, or sulfonic

acids). Since S-glutathionylation is a reversible modification, likely

catalyzed by glutaredoxins (Grx), it can serve to protect critical

protein thiols from irreversible oxidation and inactivation.

Operationalized proteins also serve as a storage form of GSH

under oxidative stress, where the oxidized glutathione (GSSG) is

otherwise exported from the cell. It has been recently hypothesized

that glutathionylation is a general mechanism for protein function

and cell signaling, similar to the protein phosphorylation system

mediated by kinases and phosphatases [1–4]. S-glutathionylation

has been shown to cause either inhibition or activation of a

number of proteins. Generally, these proteins fall into the

following functional categories: metabolism and energy, cell

signaling (particularly kinases and phosphatases), calcium homeo-

stasis, redox homeostasis, protein folding and degradation, and the

cytoskeleton (including actin, tubulin, and vimentin) [2,4].

Recently, a growing body of evidence has linked protein S-

glutathionylation with pathogenesis of many human diseases

including metabolic disorders, cardiovascular diseases, lung

diseases, cancer, and neurodegenerative diseases [1–4].

Recently, various experimental methods were used to identify S-

glutathionylation proteins, including spectrophotometric assays,

high performance liquid chromatography assays, liquid chroma-

tography-mass spectrometry, etc [5,6]. Until the writing of this

paper, more than 100 S-glutathionylation proteins have been

identified, but only a minority of them have their S-glutathionyla-

tion sites identified. Experimentally identifying S-glutathionylation

sites is a labor-intensive and time consuming procedure. Despite

some bioinformatics approaches have been proposed to predict

catalytic redox-active cysteine [7,8] and the disulfide bonding state

of cysteine [9–11], they are not able to predict S-glutathionylation

sites due to the scarcity of S-glutathionylation sites and protein

structure data.

In this paper, we present a bioinformatics framework to predict

S-glutathionylation sites by employing machine learning methods

based on protein sequences. Despite the incompleteness of protein

structures, it is found that the flanking residues of a functional site

in sequence can give the context information of this residue in

protein structure and are widely used to predict post-translational

sites [12,13]. Therefore, in this paper, we aim to explore different
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sequence descriptors and develop a framework by employing

machine learning methods to predict S-glutathionylation sites

based on protein sequences. Firstly, all the S-glutathionylation

proteins and their corresponding modification sites are manually

collected from the literature. Secondly, a series of classifiers are

built to predict S-glutathionylation sites based on support vector

machines (SVMs). Especially, different features are extracted from

protein sequences for prediction of S-glutathionylation sites.

Results obtained in 5-fold cross-validation demonstrate the

effectiveness of our method with an AUC score of 0.879. To our

best knowledge, this is the first work that use bioinformatics

methods to predict S-glutathionylation sites, which can provide

biologists putative S-glutathionylation sites for future experimental

verification.

Results

In this work, each cysteine residue and its flanking sequence was

represented as a feature vector (see Methods). In this way, the

supervised classifier can be constructed to predict S-glutathionyla-

tion sites. To validate our proposed method, 5-fold cross-

validation was utilized for our collected S-glutathionylation site

dataset with following indexes.

Spe~TN=(TNzFP) ð1Þ

Pre~TP=(TPzFP) ð2Þ

Sen~TP=(TPzFN) ð3Þ

F1~(2|Sen|Pre)=(SenzPre) ð4Þ

ACC~(TPzTN)=(TPzTNzFPzFN) ð5Þ

MCC~(TP|TN{FP|FN)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFN)(TPzFP)(TNzFP)(TNzFN)

p ð6Þ

where TP denotes number of true positives, TN denotes number

of true negatives, FP denotes number of false positives, and FN

denotes number of false negatives.

With the feature vectors available, for each feature extraction

method, a classifier was constructed. Table 1 shows the results

obtained by the classifiers trained with eight different sequence

descriptors, where a simple feature selection approach based on

Student’s t-test was employed to pick optimal features (see

Methods). From the results, we can see that multiple amino acid

composition generally perform better than single amino acid

composition. The best results were obtained by amino acid triplet

(ThrAA) compositions, which is not surprising considering that the

amino acid triplet can better describe the spatial neighborhood

information so that it can provide structural and functional

information of cysteine residue and provide clues to S-glutathio-

nylation. In particular, the results obtained by reduced amino acid

triplet prove that the amino acid triplet provides spatial context

information of cysteine without considering the specific direction

of amino acid triplet. The good performance of binary amino acid

profile may attribute to its position specific information on amino

acids, while other descriptors fail to describe the neighborhood

information of cysteine and therefore lead to poor results.

Furthermore, Figure 1 shows the ROC curves for different

methods, which confirm again that amino acid triplet performs

best. Hereafter, the method based on reduced amino acid triplet

composition was used to predict new S-glutathionylation sites.

In literature, different window sizes has been used to predict

post-translational modification sites. For example, the upstream/

downstream seven residues of phosphorylation site were consid-

ered (i.e. the window size is15) in GPS [14], while the window size

was set to 13 in Musite [15] that is also a tool for predicting

phosphorylation sites. Therefore, we investigated the effects of

different window sizes on the performance of classifiers. Here, we

considered window sizes ranging from 9 to 21. Figure 2

summarizes the results obtained with different window sizes, from

which we can see that window size of 15 performs best according

to 4 different indicators, i.e. AUC, F1, MCC and ACC. The

detailed results can be found in Table S1. Therefore, window size

of 15 was used as the optimal window size in this paper.

In constructing SVM classifier, there are generally three types of

kernels that can be used, including linear kernel, polynomial kernel

and radial basis function kernel (i.e. Gaussian kernel). In this work,

we compared the performances of different kernels. Table 2 shows

the results obtained by SVM classifiers with distinct kernels, where

Gaussian kernel was found to perform best. Moreover, we

Table 1. 5-fold cross-validation results by SVM classifiers using different amino acid sequence encoding schemes.

Schemes D AUC Spe Pre Sen F1 MCC ACC

10 physicochemical properties 10(3) 0.548 0.994 0.888 0.102 0.182 0.237 0.706

Reduced amino acid composition 10(6) 0.522 0.985 0.651 0.058 0.107 0.121 0.686

Bi-profile Bayes 30(18) 0.555 0.781 0.419 0.333 0.371 0.122 0.636

Binary amino acid profile 300(12) 0.668 0.867 0.626 0.469 0.536 0.366 0.738

amino acid composition 20(3) 0.554 0.892 0.487 0.217 0.300 0.144 0.674

pair amino acid composition 400(21) 0.721 0.890 0.632 0.397 0.488 0.334 0.731

amino acid triple composition 8000(76) 0.851 0.993 0.979 0.707 0.821 0.774 0.901

Reduced amino acid triple
composition

4200(71) 0.879 0.993 0.981 0.773 0.865 0.823 0.922

D: dimensionality; AUC: area under ROC curve; Spe: specificity; Pre: precision; Sen: sensitivity; F1: F-measure; MCC: Matthews correlation coefficient; ACC: accuracy; the
numbers in parenthesis denote the dimensionality of features selected by t-test.
doi:10.1371/journal.pone.0055512.t001

Prediction of S-glutathionylation
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compared SVM classifier against two other popular classifiers: k-

nearest neighbor and random forest classifiers, where the results

were obtained based on the top ranked features for each classifier.

In k-nearest neighbor classifier, the optimized value of k was set to

1. The results shown in Table 3 demonstrate that SVM classifier

outperforms the two other ones. Therefore, SVM classifier with

Gaussian kernel was adopted for future predictions in this paper.

In literature, it is found that some post-translational modifica-

tion sites are conserved and contained in motifs that are found in

different proteins. Therefore, in this work, we investigated whether

there exist any characteristic S-glutathionylation motifs, which can

be used to predict new S-glutathionylation proteins and provide

insights into the functions related to S-glutathionylation sites. For

this, we firstly employed PROSITE [16] to scan the flanking

sequences of S-glutathionylation sites (positive samples) to search

for conserved sequence motifs. Then, we obtained the function

annotations of these motifs from InterPro database [17] if

available. As shown in Table 4, we found four motifs from five

positive samples, four of which do not appear in negative samples.

According to the function annotations, motif Phosphagen kinase

active site signature (PS00112) is possibly related to S-glutathio-

nylation due to the close functional connections between

phosphorylation and S-glutathionylation [4]. Motif Glyceralde-

hyde 3-phosphate dehydrogenase active site (PS00071) is also

likely to be related to S-glutathionylation because of the key role of

S-glutathionylation in cellular oxidative stress regulation. These

results indicate that PS00112 and PS00071 are probably catalytic

motifs of GSTs, which may help to understand the mechanism of

S-glutathionylation. With more S-glutathionylation proteins com-

ing in the future, we believe more such conserved S-glutathionyla-

tion motifs will be found.

Discussion

S-glutathionylation is a reversible post-translational modifica-

tion that is important to many biological processes. Identification

of protein S-glutathionylation sites is essential to the understanding

of the functions of proteins. In this work, a framework by

employing machine learning approach was developed to predict S-

glutathionylation sites. With only protein sequence information,

our method can obtain promising results with an AUC score of

0.879. Our method can provide biologists candidate S-glutathio-

nylation sites for future experimental verification.

In the literature, structural information is also found important

to S-glutathionylation. For example, low thiol pKa and big surface

exposure of cysteine residue were considered to contribute to S-

glutathionylation. The correlation between accessible surface area

(ASA) of cysteine residue and susceptibility of S-glutathionylation

was derived from the hypothesis that electrostatic interactions were

involved in S-glutathionylation [18]. However, there are also

exceptions. For examples, Ghezzi [19] analyzed the S-glutathio-

nylation susceptibility of four Cys residues in cyclophilin A (Cys52,

Cys62, Cys115, Cys161) and showed that Cys62 which exposes a

smaller surface of its side chains than Cys161 is the target of S-

glutathionylation while Cys161 is not. Cysteines with thiolate

anions at a lowering of pKa value are inclined to have electrostatic

interactions with neighboring positively charged amino acid

Figure 1. The ROC curves for different classifiers based on different feature extraction approaches. ThrAA: triplet amino acid
composition; Phyche:10 physicochemical properties; RedAA: reduced amino acid composition; Bbayes: Bi-profile Bayes; BinAA: binary encoding
amino acid; SinAA: amino acid composition; PaiAA: pair amino acid composition.
doi:10.1371/journal.pone.0055512.g001

Prediction of S-glutathionylation
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residues. Cytoplasmic proteins that contain this type of cysteine

are redox-sensitive and can form a mixed disulfide with GSH.

Therefore, a cationic environment renders the protein thiol group

highly reactive and particularly susceptible to S-glutathionylation

[1]. This concept was supported by many examples except ones

such as Cys374 of Actin.

In this work, we also investigated the ASA and pKa value of S-

glutathionylation cysteine and non-S-glutathionylation cysteine.

We collected the structure information for 39 S-glutathionylation

proteins by querying the PDB database with both their names and

primary sequences. As a result, 36 proteins were retrieved with

their 3D structures from PDB database and were kept for further

analysis. Subsequently, PROPKA 2.0 [20] and Naccess [21] were

respectively used to predict pKa and ASA for these proteins.

There are in total 134 samples for the 36 proteins, where 47

samples are positives and 87 are negatives.

It is found that cysteine thiols with a bigger ASA are more likely

to form a mixed disulfide with GSH. In contrast, if cysteine thiols

are buried in protein, the formation of disulfide bond will be

difficult. Figure 3 shows the distribution of ASA values of S-

glutathionylation cysteine and non-S-glutathionylation cysteine,

where the ASA of S-glutathionylation cysteine tends to be larger

than that of negative samples. In Figure 3a, the biggest difference

was obtained between positive samples and negative samples when

ASA = 3.5 A2, where 69.1% of negative samples have a ASA

ƒ3.5 A2 while 41.7% of positive samples with ASA ƒ3.5 A2.

Figure 3b is a box plot of thiol ASA values, in which positive

samples have a significant larger ASA than negative samples with

p-value of 0.0086 based on one-way analysis of variance.

Figure 4 shows the distribution of pKa values of S-glutathio-

nylation cysteines and non-S-glutathionylation cysteines. In our

dataset, 15 of 47 (31.9%) positive samples have a pKa value

§9.00, while 54 of 87 (62.1%) negative samples have a pKa value

§9.00, which is manifested in Figure 4a. The box plot of thiol

pKa values in Figure 4b also demonstrates that the pKa median of

positive samples is significantly smaller than that of negative ones.

From the results shown in Figure 4, we can see that S-

glutathionylation cysteine tend to have lower pKa value compared

to non-S-glutathionylation cysteine with a significant p-value of

0.0214 based on one-way analysis of variance.

The above results imply that structural information can indeed

help to predict S-glutathionylation sites. With more structural data

available in the future, our method can be easily extended to

include the structural information to improve prediction accuracy.

Materials and Methods

Datasets
S-glutathionylation proteins were collected by employing text

mining techniques on published papers retrieved from PubMed.

Furthermore, S-glutathionylation sites were manually identified

and used as positive samples. Cysteines that were not validated to

Figure 2. The effects of different window sizes on SVM performance.
doi:10.1371/journal.pone.0055512.g002

Table 2. Comparison of the performance of three kernel
functions of SVM.

Schemes AUC Spe Pre Sen F1 MCC ACC

linear kernel
function

0.812 0.999 0.994 0.448 0.618 0.593 0.821

polynomial
kernel
function

0.819 1.000 1.000 0.307 0.470 0.481 0.777

radial
basis kernel
function

0.879 0.993 0.981 0.773 0.865 0.823 0.922

radial basis kernel function: Gaussian kernel; AUC: area under ROC curve; Spe:
specificity; Pre: precision; Sen: sensitivity; F1: F-measure; MCC: Matthews
correlation coefficient; ACC: accuracy.
doi:10.1371/journal.pone.0055512.t002

Table 3. Comparison of the performance of three classifiers.

Schemes AUC Spe Pre Sen F1 MCC ACC

k-nearest
neighbor

0.518 0.071 0.331 0.965 0.493 0.073 0.360

Random forest 0.608 0.996 0.964 0.220 0.358 0.387 0.746

Support vector
machine

0.879 0.993 0.981 0.773 0.865 0.823 0.922

AUC: area under ROC curve; Spe: specificity; Pre: precision; Sen: sensitivity; F1: F-
measure; MCC: Matthews correlation coefficient; ACC: accuracy.
doi:10.1371/journal.pone.0055512.t003

Prediction of S-glutathionylation
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undergo S-glutathionylation in experiment were excluded from the

database. To construct a supervised classifier for prediction of new

S-glutathionylation sites, we randomly selected some cysteines

except for known S-glutathionylation sites from the S-glutathiony-

lation protein as negative samples, and the number of negative

samples in one S-glutathionylation protein is at most three times of

that of positive samples in the same protein so that the balance

between positive and negative samples is ensured.

In total, the data set contains 39 S-glutathionylation proteins,

where 75 cysteines undergo reversible S-glutathionylation and 158

cysteines that are not susceptible to S-glutathionylation. Since the

S-glutathionylation of cysteine is determined by its position in the

protein spatial structure, the flanking sequences of cysteine were

taken into account and regarded as the spatial neighborhood of

cysteine due to the incompleteness of protein structure data.

Finally, the data set consists of 75 positive samples and 158

negative samples, where some cysteines in the negative samples

were discarded due to their terminal positions in the protein

sequence.

Feature extraction based on protein sequences
To be used as input for a classifier, each cysteine should be

represented as a feature vector. In this work, different feature

extraction methods were employed to describe a peptide sequence.

Figure 5 shows the flowchart of different feature extraction

methods on protein sequences. The details are addressed in

following parts.

Feature extraction based on physicochemical properties

of amino acids. The first type of sequence descriptors

considered in feature extraction is the physicochemical features

of amino acids, which were taken from the AAIndex database

[22]. In this work, 10 widely used physicochemical features were

used to encode each sample including number of atoms, number

of electrostatic charge, number of potential hydrogen bonds,

hydrophobicity, hydrophilicity, propensity, isoelectric point, mass,

expected number of contacts within 14 Å sphere, and electron-ion

interaction potential. It was found in previous works [23–25] that

these ten properties correlate well with the interface properties of a

protein, which is important for S-glutathionylation. For each

sample, we summed up the values of all amino acids within the

Table 4. Motif analysis results of flanking sequence of S-glutathionylation sites.

Protein name Sequence Prosite (ID &Pattern) GO function

Creatine kinase HLGYVLTCPSNLGTG PS00112(Phosphagen kinase active site
signature): C-P-x(0,1)-[ST]-N-[ILV]-G-T

GO:0016301 kinase activity
GO:0016772 transferase activity,
transferring phosphorus-
containing groups

GAPDH KIVSNASCTTNCLAP PS00071(Glyceraldehyde 3-phosphate dehydrogenase
active site): [ASV]-S-C-[NT]-T-{S}-x-[LIM]

GO:0016620 oxidoreductase
activity, acting on the aldehyde
or oxo group of donors, NAD or
NADP as acceptor

NFkB, p50
and p65

GMRFRYKCEGRSAGS GFRFRYVCEGPSHGG PS01204(NFkB/Rel/dorsal domain
signature): F-R-Y-x-C-E-G

GO:0003700 sequence-specific
DNA binding transcription factor
activity

Papain NQGSCGSCWAFSAVV PS00139(Eukaryotic thiol (cysteine) proteases cysteine
active site): Q-{V}-x-{DE}-[GE]-{F}-C-[YW]-
{DN}-x-[STAGC]-[STAGCV]

GO:0004197 cysteine-type
endopeptidase activity

Pattern: Each residue must be separated by 2 (minus). x represents any amino acid. [DE] means either D or E. {FWY} means any amino acid except for F, W and Y.
A(0,2) means that A appears 0 to 2 times consecutively.
doi:10.1371/journal.pone.0055512.t004

Figure 3. Distributions of thiol ASA values of S-glutathionylation cysteine and non-S-glutathionylation cysteine. (a) The points on the
curve mean the percentage of the samples that have an ASA ƒ the corresponding ASA value. (b) Box plots of thiol ASA values.
doi:10.1371/journal.pone.0055512.g003

Prediction of S-glutathionylation
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sample and got a 10-dimensional vector. Table S2 describes the

values of the ten physicochemical properties for each amino acid.

Feature extraction based on sequence profiles. We next

consider two sequence profiles Bi-profile Bayes and binary profile.

The Bi-profile Bayes method was firstly applied to predict

methylation sites and provided significant improvement compared

to other methods [12]. In brief, a posterior probability matrix is

firstly generated from training datasets according to Bayes’ rule

and each peptide sequence is then represented by a feature vector

based on the posterior probability matrix. In our work, a 20|2m
posterior probability matrix P was generated, where 20 denotes

the 20 amino acids, m denotes the length of the peptide

sequence(15 here), and each element Pij in the matrix denotes

the occurrence frequency of the amino acid i at position j in

positive datasets (jƒm) or the occurrence frequency of amino acid

i at position j{m in negative datasets (jwm). According to this

posterior probability matrix P, each sample was converted into a

30-dimensional vector.

Binary profile is a simple encoding method that utilizes the

position-specific information of each amino acid, and has been

successfully used to predict the caspase cleavage sites [26]. In this

method, each amino acid is encoded into a 20-dimensional vector,

e.g. A(10000000000000000000), C(01000000000000000000),

D(00100000000000000000), ..., Y(00000000000000000001). With

this encoding, we can represent each sample as a 300-dimensional

feature vector.

Feature extraction based on amino acid

composition. Since all structural and functional information

are encoded by amino acids in protein sequences, three different

feature extraction approaches were used to describe each sample

based on their amino acid compositions, including single amino

acid composition, pairwise amino acid composition and triplet-

wise amino acid composition.

For the single amino acid composition, the occurrence

frequency of each amino acid in the sample was used to encode

a sample. For example, a sample will be represented as a 20-

dimensional vector if we consider the 20 amino acids in nature. In

this work, except for the natural amino acids, the 20 amino acids

can be grouped into different clusters based on distinct properties,

thereby leading to reduced amino acids. Here, the 3 reduced

amino acids and 7 reduced amino acids were used [27], and the

reduced amino acids can be found in Table 5. For 3 reduced

Figure 4. Distributions of thiol pKa values of S-glutathionylation cysteine and non-S-glutathionylation cysteine. (a) Thiol pKa value
distributions. (b) Box plots of thiol pKa values.
doi:10.1371/journal.pone.0055512.g004

Figure 5. Graphical overview of the method for prediction of protein S-glutathionylation sites.
doi:10.1371/journal.pone.0055512.g005

Prediction of S-glutathionylation
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amino acids, the 20 amino acids were grouped into three classes,

i.e. polar, neutral, and hydrophobic. For 7 reduced amino acids,

the 20 amino acids were grouped into seven classes, i.e. aliphatic,

acid, base, aromatic, amide, small hydroxyl, and sulfur-containing.

For pairwise amino acid composition, all possible combinations

of two amino acids were considered and the occurrence frequency

of each amino acid pair within the sample was used to describe the

samples. As a result, each sample can be represented as a 400-

dimensional feature vector. This encoding approach has been

widely used in literature [28].

For triplet-wise amino acid composition (ThrAA), all possible

combinations of three amino acids were considered and the

occurrence frequency of each amino acid triplet within the sample

was used to describe the sample. The amino acid triplets was

proved to be an effective descriptor of proteins for predicting

protein-protein interactions [29] and subcellular localization [30].

In this way, each sample can be described as a 8000-dimensional

feature vector. Furthermore, we consider a triplet and its reversed

version as the same. For example, ‘ABD’ and ‘DBA’ are treated as

the same. Consequently, each sample can be represented as a

4200-dimensional vector with reduced amino acid triplet compo-

sitions.

Model construction
As the values of 10 physicochemical properties are described in

different range, each feature value is normalized as following:

Vij~
Vij{minj[f1,:::,mgfVijg

maxj[f1,:::,mgfVijg{minj[f1,:::,mgfVijg
ð7Þ

where Vij is the value for feature j in vector i, and m is the number

of samples. Since each sample is described with thousands of

features, it leads to high computation cost and the noise in the data

generally degrades the performance of classifiers. Therefore, it is

necessary to reduce the dimensionality with feature selection and

remove noise from signals. To find out informative features, the

Student’s t-test was utilized to rank the features and the top ranked

features were used to construct a classifier. The classifiers built

here are support vector machines (SVMs), that was implemented

with LIBSVM [31], where the parameters were optimized with 5-

fold cross-validation.

Supporting Information

Table S1 The effects of different window sizes on SVM
performance.
(DOC)

Table S2 The values of the ten physicochemical prop-
erties for each amino acid. NA: Number of atoms; NE:

Number of electrostatic charge; NP: Number of potential

hydrogen bonds; HB: Hydrophobicity; HL: Hydrophilicity; PP:

Propensity; IP: Isoelectric points; MA: Mass; EN: Expected

number of contacts within 14 Å sphere; EI: Electron-ion

interaction potential.

(DOC)
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