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Introduction
The eradication of smallpox from human populations was one 
of the 20th century’s most remarkable victories in medicine. 
One of the grisly incompatibilities of this achievement is the 
emergence of Monkeypox (MPX) with significant mortality 
and morbidity.1 The recent surge in human monkeypox cases 
outside of their normal ecological range, the possibilities for 
advance spread through the transmission to naive population2 
as half of the world’s population has no immunity against 
orthopoxviruses,3 and the lack of established surveillance have 
intensified the level of concern for this emerging zoonosis.4 
The zoonosis human monkeypox (MPX) is caused by monk-
eypox virus (MPXV) which belongs to the genus Orthopoxvirus, 
family Poxviridae, and sub-family Chordopoxvirinae.

MPXV was first unearthed during an outbreak in captive 
monkeys at a Danish laboratory in 1958.5,6 Congo Basin (CB) 
and West African (WA) are the two distinct clades of MPXV.7 
The CB clade primarily infects people residing in the Congo 
Basin.8,9 Between 1996 and 1997, more than 400 incidences 
were reported in Democratic Republic of the Congo (DRC) by 
CB clade followed by other outbreaks with hundreds of cases in 
the 2000s.9-11 Since 2016, DRC continues to report the most 
cases each year mainly in children aged below 10 years,4,5,12,13 

and clustering of cases was reported in some particular areas 
within countries and within families.14

In West Africa, only sporadic cases were revealed between 
1970 and 1981. The largest known outbreak of monkeypox 
virus to date by WA clade with 122 confirmed or probable 
cases were recorded in 17 states of Nigeria in 2017-2018.15 The 
characteristics of the 2017-2018 outbreak by WA clade suggest 
that the strains of MPXV in West Africa could prolong epi-
demic events, although West Africa was previously thought to 
be at low risk of a human monkeypox endemic.8

Human monkeypox prevalence apart from Africa was first 
reported in the United States in 2003.2,9,16 The recent detec-
tion of MPX cases in each parts of the earth is an unprece-
dented and a big concern for global health security.

The majority of the clinical manifestations of human mon-
keypox infection mirrors those of smallpox but differs from it 
epidemiologically.14,17-19 A distinctive 2-day prodrome, appar-
ent by fever, headache, muscle aches, backache, and malaise, 
reveals in most patients before the development of the rash.9 
Lymphadenopathy, a key distinguishable feature of human 
monkeypox which is not characteristic of smallpox,14,20 occurs 
in many victims 1 to 2 days before the inception of the rash.

MPXV is an enveloped double-stranded DNA virus with an 
approximate genome size of 196 858 base pairs.21 Unlike many 
other DNA viruses, the replication cycle of poxviruses takes 
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place in the cytoplasm of infected cells rather than in the 
nucleus.22 Poxviruses enter cells by different mechanisms 
depending on whether they are intracellular mature virus (IMV) 
or extracellular enveloped virus (EEV). The IMV is encircled by 
a single membrane, which enters the cell by either direct fusion 
with the plasma membrane or endocytosis. By contrast, the EEV 
is composed of taking IMV enclosed within a second lipid 
membrane and forms shedding with the external membrane 
outside of the cell and then fusion of the IMV membrane with 
the host cell membrane.23 Upon fusion with the host cell mem-
brane, virus loses membrane to release its core into the cytoplasm 
that is transported on microtubules for moving deeper into the 
cell, where transcription and translation are occurred to form 
immature virions (IV), which are later processed to compose 
IMV.23,24 IMV particles are encased by a double membrane to 
constitute intracellular enveloped viruses (IEVs) that are further 
moved to the cell periphery on microtubules. The external IEV 
membrane attaches with the plasma membrane to expose a cell-
associated extracellular virus (CEV) at the cell surface. 
Polymerization of an actin tail underneath the CEV drives the 
virus into the surrounding cell, or the virus is released as an 
EEV.23,25,26 According to Münter et al,27 IEV transportation to 
the cell periphery necessitates the microtubule motor kinesin-1, 
which binds the integral viral membrane protein A36R. 
Surprisingly, the same protein gets localized beneath the cell-
associated extracellular virus (CEV), detaches from kinesin-1, 
and shifts to signaling actin polymerization following tyrosine 
phosphorylation by Src and Abl family kinases.27 Phosphorylation 
on Y112 and Y132 residues in A36R generates binding sites for 
the Src homology 2 (SH2)—domains of Nck and Grb2 adaptor 
proteins, respectively, that functionally attach to the actin bind-
ing proteins WIP and N-WASP.24 N-WASP stimulates the 
nucleation of actin filaments making connections with actin and 
the Arp2/3 complex, a seven-subunit complex that drives 
dynamic actin assembly during migration, adhesion, or vesicle 
trafficking.28-30

These studies make it prominent that blocking the A36R 
protein of poxviruses prevents the actin polymerization thus 
warding off the viral migration, adhesion, and vesicle traffick-
ing to the host cell. All the viruses of the genus Orthopoxvirus 
encompass A36R protein functioning in the same manner.24 
Therefore, to prevent the actin polymerization of the host cell 
the A36R protein of MPXV is thought to be a more promising 
drug target.

Peptides have evolved as extremely selective and potent 
signaling molecules that bind to specified cell surface receptors, 
or ion channels to exert powerful physiological effects. Their 
potential pharmacological profile and inherent features repre-
sent an exceptional starting point for the development of 
advanced therapeutics.31 As a drug, peptides are prominent for 
their exorbitant affinity, specificity to a respective target and 
efficacy, at the same time, safety and tolerability in human that 
estimate assorted supremacy over small molecules.32-35 In 2011, 

US Food and Drug Administration (FDA) corroborated pep-
tide-based drug against the Hepatitis C virus and multiple 
peptides are experiencing phase trials targeting Influenza virus, 
Hepatitis B and D virus. Peptide therapeutics against 
Chikungunya virus, Zika virus, and Dengue virus are exhibit-
ing antiviral activity.36

There was no authorized treatment against human MPXV 
before 2019. Dryvax, a smallpox vaccine, was practiced for both 
smallpox and monkeypox treatment,37 developed various influen-
tial adverse effects in vaccinated people and persons in contact 
with the vaccine.38,39 Later information revealed that the prime 
mode of protection against MPX managed by the existing non-
attenuated smallpox immunization is interfered by Abs.40 
Considering drawbacks of the current treatment, efforts were 
made to identify plausible small molecule as well peptide-based 
therapeutic agents against the A36R protein of MPXV conduct-
ing virtual screening strategies combined with molecular docking.

Materials and Methods
Methodological overview is demonstrated in Figure 1.

Peptide Preparation
Peptide retrieving

Potential 3459 antiviral peptides (AVPs) were retrieved from 
the SATPdb v1.0.41 Among the 3459 AVPs, 331 sequences 
were excluded as those were in modified forms. Similarly, 2042 
AVPs were extracted from the data repository of antimicrobial 
peptides (DRAMP v3.0).42 From 3128 and 2042 AVP 
sequences, unique AVP set was created using Venn diagram43,44 
for further analysis.

Peptide screening based on physicochemical 
properties

Physical and chemical parameters of the curated AVP 
sequences were determined using Expasy’s Protparam45 in 
Linux operating system. Peptide filtering criteria set in accord-
ance with physicochemical frameworks are shown in Table 1. 
Accordingly, the AVPs in the rage of 5 to 22 amino acids in 
length were selected. The peptides having instability index 
value over 40, and in vivo or in vitro half-lives less than 16 h, 
were removed. In addition, peptides having aliphatic index 
value ranging from 71.13 to 143.54 were kept in record. Also, 
positive grand average of hydropathicity (GRAVY) value con-
taining AVPs were eliminated.

In silico structural modeling and validation

From amino acid sequences, 3 dimensional (3D) structures 
were modeled using the bio tools PEP-FOLD 3,53 and pre-
dicted structures were validated using structural analysis and 
verification server (SAVES v6.0) and protein structure analysis 
(ProSA-web) program.54
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Energy minimization of the modeled structure

From the 3D structures, water molecules were removed and 
hydrogen atoms were added using AutoDock tools (Version 
1.5.6).55 The energy of the final cleaned structures was mini-
mized by implementing Swiss-PdbViewer v4.1.0.56

Antigenicity and allergenicity prediction

To determine allergenicity like antigenicity and immunogenic-
ity of AVPs, AllergenFP v1.057 and AllerTOP v2.058 tools were 
used. Toxicity of the peptides were determined using ToxinPred 
bio tools.59

Protein Preparation
Retrieval of A36R protein sequences and multiple 
sequence alignment

The monkeypox A36R protein sequences were retrieved from 
the NCBI protein database.60 Molecular Evolutionary Genetics 
Analysis (MEGA v11) software61 was applied to perform mul-
tiple sequence alignment (MSA) of the protein sequences. 
MUSCLE algorithm with UPGMA cluster method was used 
for MSA.

3D structure prediction of the target receptor

The 3D structure of the monkeypox virus A36R protein (NCBI 
GenBank ID: QJQ40287.1) was developed using two different 

bioinformatics tools, namely, Contact-guided Iterative Threading 
ASSEmbly Refinement (C-I-TASSER)62 and RaptorX63-65 as 
no crystal structure of the A36R protein was found in the protein 
data bank (PDB) and UniProt. Homology modeling of A36R 
protein was also conducted and the sequence data of A36R pro-
tein was compared with another protein having both a known 
sequence and a known structure (PDB hit: 1sl6A). The highest 
similarity identity to a known protein template is 16.67%, a value 
less than 40%, so A36R protein structure could not be built using 
homology modeling. Therefore, ab initio 3D structure was mod-
eled using C-I-TASSER and RaptorX servers.

Refinement and validation of the modeled 3D 
structure of the target receptor

The predicted PDB format of the monkeypox virus A36R pro-
tein was refined exploiting 3Drefine bio tools,66 and the refined 
structures were further rectified taking advantage of GalaxyWEB 
server.67,68

Validation of the modeled 3D structure of the target 
receptor

The refined PDB model of the A36R protein was validated by 
structural analysis and verification server (SAVES v6.0) and 
MolProbity.69 ERRAT,70 Ramachandran Plot,71,72 and overall 
G-factors71,72 from SAVES v6.0 server were used to measure 
the maximum quality of the predicted structures.

Figure 1. Methodological overview.
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Energy minimization of the target receptor

Water molecules of the refined A36R protein were deleted to 
avoid untoward molecular interaction, and hydrogen atoms 
were attached using MGL Tools (Version 1.5.6). The energy 
minimization of A36R protein was performed using Avogadro 
software73 with the support of MMFF94 force field, setting up 
500 steps, steepest descent algorithm and 10e-7 convergence, 
respectively. The minimized protein 3D structure was used for 
molecular docking and dynamics simulation.

Prediction of active sites

The ligand-binding pocket, ie, inhibitory site of the A36R pro-
tein, was determined applying the Computed Atlas for Surface 
Topography of Proteins (CASTp 3.0) (Figure 2A),74 
DoGSiteScorer (Figure 2B),75 and DeepSite (Figure 2C),76 
respectively. AutoDock Vina77,78 was also used to generate the 
grid box size 30, 30, 30 for x, y, z axes, grid center −38.4 × 54.2 
× 0.2, respectively, and 0.375 Å spacing.

Molecular docking

The PDB structure of the A36R protein as the target receptor 
and the peptides as the ligands were provided as input in the 
DINC 2.0 server,79-82 which is a parallelized meta-docking 
method for the incremental docking of large ligands (using 
AutoDock Vina).

Virtual screening of A36R protein

TACC, a virtual drug discovery portal, was used to conduct 
virtual screening. The AutoDock Vina77,78 application recom-
mended that our target structure A36R be imported in PDB 
format and subsequently converted to PDBQT format. Aside 
from the target structure, the center and size of the search 
space, as well as the parameters of the designated virtual 

libraries for screening from the set of accessible compound 
libraries, were also provided for the initiation of the virtual 
screening experiment. The grid box’s dimensions and coordi-
nates were center x = −38.4, center y = 54.2, center z = 0.2, size 
x = 30, size y = 30, and size z = 30. The exhaustiveness was 
adjusted to 10 for molecular docking simulations. In high-
throughput virtual screening of the A36R, the ZINC-in-trials 
(9270 molecules), ZINC-fragments (546 003 fragments), and 
Enamine-HTSC (3 467 770 molecules) libraries were 
employed. The ZINC library in-tails, on the other hand, con-
tains medications that are now being tested in clinical trials.83

Pharmacokinetic profile (ADMET) evaluation of 
the hit compounds from virtual screening

A preliminary predictive in silico pharmacokinetic study was 
conducted with ADMETlab 2.0,84 which includes absorption 
(Papp Caco-2 permeability, human intestinal absorption), dis-
tribution (plasma protein binding [PPB], blood-brain 
barrier[BBB]), metabolism (P450 CYP3A4 inhibitor, P450 
CYP3A4 substrate, P450 CYP2 C9 inhibitor), elimination 
(half-life time [T1/2], clearance rate [CL]), and toxicity 
(hERG toxicity, AMES toxicity, hepatotoxicity, respiratory 
toxicity).

Molecular dynamics (MD) simulation

To appraise the ligand’s effectiveness in suppressing A36R of the 
monkeypox virus, MD simulations of the protein–ligand (drug 
molecule) complex were undertaken. We conducted the MD 
simulation as described in our earlier work and few other stud-
ies.85,86 GROMACS (v2021)87 with the company of the 
CHARMM General Force Field (CGenFF)88 following energy 
minimization was used to accomplish the MD simulation. To 
develop the system, an in-house python script was used which 
used Chimera89 dock prep functionality to cleanse the protein 

Table 1. Peptide filtering criteria based on length, instability index, aliphatic index, half-life, and grand average of hydropathicity (GRAVY).

CRITERIA CUTOff REMARKs REfERENCEs

Length 5 to 22 Very short peptides are less likely to have a unique sequence, and they are 
more susceptible to interferences. On the other hand, lengthy peptides are not 
desirable due to their hydrophobicity and to issues regarding their synthesis 
and purification. Typically, peptides ranging from 5 to around 22 amino acids 
are best suited for quantification purpose and interferences.

46,47

Instability Index (II) <40 A protein whose instability index is smaller than 40 is predicted as stable. 48

Aliphatic Index (AI) 71.13 to 143.54 A high aliphatic index indicates that a protein is thermo-stable over a wide 
temperature range.

49

Half-life >16 h Rogers et al classified proteins into sets (that were used by Guruprasad et al 
1990, and others) as stable if the in vivo half-lives were greater than 16 h or 
unstable if the in vivo half-lives were less than 5 h.

50

GRAVY Negative Positive GRAVY values indicate hydrophobic; negative values mean 
hydrophilic. Low GRAVY range indicates the possibility of being a globular 
(hydrophilic) protein rather than membranous (hydrophobic).

51,52
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and to attach missing residues exploiting the Dunbrack rotamer 
library. Hydrogens were physically put into the protein employ-
ing the GROMACS pdb2gmx function, whereas hydrogens 
were manually placed into the ligand using custom force field 
settings. The GROMACS tool was imposed to create the pro-
tein topology for A36R, and parameterization of the ligand 
topology was achieved by applying the LigParGen program.90 
The LigParGen bio tool accomplished optimization using the 
CGenFF, and the charge model (CM1A) parameters were also 
developed. The system was put in the center of a cubic box of a 
TIP3P water model with a minimum distance of 1.0 nm between 
the wall and any component of the protein set up before the start 
of the experiment. Normalization of the solvated system was 
done by adding Na+ (sodium) and Cl– (chloride) to a 0.15 M 
ionic strength aqueous solution. Canonical (NVT) and con-
stant-temperature, constant-pressure (NPT) ensemble were 
used to perform system equilibration for 100 picoseconds (ps). 
The trajectories were also constructed in every 2 femtoseconds 
(fs) and recorded every 1 ps. The minimized system was progres-
sively heated to appropriate temperatures for 100 ps within an 
isothermal ensemble by soft coupling with the Berendsen ther-
mostat (NVT).91 To avoid drift away from the protein during 
equilibration, ligand location limitations were applied before 
running NVT simulations. All bonds were restricted using the 
LINCS algorithm.92 Periodic boundary conditions (PBC) were 
applied with a constant number of particles in the system, con-
stant pressure, and constant temperature simulation require-
ments (NPT). The NPT ensemble was executed at a temperature 
of 300 K. The system was combined with a Parrinello-Rahman 
barostat93 for equilibrating at 1 bar pressure for 100 ps. The 
Particle Mesh Ewald (PME) method was used to process the 
electrostatic interactions. With a cutoff of 1.0 nm, the short-
range van der Waals cutoff (rvdW) interactions were calculated. 

Production simulations with limitations were run for 10 ns. The 
LINCS algorithm was taken to limit all bond lengths.92 DELL 
workstation with Intel Xenon processor (10 C, 20 T), 256 GB 
RAM; running Fedora (v31) Linux operating system was 
employed to run MD. The root mean square deviation (RMSD), 
root mean square fluctuation (RMSF), radius of gyration (Rg), 
hydrogen bond (H-bond), solvent accessible surface area (SASA) 
(using van der Waals Volumes and Radii), and distance analysis 
were computed using Gromacs.94 Trajectory plots and figures 
were developed to exploit an in-house python script with 
Matplotlib95 and NumPy96 library as well as implementing R 
version 3.6.397 and Peptides library.98

Result
Peptide selection

We obtained 4893 AVP sequences for scrutiny by Expasy’s 
Protparam (Proteomics Protoc. Handb., 2005), after excluding 
277 common AVP set from either database and 331 revised 
versions from SATPdb. Among 4893 AVPs, 57 sequences 
exceeded the selection benchmarks of length, instability index, 
aliphatic index, half-life, and grand average of hydrophobicity, 
respectively (Supplementary Table A.1). This selection proce-
dure had a high resemblance with the peptide filtering technol-
ogy reported by Chang and Yang, 2013.51

Validation analysis of the predicted 3D structures

Five crystal structures were received against each insertion of 
sequences and overall 285 3D models were attained from PEP-
FOLD 3 bio tools.53 After implementing 5 models individu-
ally to SAVES v6.0 server and ProSA-web program,54 1 model 
was validated because of showing maximum percentage of resi-
dues in the most favored region of Ramachandran Plot and 

Figure 2. 3D structure of A36R and its predicted active site: (A) showing the inhibitory site by using CAsTp, (B) Deepsite, and (C) DoGsitescorer. CAsTp 

indicates Computed Atlas for surface Topography of Proteins.
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exhibited significant ERRAT score, weighty G-factors and 
notable ProSA-web Z score. Thus, 57 models were finalized 
those revealed the highest ERRAT score, greater core region of 
Ramachandran plot, and appropriate G-factors and Z-score, 
respectively (Table 2).

Multiple sequence alignment analysis of central and 
western strain of monkeypox virus (MPV) A36R 
protein

Total 31 monkeypox virus A36R protein sequences of both 
West African and Central African strain were retrieved from 
NCBI protein database.60 The sequences comprised 168 amino 
acids in length. MSA (Supplementary Fig. A.1) execution of 
31 MPXV A36R protein sequences exhibited mutation in the 
3 sequences at 1 point (glycine instead of arginine) compared 
with others and these mutated sequences carrying 11 patients 
were isolated in Central Africa and named Zaire 96-I-96 strain 
or Monkeypox virus Z1 strain.99 Therefore, we excluded muta-
tion containing 3 sequences (Accession: AAL40604.1; 
NP_536573.1 and CAC69954.1) and selected West African 
strain as our final A36R protein sequence. Finally, NCBI 
GenBank ID holding QJQ40287.1 sequence100 from West 
African strain was chosen to predict 3D structure.

Structural modeling and validation analysis of 
monkeypox virus (MPV) A36R protein

Predicted 5 models of C-I-TASSER generated 25 refined 3D 
structures after employing 3Drefine bio tools, and 1 model 
among 25 was found as the finest because it displayed opti-
mum residues in acceptable region of RC Plot and particular 
quality factor (ERRAT) compared with others. Further refine-
ment was performed inserting this finest model to GalaxyWEB 
program which developed 5 more 3D rectified structures. The 
superior model out of five 3D rectified structures was certified 
based on SAVES v6.0 outcome and MolProbity statistics. 
According to SAVES v6.0 outcome, the utmost model of the 
C-I-TASSER showed 86.1% residues in the most key zone of 
Ramachandran plot with estimating G-factors value −0.06, 
exhibited ERRAT score 93.08, and demonstrated 75.60% of 
Verify3D, respectively. Summary statistics of MolProbity dem-
onstrated 89.76% residues in the satisfactory zone of RC plot 
for the best model of C-I-TASSER server (Supplementary 
Table A.3). Similar approach was implemented to establish the 
top model from the estimated 5 models of RaptorX server. RC 
plot for the best refined model of RaptorX server showed 
87.3% of residues in most preferred area with G-factors value 
0.04, exhibited overall quality factor (ERRAT) 94.90, and 
fewer than 80% of the amino acids have scored ⩾0.2 in the 
3D/1D profile. Also, MolProbity statistics displayed 95.18% 
residues in the preferred region of RC plot for the finest model 
of RaptorX server (Supplementary Table A.3). Table 3, 
Supplementary Table A.3 and Supplementary Fig. A.2 reveal 

validation statistics which indicated that RaptorX server pre-
dicted better A36R protein model of MPXV than C-I-
TASSER program and can be used for further peptide-based 
molecular docking analysis.

Active site analysis of A36R protein

CASTp, DoGSiteScorer and DeepSite bio tools identified 
the active groove of the A36R protein of MPXV. There was 
detection around 12 active points of the A36R protein; those 
are PRO85, ASP86, THR87, ARG88, LEU90, ARG91, 
PHE94, ILE121, ASP122, ILE123, SER124, and TYR144 
(Supplementary Fig. A.3). These amino acids of the A36R 
protein were meticulously evaluated to analyze molecular 
docking.

Molecular docking analysis of A36R against AVPs

All 57 models were used to dock against the A36R protein of 
MPXV. The docking energy from each peptide is tabulated in 
Supplementary Table S2. The most conducive binding scores 
of 10 peptide models were recorded in Table 4. Furthermore, 
we selected the best 3 favorable peptides among the 10 pep-
tides for non-bonded structure analysis. The docking scores 
for top 3 peptide models were −6.10, −6.10 and −6.30 kcal/
mol, respectively, for SATPdb10193, SATPdb21850, and 
SATPdb26811 peptides.

Docking interaction between A36R and AVPs

The non-bonded interactions between the peptides and the 
A36R protein of MPXV are shown in Figure 3. The 
SATPDb10193 peptide formed 6 hydrogen bonds with the 
A36R protein of MPXV at THR87, ARG91, SER124, 
ARG88, TYR10, and ARG88 and each of the amino acid resi-
dues had bond distance around 3.0 Å. This interaction was also 
stabilized by 2 electrostatic bonds at ARG88, and ASP8, 7 
hydrophobic bonds at TYR54, VAL92, HIS89, PHE94, 
VAL92, LYS119, and ILE121, and 4 unfavorable bonds at 
GLU4, ASP5, ASP8, and PRO12 (Figure 3 and Table 5). The 
SATPdb21850 peptide and the A36R protein interaction cre-
ated 6 hydrogen bonds at ASP122, SER124, GLY147, THR87, 
ASP120, and ILE121 showing bond distance about 2.5 Å. 
This complex additionally generated 1 electrostatic bond at 
GLU4, 2 hydrophobic bonds at ARG91 and PHE94, and 4 
unfavorable bonds at TYR5, GLU4, ARG91, and SER124 
(Figure 3 and Table 5). The SATPdb26811 and the A36R pro-
tein complexation developed 10 hydrogen bonds at THR87, 
LYS125, ASP55, THR127, ASP122, ARG88, SER124, 
LYS125, and ILE123 securing approximate bond distance 3.0 
Å. The SATPdb26811 and the A36R protein were also bound 
by 6 hydrophobic bonds at ARG91, VAL92, LEU90, LEU126, 
HIS89, and ILE121, and 4 unfavorable bonds at ARG88, 
LYS148, ASP55, and ASP122 (Figure 3 and Table 5).
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Table 2. Peptide structures validation through sAVEs v6.0 result and ProsA-web Z-score.

DATABAsE ID sEqUENCE MODEL NO. ERRAT RC PLOT 
(%)

G-fACTORs PROsA-WEB 
Z-sCORE

DRAMP01005 VKsTGRADDDLAVKTKYLPP Model 5 100 100 −0.11 −0.79

DRAMP15917 MNKIPIKDLLNPG Model 5 100 88.9 −0.53 −0.64

DRAMP16086 IsfDELLDYYGEsGs Model 3 100 100 −0.14 −1.94

DRAMP16110 IKILGNqGsTLTKGPYsK Model 4 Not Applicable 66.7 −0.31 −0.18

DRAMP16162 GTHPsssAGLKNDLLEN Model 1 100 100 −0.19 −1.48

DRAMP16553 VWqIKqLqARILAVERYLKDq Model 1 100 100 0.19 −2.04

DRAMP16556 IKqLqARILAVERYLKDq Model 1 100 93.8 0.05 −1.86

DRAMP16563 ILAVERYLKDq Model 5 100 88.9 −0.2 −1.23

DRAMP16566 VERYLKDq Model 5 Not Applicable 83.3 −0.35 −1.27

DRAMP16617 MYELqKLNsWDVfTNWL Model 3 100 100 −0.05 −0.75

DRAMP16753 IsqVNEKINqsLAfIRKsDELL Model 1 100 95 0.1 −1.8

DRAMP16756 VNEKINqsLAfIRKsDELL Model 5 100 100 −0.02 −1.94

DRAMP16798 ITLNNs Model 3 Not Applicable 100 −0.77 0.37

DRAMP16880 IEKLKEAIRD Model 2 83.3333 76.2 −0.18 −2.61

sATPdb10193 ITfEDLLDYYGP Model 1 100 100 −0.12 −2.44

sATPdb10601 GELGRLVYLLDGPGYDPIHCD Model 2 100 92.9 −0.19 −1.56

sATPdb10735 GfKRIVqRIKDfLRNLV Model 4 100 100 0.29 −1.99

sATPdb11012 GEDLA Model 4 Not Applicable 100 −0.74 −0.08

sATPdb13374 INAKGVCRsTAKYVR Model 2 100 91.7 −0.05 −0.19

sATPdb14359 GLVRDNMAKLRERLK Model 2 100 92.3 −0.12 −0.98

sATPdb14986 GYsAGERIVD Model 4 100 100 −0.29 −1.25

sATPdb15048 GqKKIRVRLs Model 3 Not Applicable 75 −0.06 −0.1

sATPdb17455 GIKEWKRIVqRIKDfLRNLV Model 3 100 100 0.25 −1.84

sATPdb17574 GPqREPYNEWTLELL Model 1 100 90.9 −0.17 −1.08

sATPdb17706 IsTTfTTNLTEYPLs Model 5 100 83.3 −0.06 −2.17

sATPdb17733 GELGRPVYVLGDPGYYAT Model 3 100 100 −0.28 −0.45

sATPdb17990 GIKEfKRIVqRIKDfLRNLV Model 3 100 94.4 0.19 −2.24

sATPdb18158 GRfKRIRKKLKKLfKKIs Model 5 100 87.5 0.12 −1.86

sATPdb18474 IRKVLfLDGIDKAqDEHEKY Model 1 100 94.1 −0.05 −1.58

sATPdb18549 VTTAqETKRGRIqTKKEVsI Model 3 100 88.2 −0.1 0.26

sATPdb18582 MARHRNWPLVMV Model 1 100 66.7 −0.35 −0.43

sATPdb19309 GIGVTqNVLYENqKqIANqf Model 5 100 94.1 0.06 −0.81

sATPdb21810 MDGPKVKqWPLTEEKIKALV Model 3 100 93.3 −0.11 −0.41

sATPdb21850 IsYEY Model 1 Not Applicable 100 −0.54 −0.35

sATPdb23879 GMVTqYHqVLATHqEAIEKV Model 2 100 100 0.13 −1.64

sATPdb24458 VPAHKGIGGNEqVDKLVsAG Model 3 100 92.9 −0.2 −1.41

(Continued)
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DATABAsE ID sEqUENCE MODEL NO. ERRAT RC PLOT 
(%)

G-fACTORs PROsA-WEB 
Z-sCORE

sATPdb24463 ITTYWGLHTGERDWHL Model 5 Not Applicable 91.7 −0.01 −0.09

sATPdb25248 GELDELVYLLDGPGYDPIHs Model 3 100 92.9 −0.23 −1.95

sATPdb25427 VVDRGWGNGAGLfGKGsID Model 2 Not Applicable 54.5 −0.84 0.35

sATPdb25481 GENNELRLTRDAI Model 4 100 90.9 −0.18 −0.39

sATPdb25562 GIKEfKREfqRIKDfLRNLV Model 4 100 100 0.23 −2.22

sATPdb25705 VEGqLGENNELRLTRDAIE Model 5 100 60 −0.32 −0.34

sATPdb25776 IqKEIDRLNEVAKNLNEsLI Model 4 100 100 0.1 −2.05

sATPdb26073 IWLHsLGqHIYETYG Model 4 100 100 0.01 −1.23

sATPdb26160 VRDqAEHLKT Model 5 100 100 −0.3 −1.7

sATPdb26216 GIKqfKRIVqRIKDfLRNLV Model 3 100 100 0.26 −2.27

sATPdb26449 VGqPqYYqANGGfLI Model 5 100 100 −0.06 −0.81

sATPdb26452 IKKEKVYLAWVPAHK Model 4 100 75 −0.29 −0.48

sATPdb26811 VDGIPVsWDADARAPA Model 2 100 90.9 −0.37 −0.95

sATPdb27074 IKKEKVYLAWVPAHKGIGN Model 3 87.5 57.1 −0.47 −0.33

sATPdb27355 GsRIPTGERVWDRGNVTLLC Model 1 100 93.3 −0.24 −0.92

sATPdb27795 VDGIPVEWDADARAPA Model 2 100 90.9 −0.39 −1.61

sATPdb28063 GsWLRDIWDWICEVLsDfK Model 1 100 88.2 −0.13 0.1

sATPdb28187 GWVKPAKLDG Model 5 Not Applicable 100 −0.1 −0.83

sATPdb28641 IHVqGHLqEVDAGNfIPP Model 2 100 84.6 −0.26 −0.86

sATPdb28672 GTKWLTEWIPLTAEAEC Model 2 100 92.9 −0.2 −1.25

sATPdb28952 GfKRIVqRIKDfLRNLV Model 5 100 100 0.29 −1.99

Abbreviations: ProsA, protein structure analysis; sAVEs, structural analysis and verification server; RC Plot, Ramachandran Plot.

Table 2. (Continued)

Virtual screening analysis of A36R against ZINC 
trial, ZINC fragments, and Enamine HTSC 
databases

Virtual screening against 3 ligand databases was used to look 
for specific interactions with the protein A36R (ZINC Trial, 
ZINC Fragments, and Enamine HTSC databases). Via virtual 
screening, a list of hits was formed, which was subsequently 
ordered by docking score (Figure 4). A lower score indicates 
that the ligand and the target protein have more favorable 
energy interactions. The top 1000 ligands with the strongest 
binding affinity for the therapeutic target protein A36R were 
reported in each drug library evaluated. The highest binding 
affinities were identified in ZINC Fragments (−6.9 to −7.8 
kcal/mol), while the lowest binding affinities were found in the 
Enamine HTSC library (−8.8 to −9.8 kcal/mol) based on the 
docking scores. The top 100 compounds from the 3 libraries 
were considered for further physicochemical features and drug 
likeliness evaluation based on their binding affinities against 

A36R. The top 100 compounds had docking scores ranging 
from −9.3 to −9.8 kcal/mol, and all of the molecules were 
obtained from the Enamine HTSC database.

Pharmacokinetics (ADMET) characteristics 
analysis of top virtually screened molecules

Early estimation of physiologically based pharmacokinetic 
parameters such as absorption, distribution, metabolism, excre-
tion, and toxicity (ADMET) have become a significant factor in 
minimizing the likeliness of clinical therapeutic failure.101 The 
pharmacokinetics (ADMET) and drug likeliness qualities of all 
100 medicines were examined, and the top 3 compounds for 
inhibiting the A36R protein of the monkeypox virus were 
screened. Two compounds (Z55287118 and Z97653013) exhib-
ited outstanding Caco-2 Permeability (>−5.15 cm/s) and all 3 
drugs had strong human intestine absorption (HIA) characteris-
tics, meeting the optimum HIA value of ⩾30%, according to 
ADMET evaluation (Table 6). Although neither drug was able 
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to pass the blood-brain barrier (BBB), the 3 medicines did show 
considerable plasma protein binding (⩽90% optimum). They 
were also reported to be non-inhibitors of most cytochrome 
P450 enzymes, non-respiratory harmful, non-carcinogenic, non-
corrosive, and non-irritating to the eyes. On the other hand, only 
Z97653013 was shown to be non-AMES toxic. All 3 com-
pounds were orally bioavailable (Table 6, Figure 5A), which is an 
important consideration in the development of oral medicines. 
The 3 medicines exhibit moderate clearance (2.399, 1.881, and 
7.616 mL/min/kg), despite their lack of a decent T1/2 value. 
Despite this, the molecular weights of the compounds ranged 
from 483.160 to 356.120 g/mol, and the LogP values were deter-
mined to be within the ideal range of 1 to 5. The Polar surface 
area (TPSA) was also determined to be below the <140 Å2 
threshold, and all 3 agents followed the Lipinski Rule of Five.

Molecular interactions of the selected top drug 
candidates with A36R protein

The docking interactions of the hit ligands (Z55287118, 
Z18483535,and Z97653013) with the A36R were visualized 

in detail with BIOVIA Discovery Studio 2021 (Table 7, Figure 
5B and C). The molecules formed van der Waals interaction, 
conventional hydrogen bonds, and carbon hydrogen bonds 
with ARG91, PRO85, ARG91, SER124, ASP12, THR87, 
ARG88, ARG91, ASP122, and ASP120, whereas unfavorable 
acceptor-acceptor, pi-alkyl, and pi-anion interactions were 
generated with amino acids LYS125, LEU90, ARG91, 
ILE121, ASP118, LYS119, LYS125, PHE94, and ARG91, 
respectively.

Molecular dynamics simulation analysis of the top 
hit compounds

The top-ranking drug Z55287118 and the 3 peptides 
SATPdb10193, SATPdb21850, and SATPdb26811 had the 
best docking affinity and binding free energy; therefore, they 
were considered for molecular dynamics (MD) simulation to 
determine their binding kinetics and stability with the A36R 
receptors. The energy minimization, NVT, NPT equilibration 
methodologies were used to simulate receptor-drug complexes 
using the CHARMM36 force field. The RMSD (after lsq fit) 

Table 3. Ramachandran plot statistics, ERRAT, and Verify3D scores for the A36R protein generated models using C-I-TAssER and RaptorX server.

Mf REGIONsA 
(%)

AA REGIONsB 
(%)

GA REGIONsC 
(%)

DA REGIONsD 
(%)

G-fACTORsE ERRAT 
sCOREf (%)

VERIfY 3D 
sCOREG (%)

C-I-TAssER 86.1 9.5 1.3 3.2 −0.06 93.08 75.60

RaptorX 87.3 8.2 0.0 4.4 0.04 94.90 fewer than 80

Abbreviation: C-I-TAssER, Contact-guided Iterative Threading AssEmbly Refinement.
aRamachandran plot: Residues in most favored regions [A, B, L].
bRamachandran plot: Residues in additional allowed regions [a, b, l, p].
cRamachandran plot: Residues in generously allowed regions [∼a, ∼b, ∼l, ∼p].
dRamachandran plot: Residues in disallowed regions.
eRamachandran plot: Overall G-factors.
fOverall quality factor generated by ERRAT server.
gAveraged 3D-1D score generated by Verify3D server.

Table 4. The binding energy of the top 10 peptide molecules. The more negative energy signifies the favorable binding.

DATABAsE ID sEqUENCE BINDING sCORE
(KCAL/MOL)

RMsD
(Ă)

sATPdb26811 VDGIPVsWDADARAPA −6.30 0.00

sATPdb10193 ITfEDLLDYYGP −6.10 0.00

sATPdb21850 IsYEY −6.10 0.00

sATPdb17706 IsTTfTTNLTEYPLs −6.00 0.00

sATPdb26073 IWLHsLGqHIYETYG −6.00 0.00

sATPdb27795 VDGIPVEWDADARAPA −6.00 0.00

sATPdb24463 ITTYWGLHTGERDWHL −5.70 0.00

sATPdb28641 IHVqGHLqEVDAGNfIPP −5.70 0.00

DRAMP16798 ITLNNs −5.70 0.00

DRAMP16617 MYELqKLNsWDVfTNWL −5.70 0.00

Abbreviation: RMsD, root mean square deviation.
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stability of the protein-drug and protein-peptide complexes 
demonstrated that after 2 ns of simulation, the system was con-
sistently stabilized and inclined to remain in the plateau phase 
for the remainder of the time (Figure 5D, first column panel 
and Figure 6, first column panel). While the protein grew up 
quickly, the RMSD value remained steady in the range of 0.2 to 
0.25 nm and 1.0 to 1.5 nm for drug and peptide, respectively. 
The protein-drug and protein-peptide complexes have the same 
RMSD pattern as the protein alone. The complexed RMSD 
was between 0.2 and 0.25 nm for protein-drug and 1.0 and 
1.5 nm for protein-peptide. This indicates that the structures of 
the protein-ligand complex have already achieved a state of rela-
tive equilibrium. The complex RMSF gives each atom’s variance 
during the simulation (Figure 5D, second column panel and 
Figure 6, second column panel). The findings revealed that the 
binding site residues were less fluctuant for protein-drug and 
protein-peptide complexes, except SATPdb10193. On average, 
the RMSF values were 0.4 and 0.6 nm for protein-drug and 
protein-peptide, respectively. A protein’s Solvent Accessible 
Surface Area (SASA) is a characterization of the surface area 
accessibility of the complex during simulation (Figure 5D, third 
column panel and Figure 6, third column panel). The graph 
illustrates how SASA for protein-drug as well as protein-pep-
tide complexes has changed throughout time. The drug-protein 
complex’s SASA is lower than the proteins on its own. It means 
the protein is attached to the ligand. Nevertheless, for peptide-
protein complex, the SASA scores were higher than the 

proteins. When the protein structure is exposed to solvent, it 
partially unfolds, as seen by the small increase in SASA values 
with time. SASA levels that are reduced when medications 
attach to receptors, on the other hand, suggest that the protein 
has shrunk. The radius of gyration (Rg) was estimated as a 
measure of structural compactness (Figure 5D, fourth column 
panel and Figure 6, fourth column panel). The Rg value will 
most likely remain consistent if the protein is folded correctly. If 
the protein unfolds, Rg levels will change over time. The aver-
age Rg of the protein-ligand and protein-peptide complexes 
was 2.0 nm, and it remained fairly stable throughout time, 
excluding SATPdb10193. The Rg figure shows a small decline 
in the total Rg value of the protein when docked with the drug 
and peptides, indicating that receptors in conjunction with the 
medicines were compactly packed and displayed stable folding. 
All of the data from the MD simulation of a chosen docked 
structure confirmed the stability of protein-ligand complex, 
and for protein-peptide complexes, SATPdb21850 and 
SATPdb26811 showed better stability.

Allergenicity and toxicity prediction

The SATPdb10193 and SATPdb26811 peptides were charac-
terized as probable non-allergen, whereas SATPdb21850 was 
identified as probable allergen by AllerTOP v. 2.0 bio tools. On 
the other hand, the SATPdb10193, SATPdb21850, and 
SATPdb26811 peptide molecules were non-allergic and 

Figure 3. The non-bonded interaction of the sATPdb10193, sATPdb21850, sATPdb26811 peptides and the A36R protein of MPXV. Here, (A), (B), and (C) 

delineate the binding interactions of the sATPdb10193, sATPdb21850, and sATPdb26811 peptide molecules with the A36R protein of MPXV after 0 ns 

time. MPXV indicates monkeypox virus.
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Table 5. Non-bonded interactions of the sATPdb10193, sATPdb21850, and sATPdb26811 peptides with the A36R protein of MPXV.

PEPTIDE NAME AMINO ACID INTERACTION CATEGORY BOND DIsTANCE
(Å)

sATPDb10193 THR87 Hydrogen bond 2.71469

ARG91 Hydrogen bond 2.24742

sER124 Hydrogen bond 2.79064

ARG88 Hydrogen bond 2.73909

TYR10 Hydrogen bond 3.57310

ARG88 Hydrogen bond 2.73909

 Electrostatic bond 3.10949

AsP8 Electrostatic bond 3.49650

TYR54 Hydrophobic bond 4.98725

VAL92 Hydrophobic bond 4.60781

HIs89 Hydrophobic bond 5.49742

PHE94 Hydrophobic bond 5.35305

VAL92 Hydrophobic bond 5.36524

LYs119 Hydrophobic bond 5.33564

ILE121 Hydrophobic bond 5.32334

GLU4 Unfavorable bond 0.93776

AsP5 Unfavorable bond 0.93648

AsP8 Unfavorable bond 0.93699

PRO12 Unfavorable bond 0.93667

sATPdb21850 AsP122 Hydrogen bond 2.55006

sER124 Hydrogen bond 2.64414

GLY147 Hydrogen bond 2.74919

THR87 Hydrogen bond 2.44327

AsP120 Hydrogen bond 2.97542

ILE121 Hydrogen bond 2.69115

GLU4 Electrostatic bond 3.38873

ARG91 Hydrophobic bond 5.31355

PHE94 Hydrophobic bond 4.94915

TYR5 Unfavorable bond 0.93598

GLU4 Unfavorable bond 0.93633

ARG91 Unfavorable bond 4.48258

sER124 Unfavorable bond 1.84364

sATPdb26811 THR87 Hydrogen bond 2.62530

LYs125 Hydrogen bond 2.00428

AsP55 Hydrogen bond 2.52361

THR127 Hydrogen bond 2.80014

(Continued)
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non-toxic which were detected by AllergenFP v.1.0 and 
ToxinPred tools, respectively (Table 8).

Discussion
Monkeypox virus has been focused by national and interna-
tional media, public and scientific attention after its recent 
emergence reported on May 7, 2022 in the United Kingdom,102 
has created a pandemic situation because of its onward spread 
around the globe. Although different suggested drugs and vac-
cines are there, however, monkeypox infection is still challeng-
ing because no effective drugs or vaccines have been found 
that mitigate the risk of MPX infection significantly. For that, 
there is a necessity for rapid and effective development of 
active antiviral agents against MPXV. As conventional drug 
development procedures are time-consuming and costly, in 
silico–based drug design approaches were conducted using 
molecular docking that may promote to find out the new ther-
apeutic agent against MPXV due to its fast and on target 
screening proficiency from a broad small molecule library or 
peptide database.103-105

The A36R protein of MPXV plays significant role for the 
polymerization of actin tail beneath the CEV that moves the 
virus into the neighboring cell or the virus is freed as an EEV. 
Blocking the A36R protein of poxviruses inhibits the actin 
polymerization; consequently, viral migration, adhesion, and 
vesicle trafficking to the host cell are thwarted. AVPs are 

thought as leading component that directly target the viral 
proteins or inhibit the development of viruses by targeting its 
specific regions or components.36

Our study shows that most of the selected AVPs have strong 
interaction with the A36R protein. It was observed that their 
docking scores ranging from −4.10 to −6.30 kcal/mol 
(Supplementary Table A.2). However, we focused on the 
SATPdb10193, SATPdb21850, and SATPdb26811 peptides 
based on docking scores for further analysis because these AVPs 
exhibited the higher binding affinity (–6.10, −6.10 and −6.30 
kcal/mol, respectively) compared with other AVPs. The 
SATPdb10193 peptide had several hydrogen, electrostatic, and 
hydrophobic binding interactions in the catalytic residues at 
THR87, ARG91, SER124, ARG88, PHE94, and ILE121. 
These interactions at the active groove of the protein may be 
responsible for the higher binding energy. Researcher suggests 
that hydrogen, electrostatic, and hydrophobic interaction at the 
active site of the target protein may involve to possible inhibi-
tion of the protein.106 Similarly, multiple hydrogen and hydro-
phobic interaction in the active cavity residues at ASP122, 
SER124, THR87, ILE121, ARG91, and PHE94 may be 
responsible for the tight binding and better affinity which indi-
cates possible blockage of the A36R protein by SATPdb21850. 
Moreover, the SATPdb26811 ligand showed the highest bind-
ing energy −6.30 kcal/mol while interacting with the A36R 
protein of MPXV. This might be result of more hydrogen and 

PEPTIDE NAME AMINO ACID INTERACTION CATEGORY BOND DIsTANCE
(Å)

AsP122 Hydrogen bond 3.29745

ARG88 Hydrogen bond 2.66800

sER124 Hydrogen bond 3.07170

LYs125 Hydrogen bond 3.03728

ILE123 Hydrogen bond 3.74970

ARG91 Hydrophobic bond 4.29514

VAL92 Hydrophobic bond 5.08916

LEU90 Hydrophobic bond 4.57379

LEU126 Hydrophobic bond 5.11871

HIs89 Hydrophobic bond 4.69540

ILE121 Hydrophobic bond 4.74043

ARG88 Unfavorable bond 5.59912

LYs148 Unfavorable bond 5.10524

AsP55 Unfavorable bond 5.51186

AsP122 Unfavorable bond 5.15790

Abbreviation: MPXV, monkeypox virus.

Table 5. (Continued)
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Figure 4. Drugs according to their binding affinities from virtual screening analysis: (A) Docking scores of top 1000 drugs from ZINC Trial library ranging 

from −9.2 to −7.1 kcal/mol, (B) Binding affinities of top 1000 drugs from ZINC fragments compound library ranging from −7.8 to −6.9 kcal/mol (C) Affinities 

of top 1000 drugs obtained from Enamine HTsC database ranging from −9.8 to −8.8 kcal/mol.

hydrophobic bonds with active site residues at THR87, ASP122, 
ARG88, SER124, ILE123, ARG91, LEU90, and ILE121.

A virtual screening evaluation of the A36R protein was also 
performed against the ZINC Trial library, ZINC Fragments 
library, and Enamine HTSC database by using Texas Advanced 
Computing Center’s Drug Discovery portal (TACC). Despite 
the fact that they offered the top 1000 molecules (Figure 4) 
from each chemical library, we chose the top 100 based on the 
greatest binding affinities, with the majority of the medications 
from Enamine HTSC having the highest binding affinities to 
A36R.

The projected spike in the number of commercialized new 
medicines has not occurred in comparison with the number of 
novel drugs created each year, which has been attributed to a 
number of factors, including the candidate products’ poor phar-
macokinetic (PK) properties.107,108 As a result, effective absorp-
tion, distribution, metabolism, elimination/excretion, and 
toxicity (ADMET) screening criteria are required.101,109 All of 
the top 100 medications from the virtual screening study 
undergone ADMET analysis and were filtered out based on 
their ADMET characteristics. After screening, 3 (Z55287118, 
Z18483535, and Z97653013) of the 100 virtually screened 
compounds were eventually certified. The certified Z55287118, 

Z18483535, and Z97653013 molecules formed potent hydro-
gen, electrostatic, and hydrophobic bonds with pocket residues 
at ARG88, ARG91, PRO85, LEU90, ILE121, THR87, 
SER124, and ASP122 (Table 7). In addition, it is indisputable 
that Caco-2 permeability and Human Intestinal Absorption 
(HIA) are 2 of the most important indicators for drug absorp-
tion, and 2 of the compounds (Z55287118 and Z97653013), as 
well as all 3 molecules (Table 6), were shown to have satisfac-
tory Caco-2 permeability and HIA, respectively. When the 
distribution properties (plasma protein binding and blood-
brain barrier permeability) were investigated, almost all drugs 
had acceptable distribution throughout the body and con-
formed to the optimum values. A great oral medication should 
never block cytochrome p450 enzymes and be non-toxic. The 
majority of the compounds, on the other hand, showed good 
cytochrome p450 inhibition and toxicity profiles (have no 
Ames toxicity, non-hERG Blockers, non-respiratory toxic, and 
non-carcinogenic, non-irritating, and non-corrosive to the 
eyes). Despite this, all drugs demonstrated sufficient ADMET 
properties to be deemed therapeutic candidates.

As per Walters and Murcko,110 drug-like compounds are 
molecules with functional groups and physical properties that 
are comparable to the majority of established therapeutics, and 
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so may be regarded as compounds that are pharmacologically 
active or have therapeutic potential. According to Lipinski 
et al,111 the compounds are “drug-like” if they show significant 
acceptable ADMET properties and pass Phase I clinical stud-
ies. As a first-step screening strategy, the rule of five has been 
frequently used to assess the druggability of new pharmaceuti-
cal substances. Oral bioavailability is determined by the logP 
value and total polar surface area (TPSA), and it is important 
to highlight that all of the drugs were orally bioavailable (Table 
6). Furthermore, all of the drugs adhered to the Lipinski rule of 
five as well.

In this context, we find that AVPs SATPdb10193, 
SATPdb21850, and SATPdb26811 as well as small molecule 
compounds Z55287118, Z18483535, and Z97653013 have the 
potentiality to block the function of the A36R protein, and 

such findings can be further evaluated using with additional 
experiments.

Conclusion
The study was conducted to identify the lead molecules that par-
ticularly impede the function of the A36R protein of MPXV. For 
that, peptide and small molecule databases were used to deter-
mine novel drug candidates against the A36R protein. Modeling, 
validating, docking, and finally MD simulation findings suggest 
theSATPdb10193, SATPdb21850, and SATPdb26811 peptide 
molecules have strong interaction with the active point residues 
of the A36R protein of MPXV. Moreover, molecular docking 
and simulation results of the small molecule hit compounds dem-
onstrate that Z55287118, Z18483535, and Z97653013 had high 
affinities with the vital active points of the A36R protein. 

Table 6. Pharmacokinetic (ADMET) and drug likeliness evaluation of hit virtually screened drugs.

ADMET 
PROPERTIEs

Z55287118 Z18483535 Z97653013 DRUG LIKELINEss 
PROPERTIEs

Z55287118 Z18483535 Z97653013

Caco-2 
permeability

−5.246 −4.924 −5.286 Molecular weight 356.120
g/mol

453.080
g/mol

483.160
g/mol

HIA – – – Num. H-bond 
acceptors

5 8 10

PPB 100.82% 98.46% 107.05% Num. H-bond donors 2 1 0

BBB penetration – – – Num. rotatable 
bonds

4 6 5

CYP1A2 inhibitor + + – Number of rings 4 5 5

CYP2C19 inhibitor + + – Number of 
heteroatoms

5 8 11

CYP2 C9 inhibitor + + + Num. heavy atoms 18 22 12

CYP2D6 inhibitor – – – formal charge 0 0 0

CYP3A4 inhibitor + + + Number of rigid 
bonds

25 32 32

CL 2.399 1.881 4.466 flexibility 0.160 0.188 0.156

T1/2 0.068 0.177 0.476 Number of 
stereocenters

0 0 0

Human, oral 
bioavailability

0.7857 0.5571 0.5857 TPsA 75.270 119.750 125.480

Hepatotoxicity – – – logs −7.404 −6.373 −4.364

Respiratory toxicity – – – logP 5.082 4.195 1.355

AMEs toxicity + + – Lipinski rule Accepted Accepted Accepted

skin sensitization – – – Pfizer rule Accepted Accepted Accepted

Carcinogenicity – – + GsK rule Rejected Rejected Rejected

Eye corrosion – – – Golden Triangle Accepted Accepted Accepted

Eye irritation – – – PAINs 1 alert 1 alert 0 alert

Abbreviations: ADMET, absorption, distribution, metabolism, excretion, and toxicity; BBB, blood-brain barrier; CL, clearance rate; HIA, human intestine absorption; PPB, 
plasma protein binding; TPsA, total polar surface area.
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Figure 5. Bioavailability radar, binding modes, molecular interaction, and Trajectory plots of MD simulation of the top hit compounds: (A) Oral-bioavailability 

profile of 3 hit ligands, where the yellow area indicates the upper limit, pink area denotes lower limit, and the blue lines signifies our compound properties; (B) hit 

ligands’ binding modes with receptor; (C) interactions of the hit compounds with receptor amino acid residues. The color bars represent the type of interaction 

formed between ligand and the receptor. (D) Plot of root mean square deviation (RMsD) (first column panel), root mean square fluctuation (RMsf) (second 

column panel), solvent accessible surface area (sAsA) with respect to time (picoseconds) (third column panel), and radius of gyration (Rg) (fourth column panel) 

during MD simulation of A36Rreceptor in complex with the hit ligand Z55287118(red color) and unbound protein (green color). MD indicates molecular dynamic.

Table 7. Molecular interactions of the hit drugs with receptor A36R.

DRUG CANDIDATEs AMINO ACIDs INVOLVED IN H BONDING ELECTROsTATIC/HYDROPHOBIC INTERACTIONs INVOLVED

Z55287118 ARG91, PRO85 LYs125, LEU90, ARG91, ILE121

Z18483535 THR87, ARG91, sER124, PRO85, AsP122 AsP118, ILE121, ARG91, LYs125

Z97653013 THR87, ARG88, ARG91, AsP122, AsP120 LYs119, LYs125, PHE94, ILE121, ARG91
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However, these assessments, additionally future in vivo and in 
vitro clinical trials, can lead to the coherent and rigorous develop-
ment of the peptide and molecular based inhibitors by targeting 
the A36R protein of MPXV.
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