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Abstract

Switchgrass is an important bioenergy crop typically grown in marginal lands, where the

plants must often deal with abiotic stresses such as drought and salt. Alamo is known to be

more tolerant to both stress types than Dacotah, two ecotypes of switchgrass. Understand-

ing of their stress response and adaptation programs can have important implications to

engineering more stress tolerant plants. We present here a computational study by analyz-

ing time-course transcriptomic data of the two ecotypes to elucidate and compare their regu-

latory systems in response to drought and salt stresses. A total of 1,693 genes (target

genes or TGs) are found to be differentially expressed and possibly regulated by 143 tran-

scription factors (TFs) in response to drought stress together in the two ecotypes. Similarly,

1,535 TGs regulated by 110 TFs are identified to be involved in response to salt stress. Two

regulatory networks are constructed to predict their regulatory relationships. In addition, a

time-dependent hidden Markov model is derived for each ecotype responding to each stress

type, to provide a dynamic view of how each regulatory network changes its behavior over

time. A few new insights about the response mechanisms are predicted from the regulatory

networks and the time-dependent models. Comparative analyses between the network

models of the two ecotypes reveal key commonalities and main differences between the

two regulatory systems. Overall, our results provide new information about the complex reg-

ulatory mechanisms of switchgrass responding to drought and salt stresses.

Introduction

Switchgrass (Panicum virgatum L.) is a warm-season C4 grass native to North America, and is

considered a major biofuel crop for cellulosic ethanol production. Because of its strong
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adaptability and rapid growth [1–4], switchgrass is primarily grown in marginal lands [5],

which tend to be affected by abiotic stress, such as drought and salt stresses [6, 7]. Recent stud-

ies suggest that these two are the major factors that may limit the biofuel production [8–10].

Hence, it represents an important task to understand how plants adapt to these stresses and

how to possibly engineer switchgrass to make the plant more tolerant to drought and salt

stresses.

Previous studies have reported that lowland ecotypes tend to be more tolerant to drought

and salt than the upland ecotypes determined based on specific physiological, morphological,

or metabolic parameters [10, 11]. Specifically, (i) lowland ecotypes tend to have higher levels of

the following under drought stress: photosynthetic rates (Pn), transpiration rates (Tr), stomatal

conductance (gs), intercellular CO2 (Ci) level and relative water content (RWC) in leaves, and

lower electrolyte leakage (EL), in comparison with the upland ecotypes; and (ii) they generally

have lower levels of salt stress-induced cell-membrane damages due to their higher levels of Pn,

gs, Tr, leaf photochemical efficiency and chlorophyll content (Chl content) and lower EL con-

tent. As of now, no genetic-based research has been published regarding detailed understand-

ing of what specifically make one ecotype more tolerant to these stresses than the other.

Here we present a computational study of public time-course gene-expression data of

Alamo (a lowland ecotype of switchgrass) and Dacotah (an upland ecotype) treated with

drought and salt stresses. The goals are (1) identification of key biological processes that

respond to each of the two stresses; (2) inference of the functional relationships among the

identified processes, hence providing a systems level understanding about the response pro-

gram to each stress; and (3) comparison of commonalities and differences in the response pro-

cesses between the two ecotypes, aiming to gain improved understanding of what may have

made one ecotype more stress tolerant than the other.

A key in addressing these questions, particularly (2) and (3) lies in identification of the

main transcription regulators (TFs) of the response programs to the two stress types. To

accomplish this, we have identified all differentially expressed TFs in stress-treated vs.

untreated switchgrass samples. In addition, we have also identified differentially expressed

genes (TGs) known to play key roles in stress response and adaptation, such as biosynthesis of

osmoprotectants; control of the water flux; adjustment of the cellular osmolarity [12, 13];

influx and efflux through plasma membrane and vacuole relevant to intracellular ion homeo-

stasis [14]; maintaining redox homeostasis [15]; reprogramming of plant primary metabo-

lisms; and alteration of the cellular architecture for more efficient energy supply [16]. Based on

the identified genes in these categories, we have predicted a regulatory network for the

response system to each stress, consisting of key TFs and predicted regulatory relationships

between the TFs and functional TGs involved in these metabolic processes, which is most con-

sistent with the time-course data collected from the public domain.

Overall, two regulatory networks are predicted, one with 143 TFs, 1,693 stress-response

TGs and 11,784 TF-TG regulatory relationships for drought stress, and the other having 110

TFs, 1,535 stress response TGs and 8,411 TF-TG relationships for salt stress. Among the pre-

dicted TF-TG relationships, 46.1% and 43.5% in the drought and salt response programs are

validated against two independent data sources, respectively. Comparative analyses revealed

that Alamo has different stress response systems from those in Dacotah.

Materials and methods

Data

Two ecotypes of switchgrass: Dacotah and Alamo are used in the study. The transcriptomic

data of drought and salt-stressed Dacotah and Alamo used in this study are retrieved from the
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Sequence Read Archive (SRA) [17] with recorder numbers PRJNA323435 and PRJNA323349,

respectively. Specifically, plants of each ecotype to be stress-treated, along with the controls,

are grown in separate pots in a greenhouse [11].

Once the plants reach the E5 development stage after two months [18], they are exposed to

one of two stress treatments: drought or salt stress, for 30 days, separately. Leaf tissue samples

from the same plants of the two ecotypes are taken at six (0d, 6d, 12d, 18d, 24d, 30d) and eight

(0h, 12h, 24h, 48h, 6d, 12d, 18d, 24d) time points after treatment of drought and salt stresses,

respectively, along with the matching leaf samples collected from the untreated plants, for

RNA-Seq analyses. To minimize the leaf age effect, we have four tillers from the original single

tiller transplanted for each pot and at each sampling time, and cut the same section of the leaf

blade (~100 mg) of the top 2nd and 3rd fully developed leaves from tillers with the same size.

For each time point, three biological replicates are made, giving rise to a total of 72 and 96 sam-

ples for the two ecotypes, respectively. It is noteworthy that 3 pots are used for each treatment

along with 3 controls pots, with each treatment having its own control pot. All plants for each

ecotype are the clonal replicates of a single mother plant. These two data sets are of high-qual-

ity as reflected by that the biological replicates for each sample have strong correlations among

themselves, with Pearson correlation coefficient (PCC) > 0.9.

The switchgrass genome version 4 (Pvir_v4) and annotation are downloaded from JGI

[19]. Protein sequences encoded in three model species: Arabidopsis, maize and rice are also

downloaded from JGI and used in this study. 4,134 TFs of switchgrass and GO-based func-

tional annotation of switchgrass genes are downloaded from PlantTFDB [20]. The predicted

TF-TG interactions in Arabidopsis, maize and rice are collected from the literature [21–26],

respectively.

RNA-Seq data processing

The downloaded files of gene-expression data for the 72 and 96 samples are converted into the

fastq format using fastq-dump command in the SRA Toolkit (version 2.8.2–1) [27]. The fol-

lowing data-processing steps: adapter-trimming, quality-trimming, filtering and contaminant-

filtering, are applied to each fastq file using the BBDuk tools (version 35.82) [28], a JGI pipeline

[29] for filtering and trimming RNA reads containing adapters and contaminants. Hisat2 (ver-

sion 2.1.0) [30, 31] is used, with default parameters, to map RNA reads onto the Pvir_v4

genome. Gene-level raw RNA-read counts are summarized using FeatureCounts (version

1.5.0) [32, 33] from the aligned sam files. Two and four samples with less than 70% total align-

ments to the genome [34] are removed from the two collections of samples, leaving 70 and 92

samples for drought and salt stresses, respectively (S1 Table).

We have estimated the scaling factors between samples from two ecotypes for each stress by

using the Trimmed Mean of M-values (TMM) in the edgeR package (version 3.20.9) [35, 36].

The count per million (CPM) is computed using the ‘cpm’ function provided in the same

package to estimate the gene-expression levels. Only genes with expression levels higher than 2

CPM in more than 90% of the samples for each stress type are kept. At the end, 20,581 and

20,836 genes for drought and salt stresses are used for further analyses, respectively.

Statistical analysis

The raw RNA-read counts are put into the edgeR package [35, 36] and used to determine the

differentially expressed genes (DEGs). For each treated sample, a fold-change value (after log

transformation) and the associated p-value are calculated against the matching untreated sam-

ples. Each gene with absolute fold change> 2 and p-value < 0.05 is considered as a DEG. A

gene in an ecotype is considered as stress affected if it is a DEG at two time-points or more

Regulatory network of switchgrass in responding to drought and salt stresses
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among the stress treated samples of the ecotype. For each stress and each ecotype, 1,500 stress

affected genes with the lowest p-values are kept to construct a gene regulatory network (GRN).

Overall, 2,441 and 2,429 stress affected genes for drought and salt stresses are kept for the two

ecotypes, respectively, each referred as stress-responding gene, of which 147 and 125 are TFs.

Construction of genetic regulatory network

The initial GRN is constructed based on co-expression information measured using the Pear-

son correlation coefficient. Specifically, a pair of TF and TG with PCC> 0.70 is predicted to

have a regulatory relationship. Then, this network is put into the Network Component Analy-

sis (NCA) algorithm (version 2.3) [37, 38] to calculate differential expression profiles of the

stress-regulated TFs, where NCA is a method for reconstructing TF activities (TFAs) and esti-

mating control strengths (CSs) through estimating the partial and qualitative network connec-

tivity information based on gene-expression data. Specifically, an NCA model is described as:

½X� ¼ ½A�½P�

where X is a matrix of gene expression values, with rows for genes and columns for samples; A
is a binary matrix of (predicted) regulatory relationships between TFs (columns) and TG

(rows), and P is a TFA matrix with columns for samples and rows for TFs; and Ai,j is 1 if and

only if there is a regulatory relationship between TF j and gene i; otherwise 0. A desired

decomposition of X to A and P is achieved by minimizing the following objective function:

minjj½X� � ½P�½A�jj2;

under the following constraints:

1. [A] has full column-rank;

2. when a node in the regulatory layer is removed along with all the output nodes connected

to it, the connectivity matrix for the resulting network must have full column-rank; and

3. [P] has full row-rank.

Each TF-TG interaction predicted by NCA and its PCC� 0.75 is regarded as the final pre-

diction for a regulatory relationship.

Validation of predicted TF-TG interactions

It has been widely observed that TF-TG relationships tend to be conserved across related spe-

cies [39–42]. Hence, we have used known TF-TG relationships (see Data) in related organisms

to validate our TF-TG predictions. InParanoid (version 4.1) [43, 44] is applied to generate

orthologous groups between switchgrass and Arabidopsis, maize as well as rice, respectively.

We consider a predicted TF-TG interaction as validated if it has orthologous pairs of TF-TG

interactions in the above six databases.

Validation of predicted TGs for each TF

To quantify functional relevance of the predicted TGs for each TF, we have calculated GO

semantic similarity scores of the GO terms between each pair of the co-regulated TGs, using

the GOSemSim package (version 2.6.0) [45, 46]. Here, we considered only the GO biological

processes. To evaluate the statistical significance of the derived functional similarity among the

TGs regulated by the same TF, we have randomly selected the same number of genes from the

background gene set, namely a set of all the 25,971 switchgrass genes with GO annotations,

Regulatory network of switchgrass in responding to drought and salt stresses
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and calculated their functional similarities. Wilcoxon rank-sum test is used to assess whether

the calculated functional similarity scores among the TGs are significantly higher than those

among randomly selected genes.

Dynamic regulatory maps

The Dynamic Regulatory Event Miner (DREM) (version 2.0.3) [47, 48] is used to reconstruct

the relevant regulatory relationships in each ecotype under each stress. Specifically, DREM

takes time-course fold-changes of TGs and predicted TF-TG interactions as inputs, and pro-

duces a dynamic regulatory map consisting of multiple time-dependent chains of events. Each

chain consists of a collection of co-expressed genes across all the time points, measured using

fold changes in expression levels with respect to time 0 as the reference, where there are TFs

that co-regulate genes at time t and time (t+1), across all time points. An important property

of the modeling technique is that it allows the formation of bifurcation events at each time

point if co-expressed genes up till the current point diverge into two distinct groups of co-

expressed genes from the current time point on within each group but not between the two

groups. Each bifurcation event is associated with two sets of TFs that each regulate a subset of

all the genes, where the TF split cutoff score is 0.001.

GO enrichment analysis

GO term enrichment is conducted over a given gene set using the topGO R package (version

2.30.1) [49, 50], where all annotated genes in switchgrass is used as the background. A GO

function is considered enriched if the p-value < 0.01.

The protocol for the entire computational analysis pipeline, used in this study, has been

published in protocols.io with the following DOI: dx.doi.org/10.17504/protocols.io.saxeafn.

Results

Considering that only one switchgrass genome, namely that of Alamo, is published [19], we

have mapped all the RNA-Seq reads of both ecotypes to the same genome when estimating

gene-expression levels in each ecotype under each stress.

DEGs responding to drought and salt stresses

Comparison between the two ecotypes under each stress type revealed: they have similar gene

expression profiles at the global scale, as shown by their similar expression-level distributions

(Fig 1A) and high statistical correlations between gene expressions of the two ecotypes under

the same stress type (Fig 1B).

Our differential gene-expression analyses have revealed that there are significant differences

between the two ecotypes in terms of their responses to the two types of stresses under study

(Fig 1C, S1 File). First, more DEGs are detected under the drought stress than the salt stress

for both ecotypes, suggesting that drought has larger impacts on the plant than salt, and

requires more diverse cellular responses, which is also observed in Brassica napus [51]. For

each stress, there are more DEGs in Dacotah than in Alamo almost at every time point (see

Methods). We have also noted that the numbers of up- vs. down-regulated genes are approxi-

mately the same for both ecotypes under each of the two stress types, which is consistent with

previous studies regarding abiotic stress response in Arabidopsis [52].

Interestingly, there is one time-point (6d for salt and 18d for drought) (see Methods),

where the number of up-regulated genes in Alamo is higher than Dacotah, which is different

from all the other time points. A key function enriched by the up-regulated genes at this point

Regulatory network of switchgrass in responding to drought and salt stresses
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for salt stress is photosystem II assembly and stabilization, a known adaptive mechanism for

protecting plants from permanent damages [53]. Previous studies have observed that Alamo

has higher photosynthetic rates than Dacotah [10]. Hence, we posit that this energy-related

mechanism may play a key role in protecting Alamo from damages.

Overall, 676 distinct TFs are found to be differentially expressed in total across the two eco-

types under two stresses (Panel a in S1 Fig), specifically, 207, 266, 361 and 531 for Alamo and

Dacotah under drought and salt, respectively. We not e that most of these TFs are in the fami-

lies of bHLH, bZIP, NAC, G2-like, MYB_related and ERF (Panel b in S1 Fig), which are all

known to play important roles in abiotic stress response [54, 55]. Of these TFs, 87 are found in

Fig 1. Characterization of gene-expression profiles of each ecotype under drought and salt stresses. (a) The

distribution of log (mean CPM+1) for each ecotype. (b) The scatterplots for PCCs between expressions of each gene in

the two ecotypes averaged over all relevant samples under drought and salt stress, respectively. (c) The number of

DEGs for each ecotype at each time point for each stress. The number of up- and down-regulated genes, marked as red

and blue, respectively, for each combination of ecotypes and stresses.

https://doi.org/10.1371/journal.pone.0204426.g001

Regulatory network of switchgrass in responding to drought and salt stresses

PLOS ONE | https://doi.org/10.1371/journal.pone.0204426 September 24, 2018 6 / 19

https://doi.org/10.1371/journal.pone.0204426.g001
https://doi.org/10.1371/journal.pone.0204426


all four combinations of the two ecotypes under two stresses; and 64 additional (distinct) ones

are in Alamo and 233 ones in Dacotah. See S2 File for details.

GRNs for the two stress types

We have constructed a GRN from the identified stress-responding genes (see Methods) for

each stress type, respectively. The network consists of a set of stress-responding TFs and TGs

regulated by such TFs, namely TFAs as defined earlier. Overall, 100 and 95 TFs are identified

in Alamo and Dacotah under drought, respectively; and 84 and 77 TFs are identified in Alamo

and Dacotah under salt, respectively.

We have then conducted co-expression analyses between the TFs and the TGs identified for

each stress type, where a pair of TF and TG is considered as having a regulatory relationship if

their PCC> 0.70 [25, 56]. This results in the initial prediction of the regulatory relationships

in the response system to the drought and salt stresses, respectively.

Overall, 37,896 and 16,350 regulatory interactions are predicted between 147 TFs and 2,262

TGs under drought and between 125 TFs and 1,893 TGs under salt (Table 1), respectively.

These regulatory relationships and associated expression data are then fed into the NCA algo-

rithm (see Methods), after 4 and 15 TFs being removed with the number of TGs less than two

or co-regulating with other TFs, which give rise to the TFA profiles for the 143 and 110 TFs as

the response systems to drought and salt, respectively, as detailed in S2 and S3 Figs. All the 143

and 110 TFs exhibit distinct expressions for two ecotypes across each of the six and eight time-

points under the drought and salt stress, respectively, indicating different cellular responses at

different time points for the two ecotypes under the same stress.

We have next conducted functional analyses of the predicted regulatory relationships. First,

we have applied a higher PCC cutoff 0.75 (S4 Fig) to the predicted regulatory relationships so

we can focus on the most reliable predictions. This gives rise to 11,784 and 8,411 high-confi-

dent TF-TG interactions (S3 File) in the combined lists of the two ecotypes for drought and

salt stresses, respectively. Table 1 summarizes these positive (activation) and negative (repres-

sion) regulatory relationships. From the structure of partial drought and salt networks (Fig 2,

S5 Fig) generated by using the igraph package (version 1.2.1) in R [57, 58], we note that some

TF-TGs primarily occur in the GRN only for one ecotype while others in both ecotypes.

Validation of predicted regulatory interactions

We have validated the predicted TF-TG relationships using two independent data sources: (1)

TF-TG relationships in Arabidopsis, maize and rice as such relationships tend to be conserved

across related plants, and (2) TGs regulated by the same TF should have highly related or simi-

lar functions.

Table 1. Summary of GRNs of switchgrass in response to drought and salt stresses, respectively.

Stress Processing #TFs #Targets #Interactions #Positive interactions #Negative interactions

Drought PCC correlation >0.70 147 2,262 37,896 33,548 4,348

NCA prediction 143 1,844 21,239 18,149 3,090

PCC correlation� 0.75 143 1,693 11,784 10,806 978

Salt PCC correlation >0.70 125 1,893 16,350 14,278 2,072

NCA prediction 110 1,831 14,956 12,906 2,050

PCC correlation� 0.75 110 1,535 8,411 7,577 834

Positive and negative interactions represent those with PCCs > 0 and < 0, respectively.

https://doi.org/10.1371/journal.pone.0204426.t001
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First, we have compared the predicted TF-TG relationships with known TF-TG pairs in

Arabidopsis, maize and rice (see Methods). Specifically, we have mapped 503 and 408 pre-

dicted regulatory pairs of switchgrass to the orthologous TF-TG pairs in Arabidopsis, maize or

rice for drought and salt network, respectively, hence considered them as validated as detailed

in Table 2 and S4 File.

We have then checked the TGs regulated by the same TFs in terms of their functional rele-

vance measured using the GO Biological Processes (see Methods). Among the 11,784 pre-

dicted TF-TG interactions, 5,212 interactions between 139 TFs and 815 TGs in the drought

response GRNs have functional relevance (using cutoff 0.3, Panel a in S6 Fig), based on an sat-

uration analysis of functional similarities [59] among TGs regulated by the TF. Similarly,

among the 8,411 TF-TG interactions, 3,425 interactions between 97 TFs and 696 TGs in the

salt GRNs have functional relevance. All these are considered as validated based on functional

relevance information. This clearly provides strong support to our predicted regulatory net-

works. The detailed information is summarized in S5 File.

Overall, 5,434 (46.1%) and 3,657 (43.5%) TF-TG interactions in the predicted GRNs in

response to drought and salt, respectively, are considered as validated by the above two

approaches. Although false positive interactions may inevitably be present in our prediction,

our benchmark analysis (Panel b in S6 Fig) demonstrates that the average GO annotation simi-

larities of drought and salt network are significantly higher than that of a random gene interac-

tion network (p-value 2.2e−16).

Fig 2. The predicted GRNs (partial) for 15 TFs with the highest numbers of TGs of switchgrass under drought

stress. TFs and TGs are represented as squares and circles, respectively. Genes regarded as stress affected DEGs for

both ecotypes, only in Alamo and Dacotah are marked in pink, red and blue, respectively.

https://doi.org/10.1371/journal.pone.0204426.g002

Regulatory network of switchgrass in responding to drought and salt stresses
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Functional analyses of the predicted stress-response networks

Massive responses are observed for each ecotype to each stress type (detailed in S2 and S3

Tables). To put all the response activities into a more logical organization, we have applied the

DREM program (see Methods) to the predicted TF-TG interactions and the associated fold-

changes of the TGs to construct a temporal model for how the TFs regulate the observed

responses, referred to as regulatory events, transiting from one time point to the next, repre-

sented as an input–output hidden Markov model (IOHMM) [60], which consists of multiple

chains of events, as illustrated in Figs 3 and 4. Each chain from the start (time 0) to end (the

last time point) represents a collection of co-expressed genes, co-regulated by a common set of

TFs. A key property of the model is that it allows the formation of bifurcation events, where a

(partial) chain from the start to the current time point can split into two when the set of co-

expressed genes up till this time point is split into two subsets of co-expressed genes from this

time point on, while the two subsets are not co-expressed beyond the current time point. This

process may continue to give rise to multiple bifurcation points. Then, the detailed functions

of co-expressed genes for each chain of each ecotype under each stress type are described in S6

File. Overall, the similarities and differences of response activities between two ecotypes

responding to each stress fall into the following function categories.

The following summarizes our main observations about how each ecotype responds to

drought (Fig 3 and S2 Table) and how these responses may influence various metabolisms

[11]:

1. TFs in the families of bZIP, NAC, MYB_related, bHLH and WRKY, which may play roles

in the biosynthesis of osmoprotectants such as proline, choline, trehalose, mannitol, gluta-

mate and raffinose-family oligosaccharide, to keep membrane stability under osmotic stress

[61–63], are up-regulated in both ecotypes. The main difference between the two ecotypes

is: there seems to be more accumulation of the osmoprotectants (like trehalose) in Alamo

than in Dacotah, based on the higher expression levels of the relevant biosynthesis genes in

Alamo than those in Dacotah, which is consistent with the previous switchgrass metabolic

studies under drought stress [11], hence suggesting that the increased levels of these metab-

olites play a role in Alamo’s drought tolerance, as shown in Fig 3, marked in red;

2. Alamo uses a different mechanism to adapt to drought through utilizing chloro-respiration

[64, 65] to prevent damages to the photosynthetic apparatus, which seems to be one of the

mechanisms for Alamo to maintain higher Pr levels than Dacotah; and both ecotypes seem

to use stomatal movement to avoid excessive water loss through transpiration [66], but

Table 2. Validation of the predicted TF-TG interactions by orthologous pairs in Arabidopsis, rice and maize,

respectively.

Species Drought Salt Reference

Arabidopsis 66 (38) 77 (37) [24]

182 (15) 45 (14) [21]

4 (3) 6 (4) [25]

202 (48) 261 (47) [26]

Rice 0 (0) 4 (1) [23]

Maize 101 (34) 72 (29) [22]

Total 503 (79) 408 (70) N/A

The number inside each pair of parentheses represents the number of TFs involved in the corresponding

interactions.

https://doi.org/10.1371/journal.pone.0204426.t002
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Fig 3. A temporal model for chains of events in each ecotype under drought stress. Each chain represents a collection of co-expressed genes co-regulated by a

common set of TFs in the same collection. The y-value of the chain at a specific x point represents the average fold-change (after long transformation) of the expressions

of genes represented by the chain at the current point over the expression levels of the same genes at time point 0. Each green node represents a bifurcation event in the

network. The TF families (partial) with the highest number of the TFs having split scores below 0.001 appear next to the split that they regulate. The GO functions for

each chain are displayed in the right part and the red, green, brown and blue colors indicate different function categories. In each panel, an artificial node is added at 0h

so each gene has a “fold change” at time point 0. The panel in the top left corner gives an expanded view of a chain of co-expressed events consisting of one bifurcation

event into three sub-chains, being red, pink and blue, respectively.

https://doi.org/10.1371/journal.pone.0204426.g003
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fold-changes of relevant genes are slightly different, which may be one reason for why

Alamo has higher RWC than Dacotah, as shown in Fig 3, marked in green;

3. Both Alamo and Dacotah are predicted use the following processes to respond to drought:

biosynthesis of jasmonic acid [67, 68], S-adenosylmethionine [69], a precursor for the bio-

synthesis of polyamines known to be involved in response to abiotic stresses [70], which

has shown that Almao has higher levels of spermine (one of polyamine) than Dacotah, and

conversion of arginine to glutamate [71]; but fold-changes of the relevant genes are signifi-

cantly different between the two ecotypes, as shown in Fig 3, marked in blue; and

Fig 4. A temporal model for chains of events in each ecotype under salt stress. Each chain represents a collection of co-expressed genes co-regulated by a common set

of TFs. The y-value of the chain at a specific x represents the average fold-change (after long transformation) of the expressions of genes represented by the chain at the

current point over the expressions of the same genes at time point 0. Each green node represents a bifurcation node. The TF families (partial) with the highest number of

TFs with split scores< 0.001 appear next to the split that they regulate. The GO functions for each chain are displayed in the right part and different colors represent

different function categories.

https://doi.org/10.1371/journal.pone.0204426.g004
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4. Alamo and Dacotah seem to use similar mechanisms to maintain their sodium-ion homeo-

stasis, particularly at the early stage (0d-24d), and potassium transport for maintaining high

K+/Na+ ratios and proton-ATPase for sequestering Na+ into the vacuole [14, 72], where a

previous study has shown transgenic switchgrass with overexpressed proton-ATPase can

enhance growth and salinity tolerance than the wild-type [73]. But the expression levels of

the relevant genes are substantially higher in Alamo than in Dacotah. And at a later stage

(30d), Alamo expresses higher levels of the potassium-transporter genes than the proton-

ATPase biosynthesis genes while Dacotah has these genes expressed with the same fold-

changes for the two processes, as shown in Fig 3, marked in brown.

The following summarizes our key observations about how each ecotype may respond to

the salt stress (Fig 4, S3 Table):

1. Higher levels of accumulation of osmoprotectants such as proline are predicted in Alamo

than in Dacotah, estimated based on the fold changes of genes involved in biosynthesis vs.

degradation in the two ecotypes, as shown in Fig 4, marked red;

2. Both Alamo and Dacotah are predicted to have employed the same mechanism to adapt to

salt through synthesis of phosphatidylcholine (PC), the major phospholipid in eukaryotic

cell membranes known to play a function in the adaptation to salt-mediated hyperosmotic

stress [74]. Again more accumulations of PC are predicted in Alamo than in Dacotah based

on expression comparisons of genes involved in biosynthesis vs. degradation of the PC and

higher expression levels of genes in the assembly and stabilization of photosystem II [53], as

shown in Fig 4, marked in green;

3. Alamo seems to have stronger salt tolerance than Dacotah, based on our observation that

the former has higher expression levels of genes involved in nitric oxide biosynthesis [72,

75] and the biosynthesis of chlorophyll (Chl), which is consistent with a previous study that

Alamo has higher Chl content than Dacotah under salt stress [10], as shown in Fig 4,

marked in blue, increases in whose cellular concentrations are known indicators of salt tol-

erance in crops [76]; and

4. Alamo is predicted to use a different mechanism to reduce oxidative stress through biosyn-

thesis of phytyl diphosphate in the medium stage (6-12d), the prenyl donor for tocopherol

biosynthesis [77], as detailed in Fig 4, marked in brown.

Overall, Alamo uses better regulations to respond and adapt to the two stress types than

Dacotah.

Discussion

Network-based analyses of stress response over time

Plant stress responses, particularly to drought and salt, are dynamic and involve complex

cross-talks among multiple metabolic processes and regulations, affecting many aspects of a

cellular system, such as osmatic pressure, oxidative stress, ion homeostasis and homeostasis of

water supply and demand [78]. Hence, thousands of genes can be differentially expressed once

a plant is under drought or salt stress. Traditional gene-centric approaches, such as simple

pathway-enrichment analysis, can provide useful information regarding which pathways are

differentially expressed, the relationships among such pathways could be very complex to sort

out [59]. In this study, we have used a network-based method, focused on key TFs and meta-

bolic TGs. Through organizing the observed events, reflected by coordinated gene-expression

changes, as time-dependent Markov models, we have derived a system-level new
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understanding about how different metabolic processes are linked to a stress and with each

other when responding and adapting to a stress. By combining the regulatory networks with

the temporal Markov model, we have not only predicted novel information about which tran-

scription regulators are possibly responsible for which parts of the metabolic reprogramming

when the plant is stressed, but also gained new understanding about the relative order in exe-

cuting these reprogrammed metabolisms.

From the detailed analyses of the time-dependent chain events, we can see that (1) similari-

ties as well as differences in terms of when specific metabolic responses, suggested by gene-

expression data, to the same stress type take place in the two ecotypes, such as proline or choline

taking place approximately at the same time while photosystem II assembly and stabilization

happening at different times (Dacotah at 6d and Alamo at 6d-12d, but higher expression levels

in Alamo) in the two ecotypes responding to salt; (2) similarities as well as differences between

the durations of specific metabolic responses, again reflected by gene-expression data, in the

two ecotypes, such as mannitol or trehalose biosynthesis and chloro-respiration responding to

drought; (3) responding to salt stress, there is one special time point 6d, a larger decrease in pro-

line and choline biosynthesis in Dacotah than Alamo, a larger increase in the expressions of

genes in Chl and phytyl diphosphate biosynthesis in Alamo rather than Dacotah.

Future work

In the future, we see a few ways to extend our work. One is to design a unified mathematic

model to capture all the key time-dependent regulatory and metabolic roles by all genes found

to be differentially expressed, which can answer questions through automated analyses of the

models such as: (1) what the main and detailed differences between the regulatory systems in

response to salt or drought in the two ecotypes are; and (2) what the shared parts between the

response systems to drought and salt stresses are. Another area that we plan to do is to enhance

our validation procedures for the predicted TF-TG relationships by using more general and

sophisticated tools including ChIP-seq data from related plants such as Arabidopsis [20] to

compare our predictions against.

Conclusions

Regulatory networks responding to drought and salt stresses are predicted for two ecotypes of

switchgrass, Alamo and Dacotah, based on publicly available gene-expression data of the two

ecotypes treated with drought and salt stresses. 40+% of our predicted regulatory relationships

are validated against independent data sources. By taking advantage of the time-dependent

expression data, we have also constructed time-dependent hidden Markov models to connect

the key observed biological activities as reflected by gene-expression data into multiple chains

of time-specific events, hence providing a dynamic picture of each of the stress-response pro-

cesses under study.

Supporting information

S1 Fig. A summary of the differentially expressed TFs for each ecotype under each stress

type. (a) Overlapping statistics of differentially expressed TFs. (b) The distribution of TF

families for differentially expressed TFs. Note: “Alamo_salt” and “Dacotah_salt” represents the

ecotype Alamo and Dacotah under salt stress, respectively; “Alamo_drought” and “Dacotah_

drought” represents the ecotype Alamo and Dacotah under drought stress, respectively; and

“common” represents the intersections of both ecotypes under both stress types.
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S2 Fig. A heat-map of predicted TFA profiles for 143 drought-responding TFs. Hierarchi-

cal clustering of the 143 TFs performed using PCC similarities with average linkage method.

Rows are for TFs, and columns for samples. Higher and lower levels of activities are indicated

with yellow and blue color, respectively.

(DOCX)

S3 Fig. A heat-map of predicted TFAs of 110 salt-responding TFs. Hierarchical clustering of

the 110 TFs performed using PCC similarities with average linkage method. Rows are for TFs,

and columns for samples. Higher and lower levels of activities are indicated with yellow and

blue color, respectively.

(DOCX)

S4 Fig. Distributions of correlation coefficients for TF-TG pairs predicted by the NCA

algorithm, for drought and salt responding networks, respectively.

(DOCX)

S5 Fig. An inferred GRN for ten TFs with the highest numbers of TGs under salt stress.

TFs and TGs are represented as squares and circles, respectively. Genes regarded as stress

affected DEGs for both ecotypes, only in Alamo and Dacotah are marked in pink, red and

blue, respectively.

(DOCX)

S6 Fig. Pair-wise function similarity of co-regulated genes for each TF. (a) Cutoff of gene-

pairs similarity based on saturation analysis. (b) Comparison the GO term annotation similari-

ties of pair-wise co-regulated genes for each TF, for drought and salt network, and the corre-

sponding random network, respectively. Note: the pair-wise function similarities for drought

and salt network are significantly higher than random generate network, with both p-value

less than 2.2e−16, determined by Wilcoxon rank-sum test.

(DOCX)

S1 Table. A summary of samples used in this study.

(DOCX)

S2 Table. A summary of key up-regulated biological processes for each ecotype responding

to drought stress.

(DOCX)

S3 Table. A summary of key up-regulated biological processes for each ecotype responding

to salt stress.
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S1 File. The DEGs for each ecotype at each time point for each stress.

(XLSX)

S2 File. The differentially expressed TFs in each ecotype under each stress type.

(XLSX)

S3 File. The 11,784 and 8,411 predicted TF-TG interactions for drought and salt regulated
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S4 File. The 503 and 408 validated TF-TG interactions by three related species for drought

and salt networks.

(XLSX)
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