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Advances in electron microscopy (EM) such as electron tomography and
focused ion-beam scanning electron microscopy provide unprecedented,
three-dimensional views of cardiac ultrastructures within sample volumes
ranging from hundreds of nanometres to hundreds of micrometres. The
datasets from these samples are typically large, with file sizes ranging
from gigabytes to terabytes and the number of image slices within the
three-dimensional stack in the hundreds. A significant bottleneck with
these large datasets is the time taken to extract and statistically analyse
three-dimensional changes in cardiac ultrastructures. This is because of the
inherently low contrast and the significant amount of structural detail that
is present in EM images. These datasets often require manual annotation,
which needs substantial person-hours and may result in only partial seg-
mentation that makes quantitative analysis of the three-dimensional
volumes infeasible. We present CardioVinci, a deep learning workflow to
automatically segment and statistically quantify the morphologies and
spatial assembly of mitochondria, myofibrils and Z-discs with minimal
manual annotation. The workflow encodes a probabilistic model of the
three-dimensional cardiomyocyte using a generative adversarial network.
This generative model can be used to create new models of cardiomyocyte
architecture that reflect variations in morphologies and cell architecture
found in EM datasets.

This article is part of the theme issue ‘The cardiomyocyte: new revel-
ations on the interplay between architecture and function in growth,
health, and disease’.

1. Introduction
Three-dimensional electron microscopy (EM) methods such as electron tom-
ography, focused ion-beam scanning electron microscopy (FIB-SEM) and
serial block-face SEM (SBF-SEM) have provided unprecedented three-
dimensional views of the cardiomyocyte. We now appreciate that mitochondria
form three-dimensional networks that maintain cardiac energy supply [1]. Elec-
tron tomography analysis of the cardiac dyad has revealed intricate details
about the three-dimensional spatial relationship between t-tubules and the sar-
coplasmic reticulum [2]. Two key bottlenecks in analysing three-dimensional
EM datasets are image segmentation and three-dimensional morphometric ana-
lyses of the segmented datasets. Three-dimensional EM techniques generate
data files of the order of several hundred gigabytes to terabytes. These files con-
tain hundreds of image slices that assemble into the three-dimensional volume
image stack. The inherent low contrast in EM images makes automated seg-
mentation extremely challenging. A major drawback of traditional image
processing methods [3,4] is that the raw images need to be pre-processed care-
fully to ensure the image processing algorithm can pick up key features of
interest. Such pre-processing algorithms could involve simple filtering
techniques to deal with the noise, geometric or intensity distribution
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transformations. Therefore, image segmentation is often con-
ducted manually, which needs substantial person-hours that
often result in only a fraction of the data available being
processed and analysed.

Segmenting three-dimensional EM stacks is an arduous
and tedious task since the texture and intensity variations
across all parts of the images are so similar [5]. Manual seg-
mentation is widely used for these datasets, and several
tools have been developed with such an approach in mind.
However, annotating EM stacks using these tools is time-con-
suming and laborious, particularly if the three-dimensional
volume comprises many image slices. A variety of machine
learning approaches have been proposed to address this pro-
blem, including ILASTIK [6], TRAKEM2 [7] and MICROSCOPY

IMAGE BROWSER [8]. Although such tools demonstrate accepta-
ble performances, these tools still depend on feature
extraction and feature selection and do not capture the opti-
mal features automatically. However, deep learning (DL)
automates feature extraction and selection, automatically
adapting the underlying parameters (features) to the data [9].

DL has shown unprecedented performance in a wide
range of data analysis tasks, including image analysis.
Neural networks represent parametric nonlinear models by
using nonlinear components of linear combinations of the
inputs. These differentiable nonlinear functions are called
activation functions which form the infrastructure for non-
linear optimization of such networks. Neural networks are
stacks of components called ‘hidden layers’ composed of
linear mappings of the inputs and nonlinear activation func-
tions. Stacking more hidden layers between the input and
output of the network will result in neural network architec-
tures called deep neural networks (DNNs) [10]. Such models
start from input data and progressively move towards
high-level features using nonlinear mappings. DNNs require
relatively large datasets as their topology gets much deeper;
hence, they facilitate learning very complex dependencies
and intricate structures in data [11].

DL has improved the efficiency of segmenting EM data by
minimizing the time required for segmenting such datasets.
DNNs are typically used for feature extraction or microscopy
image classification. A key advantage over traditional image
processing methods is that DNNs automatically extract high-
level features for accurate segmentation from the annotated
training data. This removes the need for manual fine-tuning
of parameters like threshold values that is typical of traditional
image processing methods. We have previously applied and
benchmarked several existing and customized DNNs to seg-
ment mitochondria in EM data [12,13]. We have also
previously used traditional image processing approaches to
segment mitochondria, as well as Z-discs, myofibrils, cell
nuclei. To date, besides the segmentation of mitochondria
with neural networks, there are no DL methods to segment
multiple structures from cardiac EM data [3,4,14]. In this
study, we present a U-net [15] framework to perform the seg-
mentation of mitochondria and myofibrils and Z-discs.

U-net [15] was proposed in 2015 for medical and biologi-
cal image segmentation. The U-net architecture uses two-
dimensional max-pooling layers to downsample the input
image data while capturing high-level features, which also
benefits computational demand. Moreover, two-dimensional
UpSampling layers are used to retrieve the original resolution
from high-level features. The network uses two symmetric
paths called contractive (encoder) and expansive (decoder)
paths to enhance capturing context and localization. In
addition to the above, each block in the encoder is connected
to the corresponding block in the decoder using skip connec-
tions (merging), which boosts the gradient flow in the
network during optimization while enhancing localization.
As shown in the electronic supplementary material, figure
S1, U-net comprises nine blocks in total. Four blocks for
each encoder and decoder, and one bottleneck (fifth block).
We have modified the topology of the bottleneck for the
original U-net by adapting a densely connected bottleneck.

Beyond segmentation, image quantification is an essential
task in structural biology investigations. The conventional
workflow to obtain statistical descriptors of cell compartments
is first to segment the images into categories of interest and
then use those masks or labels to generate the three-dimen-
sional structure of the cell or obtain three-dimensional shape
and geometrical statistics. This imposes many challenges and
costs, including collecting large data samples, annotating, seg-
menting, and quantifying all available samples. Generative
adversarial networks (GANs) are a class of DL models that
can learn complex latent features from a dataset in an unsuper-
vised manner. GANs enable us to learn the statistical
distributions from images, which removes the bottleneck of
manually quantifying image features after segmentation. Sev-
eral studies have used GANs to extract unsupervised feature
representations across different cell types [16–21]. These
studies have mainly been applied to two-dimensional
images or have only generated relatively low-resolution syn-
thetic images of the order of 256 × 256 pixels. In this study,
we present a novel GAN-based generative modelling approach
that allows us to map cardiac ultrastructural image data
directly into statistical distributions.

We have used a GAN called StyleGAN to create generative
models of cardiac ultrastructure. StyleGAN [22] was proposed
to enhance image synthesis and resolution with an unprece-
dented scale ranging from 256 × 256 to 1024 × 1024 pixels.
StyleGAN was motivated by style transfer literature where
injected noise to the network enables automatic, unsupervised
separation of high-level attributes from stochastic variation in
generated images. One of the novelties of StyleGAN, among
many others, is that latent code is not provided to the genera-
tor through an input layer. Instead, image synthesis is initiated
from a learned 4 × 512 × 512 constant tensor. This study pre-
sents a novel approach of using StyleGAN to generate a
two-dimensional probability distribution of cardiomyocyte
architecture found within the image slices of the three-dimen-
sional EM volume dataset. This two-dimensional probability
distribution can then be used to generate new two-dimen-
sional EM images that can be assembled into a three-
dimensional volume of GAN generated cardiomyocyte
images. We can use these GAN generated images to extract
statistical measures of morphology and spatial distribution
automatically. We used this approach to create new instances
of the three-dimensional architecture of four sarcomeres of a
healthy cardiomyocyte.

We have packaged our semantic segmentation U-net and
StyleGAN into CardioVinci, a workflow to segment and stat-
istically quantify three-dimensional morphology and
organization of mitochondria, myofibrils, and Z-discs.
Figure 1 presents the workflow in CardioVinci. To the best
of our knowledge, this is the first study to provide a genera-
tive model of the three-dimensional ultrastructure of a
cardiomyocyte.
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Figure 1. The CardioVinci pipeline for segmentation and generation of the three-dimensional subcellular architecture of cardiomyocytes from electron microscopy
data. First, semantic segmentation is used to segment target ultrastructures. Then StyleGAN is used to optimize the error between generator and discriminator. After
the images are generated using the trained StyleGAN, three-dimensional statistical representations of cardiomyocytes are reconstructed. Finally, three-dimensional
shape and geometric statistics are retrieved using the generated volume.
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2. Material and methods
(a) Workflow
We first provide an overview of the workflow for CardioVinci
in this section before giving methodological details. First, mito-
chondria, myofibrils and Z-discs are segmented using a
modified U-net (densely connected bottleneck as shown in
figure 1). After the semantic segmentation is performed, these
three ultrastructures are segmented with one network through
one-time training. Then, the segmented image slices are fed
into StyleGAN for the training of the GAN. As shown in
figure 1, StyleGAN starts learning very abstract latent space
projections. As our monitoring criterion is minimized (here
Fréchet inception distance, FID), the latent space projections
become more realistic and are more representative of the
latent distribution in the actual sample. Upon network conver-
gence, we sort the predicted image slices with the objective of
minimizing mutual Jaccard distance. These re-arranged GAN
generated image slices form a three-dimensional image stack
that can be used to quantify three-dimensional shape and geo-
metric statistics. For this study, we have used compactness,
flatness, sphericity, elongation and surface area to volume
ratio (SA : V) to quantify three-dimensional statistics.

(b) Data
We tested our algorithms and workflow on a publicly available
FIB-SEM cardiac dataset1 [1,12]. We also used CardioVinci on
an SBF-SEM dataset of a left ventricular cardiomyocyte extracted
from a type 1 diabetic rat tissue sample. Methods for preparing
this tissue sample have been described previously [23]. We
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extracted 30 random 512 × 512 pixel patches from each dataset
for training, testing and validation. We manually annotated
mitochondria, myofibrils and Z-discs on one slice (2922 × 1166
pixels) FIB-SEM dataset, and then we extracted 30 non-overlap-
ping patches. However, we limited annotations to mitochondria
and myofibrils on the SBF-SEM sample after manually annotat-
ing two random slices and extracting non-overlapping random
patches. We split the annotated and raw images randomly into
training, validation and testing by 20/30, 5/30 h and 5/30,
respectively. All the random data splits were performed using
K-fold cross-validation, and the inference performance is
reported based on the best-fold model.

(c) Training and testing
DNNs are prone to underfitting and overfitting. Such phenom-
ena are described through a vital performance measure called
‘bias-variance tradeoff’ [24]. Underfitting occurs when the
model fails to capture the underlying pattern owing to high
bias and low variance. However, overfitting occurs when the
model fits the noise while capturing the corresponding pattern
in the data. This results in high variance and low bias. A well-
optimized DL model is one that has a low bias and low variance
while fitting the training data. Each DNN requires three samples
of raw and annotated data for training, validation and testing.
We use training data to train the DNN, and intermittently, vali-
dation data are used during training to minimize overfitting.
To further ensure that the DL model has not been underfitted
or overfitted, a separate sample is used for testing the network
performance. As highlighted above, we have used approximately
70%, 15%, 15% of the data for training, validation and testing,
respectively.

This study implemented all the experiments using DL AMI
(Amazon Linux 2) version 46.0 using Amazon Web Services.
These experiments were performed on graphical processing
units (GPU) instances. We used ‘g4dn.12xlarge’ (4 GPUs of a
total of 64 GiB memory) and ‘g4dn.metal’ (8 GPUs of a total
of 128 GiB memory) for segmentation and training the
GAN, respectively. We used semantic segmentation to segment
mitochondria, myofibrils and Z-discs simultaneously.

(d) Semantic segmentation
We modified U-net [15] to segment these ultrastructures using a
SoftMax layer consisting of four channels. The SoftMax function
is the logistic function generalized to multiple dimensions,
enabling multi-class classification. It maps the logits into class
probabilities by normalizing the exponents of each logit. The
electronic supplementary material, figure S1 shows the architec-
ture of the network. The modified network comprises an input
layer of 512 × 512 and 64 feature channels for each layer in the
first block. We have used two-dimensional max-pooling with
the size and strides of 2 × 2 for blocks 2, 3 and 4 in the network,
followed by doubling the feature channels to maximize the local-
ization. Max-pooling layers are used to pass forward the
maximum value within a set of activations. They extract low-
level features, including edges and expand the network receptive
field at no computational cost [11]. We have mainly used rectified
linear units as the activation function across the network except
for bottleneck and output node. As shown, we have modified
the bottleneck by using densely connected convolutional layers,
where we have used trainable linear units (TLUs) [13] as the acti-
vation function. TLUs boost the convolutional layers’ learning
capacity and minimize the risk of vanishing gradients during
the optimization. We have used densely connected
convolutions owing to three reasons [25]: dense connections
enable the network to learn a wide range of features and boost
the learning capacity of the network by maximizing information
flow in the network; moreover, using the previously learned
feature maps avoids the risk of very large or near zero gradients,
which hinder network optimization [26]; and additionally, dense
connections boost gradients flow during the backpropagation.

Once we reach the bottleneck, we have extracted high-level
features for segmentation purposes; however, our target vari-
ables are also the same shape as the input. Hence, we used
two-dimensional upsampling layers and reduced the number
of feature channels by half for each of the layers in the consecu-
tive blocks of the network. Upsampling layers increase the
feature channels resolution, and convolutional layers maximize
the localization. As discussed earlier, we have used the merging
layers between the opposite blocks of the encoder and the deco-
der. Finally, the SoftMax layer is used as the output node with
four channels corresponding to mitochondria, myofibrils,
Z-discs and the background. It is defined as pn(x) ¼
ean(x)=

PN
n0¼1 e

an0 (x) where an(x) represents the activation in layer
n at the pixel x [ F with F , Z2 and N is the number of
classes. Details regarding the methods used for training, testing
and validation are presented in the electronic supplementary
material, text.
(e) Modified StyleGAN for generative modelling
GANs encode the probability distribution of the morphology
and spatial organization of image content that they are trained
on. CardioVinci uses a GAN to encode the statistical variation
in cardiomyocyte architecture observed in semantic segmenta-
tion of three-dimensional EM images. This encoded
probabilistic model of cardiomyocyte architecture can be used
to extract morphological metrics and spatial distributions of
mitochondria, myofibrils and Z-discs. The statistical model can
also be used to create instances of spatially detailed compu-
tational models of the cardiomyocytes that reflect the statistical
variation found in real data. We used StyleGAN [22] in this
study to extract two-dimensional probability distributions of
the organization and morphologies of mitochondria, myofibrils
and Z-discs from the semantic segmentation output. Despite its
two-dimensional architecture, we were able to map the corre-
lation in cell architecture found between slices in the image
stacks into the latent space after a few modifications to the
training workflow.

The electronic supplementary material, figure S2 represents
the architecture of the used StyleGAN. In a nutshell, StyleGAN
comprises a generator and a discriminator in its architecture.
As discussed earlier, StyleGAN is different because it uses a
two-stage latent modelling mechanism and adopts a new
approach to measuring the disentanglement of the latent space
(interpolations). Like many other GANs, StyleGAN uses a gen-
erator to render an output similar to unseen ground-truth data,
which in this case are semantically segmented SEM images of
cardiomyocytes. The generator starts updating its gradients
from a latent space tensor, which is initially random noise.
Then the outputs of the generator (fake samples) are passed to
the discriminator along with the real sample. Finally, based on
an objective function, the weights for both generator and discri-
minator are optimized until the generator starts producing fake
samples that the discriminator cannot differentiate between
fake and real samples.

The StyleGAN was first trained on semantic segmentation
outputs generated from the three-dimensional EM dataset.
Owing to the TFRecord formatting, we can store a set of features
along with the image itself in the TFRecord data. We used one
hot-encoded formatting to assign a label to two consecutive
image slices as part of building our TFRecord data for training
the StyleGAN using segmented image slices. Then we added
another input node to the StyleGAN as an embedding layer to
embed the correlation across different slices. We followed exactly
the same strategy to optimize StyleGAN as highlighted in [22],
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Figure 2. Results of the volume reconstructions from the GAN outputs. Red, blue and green represent the myofibrils, Z-discs and mitochondria, respectively. All the
volumes represent approximately four sarcomeres of the cardiomyocytes that have been generated using our trained GAN. The reconstructed volumes are limited to
10 µm × 10 µm × 10 µm (top left) and 10 µm × 10 µm × 2.5 µm.
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except we did not employ shuffling during the training. The
network convergence was based on FID.

The trained GAN was then used to generate new two-
dimensional images that sampled the encoded probability distri-
bution within the GAN. We then ordered the resulting images
into a three-dimensional volume image stack that minimized
the Jaccard distance between any two consecutive image slices.
This newly assembled three-dimensional image stack is then a
generated model of the three-dimensional cardiomyocyte archi-
tecture. With the current implementation in CardioVinci, the
generated volumes range from 10 µm × 10 µm × 2.5 µm to
10 µm × 10 µm × 10 µm (depending on the number of the
random seeds during GAN-based image generation). This
volume size spans four sarcomeres of the cardiomyocyte, as
shown in figure 2.
3. Results
(a) Semantic segmentation improves feasibility and

accuracy
Figure 3 represents evaluation metrics for mitochondria,
myofibrils and Z-discs on the test sample. Segmenting
Z-discs can be challenging using machine learning or DL
methods, as discussed in [4,14]. The main challenge is the
relatively large label imbalance that makes segmentation of
the Z-discs inaccurate. For example, a rather significant
label imbalance leads to poor optimization performance
when aiming to segment Z-discs only (binary segmentation).
However, figure 3 shows that segmenting Z-discs along with
mitochondria and myofibrils not only boosts the feasibility of
Z-discs segmentation using DL methods but also leads to
higher test data performance across various metrics, includ-
ing VRand

(thinned) and VInfo
(thinned). These performance measures are

explained in more detail in the supplementary material.
This result highlights the importance of addressing class
imbalance within image volumes. When only segmenting
Z-discs, less than 1% of the pixels would be categorized
into the positive class (Z-discs in this case), but more than
99% of the pixels would be assigned to the negative class.
This imbalance biases neural networks to learn the dominant
class pattern [27]. By simply introducing more segmentation
categories to the network, we reduce the significant bias in
the class distribution of pixels, which leads to better learning
and segmentation performance for small structures like
Z-discs [27].
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(b) CardioVinci generates realistic models of
cardiomyocyte architecture

After semantic segmentation, CardioVinci’s StyleGAN
assembles a generative model of cardiomyocyte architecture.
Figure 4a shows a two-dimensional sample image generated
by the trained GAN. Figure 4b presents a three-dimensional
rendering of a generated cardiomyocyte model. We extracted
a three-dimensional distribution of the relative density of
mitochondria voxels to myofibrillar voxels (mito/myo)
within the GAN and semantic segmentation outputs. We
passed a 4 µm× 4 µm 4 µm mito/myo density kernel with
strides of 0.4 µm across the two three-dimensional volumes.
Figure 4c,d shows the generated volumes’ frequency distri-
butions and marginal boxplots. These plots show that the
GAN generated model reflects the spatial distributions of
mitochondria and myofibrillar voxels found within the
semantic segmentation output.

Figure 5 shows morphometric analyses of the different
components of the cardiomyocyte model. These analyses
were conducted using a three-dimensional shape analysis
plugin [28] for the image processing package FIJI [29]. We
compared the statistical distribution of the morphologies of
the Z-discs, mitochondria and myofibrils between the GAN
generated model and the three-dimensional cardiomyocyte
masks output by the semantic segmentation outputs.
Figure 5 shows that the distributions generated by the GAN
are similar to the distributions from the semantic segmenta-
tion dataset. Figure 5 and figure 4c,d demonstrate the
ability of CardioVinci to generate realistic three-dimensional
cardiomyocyte models. Moreover, the electronic supplemen-
tary material, table S1 represents the one-way ANOVA test
results for comparing the means and variances between the
ground-truth volume and the sample generated using
GAN. The results show that means and variances for the
majority of the three-dimensional shape statistics are not
significantly different between these samples.
(c) CardioVinci can be applied to different samples to
perform three-dimensional comparative statistical
analyses

To demonstrate CardioVinci’s use as a pipeline for extracting
and comparing statistical distributions within three-
dimensional EM datasets, we used CardioVinci to process a
three-dimensional SBF-SEM dataset of a left ventricular
cardiomyocyte within a sample of rat cardiac tissue with
streptozotocin-induced diabetes. Figure 6 provides qualitat-
ive comparisons of CardioVinci generated images after
training on the FIB-SEM (left column) and SBF-SEM (right
column) datasets. Quantitative comparisons were not made
owing to three reasons: the two datasets were acquired for
completely different experimental studies and laboratories;
they were acquired at different spatial resolutions; and the
datasets only represent one of healthy control and diabetes-
induced heart disease, making it insufficient for any robust
statistical comparison.

Comparison of the raw images with their corresponding
generated images shows remarkable similarities. For
example, we have previously shown using two-dimensional
EM images that mitochondria form larger clusters in cardio-
myocytes of animals affected by streptozotocin-induced
diabetes [23]. This characteristic increased clustering is
reflected in the raw image of the three-dimensional SBF-
SEM dataset as well as the GAN image in figure 6. The
SBF-SEM image volume contains a nucleus that we did not
segment, and therefore, the semantic segmentation output
contains a void in the nucleus region. CardioVinci’s GAN
has generated a similar void in the new image in figure 6.
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4. Discussion and conclusion
This paper proposed CardioVinci as a DL-based pipeline for
semantic segmentation and extraction of morphological and
spatial statistics properties of cardiomyocytes from three-
dimensional EM data. CardioVinci uses a modified U-net
for semantic segmentation and a generative adversarial net-
work for extracting statistical distributions from three-
dimensional EM data. The generative modelling approach
presented in this study is a technical breakthrough.
Although many studies have applied GANs to microscopy
images before [16–18,20,30–34], most of these studies only
analyse two-dimensional images and typically generate
images of very small pixel resolution (approx. 256 × 256
pixels). Moreover, there are very limited studies that use
generative modelling to quantify cellular morphology and
localization. In one study [16], the authors proposed using
an adversarial autoencoder to capture nuclear and other
ultrastructural variations using two-dimensional segmented
confocal data. Variational autoencoders (VAEs) learn the
underlying variations in data through adapting latent
space. The limitation of the disentanglements in the linear
subspaces of latent space for VAEs limits the interpolation
of the latent vector, hence limiting nonlinear changes in
the images [22]. The authors extended the same study by
using 128 × 96 × 64 cubic voxels confocal data to integrate
resulting ultrastructures of human-induced pluripotent
stem cells in three dimensions. This study uses two autoen-
coders to optimize two different latent vectors, making the
training infeasible for high-resolution images such as FIB-
SEM data. In another study [20], the authors have used
the same two-dimensional confocal image data from the pre-
vious study [16] and proposed modifying conditional GANs
using newly proposed skip connections. The authors have
shown that the proposed method outperforms the previous
study based on the log-likelihood measure by maximizing
the localization. However, this study is limited to two
dimensions and performs the latent space projection using
only mutual nuclear shape and individual subcellular pro-
teins (one versus the rest).

In this paper, we have trained the two-dimensional
StyleGAN to generate three-dimensional models of cardio-
myocytes using a novel methodology that has not been
applied before. To the best of our knowledge, our approach
is the first computationally efficient method to assemble gen-
erative models of any three-dimensional EM data. StyleGAN
not only provides an efficient architecture for training high-
resolution images up to 1024 × 1024 pixels but also facilitates
highly nonlinear latent space interpolations owing to two-
stage latent variable modelling. Moreover, adding noise to
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the generator after each convolution separates high-level fea-
tures (subcellular ultrastructures) from stochastic variation
(morphology). In addition to the above, we have proposed
to train StyleGAN using three ultrastructures simultaneously,
which circumvents the challenge of additional steps for sub-
cellular integration. In addition to the above, StyleGAN uses
perceptual path length to ensure that latent space is disen-
tangled. This is a major breakthrough from the previous
studies as the disentanglement studies were ill-posed owing
to unknown variation factors [22]. StyleGAN uses percep-
tually based pairwise image distance, which is calculated as
a weighted difference between two VGG16 embeddings.
The weights are optimized to resemble the human perceptual
similarity judgements leading to fine high-resolution latent
space projections.

GANs can be directly trained on raw data; however, they
require many more images than the number we used in this
study to comprehensively capture the complex spatial proper-
ties in the images. Indeed, our experience was that the low
contrast in EM images compounds the need for more training
data. We have circumvented this perennial issue in DL by per-
forming an intermediary segmentation step to reduce data
complexity. We have applied semantic segmentation as an
intermediary step towards the creation of a generative model.
The StyleGAN was trained on segmentation masks generated
by semantic segmentation. Our results in figures 4–6 show
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that this practical approach is successful in generating realistic
cardiomyocyte models from three-dimensional EM data.
Although we have only segmented three components in this
study, CardioVinci can easily be scaled to extract segmentations
and statistics of other components, including t-tubules, sarco-
plasmic reticulum and nuclei as well. Indeed, figure 6
demonstrates that the GAN learned to generate a region of
black voxels corresponding to the nucleus that was not anno-
tated for semantic segmentation. Moreover, owing to highly
nonlinear latent space interpolations, one can generate a wide
range of latent space projections, leading to a handful of statisti-
cal cellular representations. The electronic supplementary
material, table S2 shows results from the statistical comparison
of the three-dimensional shape metrics between 25 generated
volumes using CardioVinci (each having 96 × 512 × 512 cubic
voxels). As shown, CardioVinci can generate consistently stat-
istically similar volumes. However, we show in the electronic
supplementary material, figure S3 that the generated volumes
are structurally different by quantifying the mutual three-
dimensional Jaccard distance between the generated volumes.
This means that one could generate as many mutually structu-
rally exclusive but statistically similar geometries (three-
dimensional shape statistics such as compactness, flatness,
elongation, etc.). However, the training sample size limits the
number of mutually exclusive volumes [22].
Despite its successful application in quantifying three-
dimensional statistics of cardiomyocytes, we found a few
challenges when using CardioVinci. First of all, it requires
encoding the consecutive slices in TFRecord as a preliminary
data prep step. We understand that this could be challenging
when large volumes are used; such encodings should be
handled with care owing to missing or noisy image slices.
Secondly, performing a grid search to sort and reconstruct
the generated slices in three dimensions could hinder the
efficiency of automating three-dimensional sample recon-
structions and quantifications. This could be particularly
challenging when a large number of samples are used. In
CardioVinci, we optimize the Jaccard distance between the
generated images by minimizing it between consecutive
image slices. Once the optimization is performed, we
simply order the generated data to obtain the statistical
three-dimensional volume. Such a task could be cumbersome
in the presence of large tissue samples. Finally, owing to
highly intricate structures in three-dimensional EM data, Car-
dioVinci requires a user to segment the data as a preliminary
step before training the StyleGAN. Indeed, this is equivalent
to the labelling step in the previous studies. However, our
experience with SEM data segmentation has shown that seg-
menting such volumes are viable with performing only one
or two image slices.
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CardioVinci presents an exciting opportunity for the
research community to generate their own probabilistic
models of different aspects of components of cardiomyocyte
architecture like dyads or mitochondria networks. We have
developed two generative models, each trained on one FIB-
SEM and one SBF-SEM dataset that represent a healthy and
diabetes affected cardiomyocyte, respectively. A more com-
prehensive generative model can be easily generated by
including more image patches across a larger available data-
set. We have made CardioVinci publicly available to promote
community engagement in this regard.

CardioVinci is a scalable pipeline that can generate stat-
istical representations of three-dimensional EM data of
cardiomyocytes given the ultrastructures of interest. Our
future aim is to use the style mixing capability of the Style-
GAN to generate synthesized variations across different
tissue blocks or even tissue types. We encourage the research
community to train CardioVinci’s generative model to their
own datasets for time-efficient three-dimensional EM studies.
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