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Abstract: A distributed single-input multiple-output (SIMO) sonar system is composed of a sound
source and multiple underwater receivers. It provides an important framework for underwater
target localization. However, underwater hostile environments bring more challenges for underwater
target localization than terrestrial target localization, such as the difficulties of synchronizing all the
underwater receiver clocks, the varying underwater sound speed and the uncertainties of the locations
of the underwater receivers. In this paper, we take the sound speed variation, the time synchronization
and the uncertainties of the receiver locations into account, and propose the underwater target
localization and synchronization (UTLS) algorithm for the distributed SIMO sonar system. In the
distributed SIMO sonar system, the receivers are organized in a star topology, where the information
fusion is carried out in the central receiver (CR). All the receivers are not synchronized and their
positions are known with uncertainties. Moreover, the underwater sound speed is approximately
modeled by a depth-dependent sound speed profile (SSP). We evaluate our proposed UTLS algorithm
by comparing it with several benchmark algorithms via numerical simulations. The simulation
results reveal the superiority of our proposed UTLS algorithm.

Keywords: localization; clock synchronization; sound speed profile; uncertainties of locations;
distributed sonar

1. Introduction

As a fundamental function for sonar systems, target localization based on multistatic sonar has
gained significant attention. Multistatic sonar can provide superior localization accuracy and detection
performance as well as improved robustness and flexibility over its monostatic counterpart [1].
There are several typical multistatic systems enabling target localization, such as multi-input
multiple-output (MIMO) sonar/radar [2,3], single-input multiple-output (SIMO) sonar/radar [4,5],
wireless sensor networks [6] and multistatic radar [7,8]. Multiple trials conducted by the Centre for
Maritime Research and Experimentation [9] have shown that multistatic sonar systems can provide
better detection, localization and tracking performances than monostatic sonars. In this paper, we focus
on the underwater target localization based on the SIMO sonar system which consists of a sound
source and multiple receivers organized in a star topology.

Various localization algorithms have been proposed for wireless networks [10–12], and terrestrial
SIMO or MIMO radar systems [13,14]. However, they cannot be applied to the distributed sonar system
directly due to the special challenges posed by underwater environments. Firstly, the underwater
sound ray (USR) bends according to the varying underwater sound speed. The curve of the USR gives
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rise to ranging errors thereby localization errors. Secondly, The mobility of the underwater receivers
results in uncertainties of the receiver locations. Therefore, the real locations of the receivers may not
be the same as what we have known. Thirdly, time synchronization has to be carried out due to the
absence of GPS and clock differences of underwater receivers. Equipping the underwater receivers
with accurate atomic clocks [15] is a way to keep all the underwater receiver clocks in synchronization.
However, the atomic clock is quite expensive [16]. Various time synchronization algorithms have
been proposed for underwater devices [17,18]. However, most of them require a number of signal
transmissions which are energy intensive. In addition, it is difficult to replace batteries for underwater
receivers due to the hostile underwater environments. Therefore, it is necessary to perform target
localization considering the variation of underwater sound speed, the uncertainties of the receiver
locations and the time synchronization.

The sonar researchers have proposed a lot of localization algorithms for various sonar systems [19,20].
The authors of [21] perform a fundamental investigation on the performance of elliptic localization. In [22],
the authors utilize the time difference of arrival- angle of arrival (TDOA-AOA) measurements obtained
by two stations to localize a point source. A Bayesian localization method for multistatic active sonar
is proposed in [23]. The authors of [24] take the mobility of the target into consideration and propose
a moving target localization algorithm for multistatic sonar. The multi-target localization problem is
considered in [25], the authors propose a multi-target positioning algorithm via bistatic range space
projection. Efficient closed-form estimators are proposed for multistatic sonar localization in [26].

As another type of underwater target localization, underwater source localization is also a
hotspot [27–43]. The authors of [27] implement source localization from the sparse signal reconstruction
perspective. A lecture note of source localization from range-difference measurements is shown in [28].
In [29], the TDOA and gain ratios of arrivals are combined to perform passive source localization.
The authors of [30] propose a nonparametric iterative adaptive approach for source localization
and sensing.

Some works take the location uncertainties of the anchors into consideration [31–38] in source
localization. The authors of [31–33] analyse the effect of anchor location errors on source localization.
In [34,35], the calibration emitters are utilized to alleviate the effect of anchor location errors on
source localization. The authors of [36] consider the problem of locating multiple disjoint sources
using TDOAs and frequency differences of arrival (FDMA) in the presence of anchor position
and velocity errors, and propose an asymptotically efficient estimator. The synchronization clock
bias and sensor position errors are considered in the TDOA source localization in [37]. In [38]
a robust localization algorithm using geographic information in bistatic sonar is proposed for
source localization. Some researchers attempt to find a close-form solution for underwater source
localization [39–43]. Some closed-form solutions for source localization are obtained by utilizing the
TDOA measurements [42] or the combination of TDOA and FDMA measurements [40]. The problem
of source localization is extended to multiple disjoint sources localization in [41], and an approximately
efficient closed-form solution is proposed. In [43], the authors proposed a closed-form solution for
joint source and sensor localization. It locates multiple disjoint sources and refines erroneous sensor
positions simultaneously.

All the above underwater target localization algorithms assume that the underwater sound speed
is constant during the process of localization. The constant sound speed results in the straight-line
trajectory of the USR. However, the assumption of the constant underwater sound speed is validated
only in some shallow sea environments. Generally, the underwater sound speed varies with depth,
temperature, salinity, etc. Especially, it can be modeled by an isogradient depth-dependent sound
speed profile (SSP) approximately in deep sea environments [44] as the salinity and temperature almost
remain unchanged. Therefore the depth is the only factor that affects the SSP in deep sea. In deep sea
environments, the variation of the sound speed makes the trajectory of the USR a curve. Therefore,
the constant sound speed assumption makes the performance degradation of underwater localization
in deep sea environments.
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The authors of [45,46] proposed algorithms to perform localization and tracking of a mobile
target with an isogradient SSP. however, the time synchronization is ignored by them. A target
localization algorithm is proposed for a distributed SIMO sonar with an isogradient SSP in our
previous work [4]. A delay model is presented in an explicit form with respect to (w.r.t.) the locations
of receivers and target. The clock parameters of the receivers and the location of the target are estimated
with the assumption that the locations of the receivers are accurate. Actually, in order to monitor
efficiently, the receivers have to be anchored at some special depths with anchor chains. In this case,
the receivers drift with ocean currents. Therefore, the locations of the receivers vary with ocean
currents, which means that there are uncertainties in the receiver locations.

In this work, with the consideration of the USR curve, the time synchronization and the
uncertainties of the receivers, we propose the underwater target localization and synchronization
(UTLS) algorithm for the distributed SIMO sonar system. The receivers consist of one central receiver
(CR) and several normal receivers (NRs) organized in a star topology. Assuming that the receivers are
anchored at some special depths with anchor chains, all the receivers are not synchronized, and the
underwater sound speed is modeled by an isogradient SSP.

We assume that all the receivers are equipped with acoustic modems [47] to communicate with
each other. The CR starts the synchronization and target localization process by broadcasting an
initial signal to the NRs after the reception of the direct and reflected signals. In the UTLS algorithm,
we first employ the expectation maximization (EM) algorithm [48] to estimate the clock skews of the
receivers, and apply the weighted least squares (WLS) to estimate the clock offsets sequentially with
the clock skews estimated via the EM algorithm. During the estimation of the clock skews, the receiver
locations are estimated as latent variables with the consideration of the uncertainties of the receiver
locations. We apply the nonlinear weighted least squares (NWLS) to perform target localization
with the estimates of the clock parameters and the receiver locations. Simulation results show the
superiority of the UTLS algorithm compared to the tailored benchmark algorithms, such as the tailored
NWLS algorithms, the algorithms which combine the tailored WLS and NWLS algorithms.

The rest of the paper is organized as follows. In Section 2, we describe the system models which
include the sound speed and time delay models, the clock model, the uncertainty model of the receiver
locations and the measurement models. In Section 3, the UTLS algorithm is introduced. It includes
the EM algorithm, the WLS algorithm and the NWLS algorithm to achieve time synchronization and
target localization. We evaluate the performance of the UTLS algorithm by comparing it with the
tailored benchmark algorithms in Section 4 through several simulations. Finally, we conclude this
paper in Section 5.

2. System Models

The scenario considered in this research consists of one target whose coordinates are x = [x, y, z]T ,
one sound source and M + 1 distributed receivers {ri, i = 1, 2, · · · , M, h} as shown in Figure 1.
The receivers organized in the fashion of a star topology. The receiver rh is referred as CR, while the
receivers ri, i = 1, 2, · · · , M are referred as NRs. The coordinates of the receivers are indicated as
{xi, i = 1, 2, · · · , M, h}. We do not know the accurate locations of the receivers as they move with
ocean currents. The signals depart from the sound source directly to the receivers ri, i = 1, 2, · · · , M, h
are referred as direct signals sd = {sd

1, · · · , sd
M, sd

h}; while the signals which depart from the sound
source, reflected by the target and received by the receiver ri, i = 1, 2, · · · , M, h are referred as the
reflected signals s = {s1, · · · , sM, sh}. There are a large amount of research focus on the detection of
the direct signals and the reflected signals [49–51]. We assume that the detection problem can be solved
by the existing approaches, and focus on the target localization and time synchronization algorithm.

In order to estimate the target location x, there are three aspects have to be considered. The first
one is the varying underwater sound speed which results in the curve of USR. The second one is
time synchronization. The third one is the uncertainties of the locations of the receivers. With the
consideration of these three aspects, we employ four types of models: the sound speed and time delay
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models, the clock model, the uncertainty model of the receiver locations, and the time-of-arrival (TOA)
measurement models.

Sound source

Target

Central receiver
 (CR)

Normal receiver
(NR)

.  .  .

Range of NR’s 
location

Range of CR’s 
location

Anchor chain
sd1 sdM

sd2
s1

s3

s4
sh

r1

r2 r3

r4

rM

rh

Figure 1. The schematic diagram of target localization by single-input multiple-output (SIMO)
sonar systems.

2.1. The Sound Speed and Time Delay Models

The first aspect relates to the USR bend. As we know, the underwater sound speed is not
constant but varies with temperature, salinity, pressure (depth), etc. The SSP can be approximated as
a piece-wise linear function of the depth [52]. In our scenario, the assumption of isogradient SSP is
made. Therefore, the SSP c(z) can be expressed as

c(z) = az + b, (1)

where a is a constant, and b is the sound speed at the surface. Both of them are assumed to be known
as a priori. For a single ray such as the ray from the target to the receiver ri as shown in Figure 1,
the time-of-flight (ToF) [4] τi can be expressed in an explicit form w.r.t. x and xi

τi , fi(x, xi) =
1
a

ln

 [adi +
√

a2d2
i + 4c(zi)c(z)]2

4c(zi)c(z)

 ,

i =1, 2, · · · , M, h, (2)

where di =
√
(xi − x)2 + (yi − y)2 + (zi − z)2 denoting the distance between the receiver ri and the

target. Similarly, the delays τhi between the CR and the NRs can be expressed as

τhi , fhi(xh, xi) =
1
a

ln

 [adhi +
√

a2d2
hi + 4c(zi)c(zh)]

2

4c(zi)c(zh)

 ,

i =1, 2, · · · , M, (3)

where dhi is the distance between the CR and the ith NR. The delay τs between the sound source and
the target can be written as

τs , fs(x) =
1
a

ln

{
[ads +

√
a2d2

s + 4c(zs)c(z)]2

4c(zs)c(z)

}
, (4)
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where ds is the distance between the sound source and the target. The delays τd
i between the sound

source and the receivers can be expressed as

τd
s , fis(xi) =

1
a

ln

 [adis +
√

a2d2
is + 4c(zs)c(zi)]

2

4c(zs)c(zi)

 . (5)

2.2. The Clock Model

The second aspect is the time synchronization. In this work, we assumed that all the NRs were
fully asynchronous. The clock model can be stated as

Ti = µit + oi, i = 1, 2, · · · , M, h, (6)

where µi and oi are the unknown clock skew and offset of the receiver ri, respectively. The symbol Ti
stands for the timestamp from the clock of the receiver ri w.r.t. standard time t. For simplicity,
we stack all the clock skews and clock offsets into the vectors µ = [µ1, µ2, · · · , µM, µh]

T and
o = [o1, o2, · · · , oM, oh]

T , respectively.

2.3. The Uncertainty Model of the Receiver Locations

The uncertainties of the receivers are caused by ocean currents and measurement noise. The ocean
current pushes the receivers to move within some ranges. It makes the real locations of the
receivers unknown. We obtain the receiver locations by measuring the ocean current. However,
the measurements are corrupted by noise. Therefore we have to carry out time synchronization and
target localization with the corrupted locations of the receivers.

2.3.1. The Ocean Current Model

The double-gyre phenomena in large-scale ocean circulation is typical for the northern mid-latitude
ocean basins [53]. It is quite dominant and persistent in oceans and consists of a sub-polar and a
sub-tropical gyre. However, the double-gyre model is only suitable for large-scale ocean circulation.
It cannot resolve local, small-scale flow disturbances properly. In addition to the double-gyre model,
a small-scale gyre model is adapted in [53] to depict the local, small-scale background flow velocity
(BFV) disturbances. In this paper, we adopt the ocean current model used in [53]

v(t) = v0(t) + v1(t), (7)

where v0(t) and v1(t) are the large-scale and small-scale BFV model, respectively. We refer to [53] for
more details of the ocean current model.

2.3.2. The Positions of Receivers

Note that the BFV relates to the position. We denote the BFV at the position of the ith receiver as
vi(t). In order to keep expressions concise, the time parameters of the BFV and the positions of the
receivers are omitted when it dose not cause ambiguity. There are some assumptions given by

• In order to monitor the ocean more efficiently, the receivers need deploying at some special depths.
Therefore, we assume that all the receivers are anchored at the bottom of the sea with anchor
chains. The length of the i-th receiver chain is ζi.

• All the receivers are equipped with buoyancy balls to keep them suspending underwater and
straightening the anchor chains.

• All the receivers are equipped with pressure sensors to determine their depths.
• All the receivers can measure the BFVs around their positions by using an acoustic Doppler

current profiler.



Sensors 2019, 19, 1976 6 of 23

• The initial position of the i-th receiver is the receiver’s position when the anchor chain is
perpendicular. The initial positions are known as prior information.

With these assumptions, the feasible positions of the ith receiver compose a hemispherical surface
as shown in Figure 2. Actually, the receivers drift with the BFV, their positions determined by the BFV.
As the buoyancy balls always keep the receivers suspending underwater, the depths of the receivers
are determined by the strength provided by the BFV. Their horizontal coordinates are determined by
the directions of the BFV. The receiver ri first measures its depth, then utilizes the depth measurement
to calculate the horizontal distance between its initial position and its current position. The horizontal
distance given by

xiri

ζi

xi(0)

Figure 2. The feasible locations of the receivers.

ri = ‖[xi, yi]− [xi(0), yi(0)]‖ =
√

ζ2
i − (ζi − zi + zi(0))2, (8)

where [xi, yi, zi]
T and [xi(0), yi(0), zi(0)]T are the positions of the receiver ri at time t and 0, respectively.

The parameter ri is the horizontal distance between the positions of the receiver ri at time t and 0.
With the horizontal distance, the feasible positions ith receiver are limited to a circle whose center
is [xi(0), yi(0), zi] and radius is ri. As shown in Figure 3, the receiver drifts with the ambient BFV,
the direction of the BFV is the direction of the horizontal coordinates of the receiver. Therefore the
horizontal coordinates can be given by

x

y

ri

vi

[xi, yi]

[xi(0), yi(0)]

Figure 3. The scheme to calculate the coordinate [xi, yi].

[xi, yi]
T = [xi(0), yi(0)]T +

ri
‖vi‖

vi.

where vi is the ambient BFV of the receiver ri. In conclusion, by combining the horizontal coordinates
with the depth coordinate, we have
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xi = xi(0) + [
ri
‖vi‖

vT
i , zi − zi(0)]T . (9)

Actually, it is hard to obtain the real BFV and the real depth of the receiver. We only have the
corresponding measurements which are corrupted by measurement noise. Taking the measurement
noises into account we have

x̌i = xi + nxi , i = 1, 2, · · · , M, h, (10)

where nxi = [nix, niy, niz]
T is assumed as a zero-mean Gaussian noise with variance σ2

xi
= σ2

x 13, i =
1, 2, · · · , M, h, and the vector x̌i is a measurement of xi.

2.4. The TOA Measurement Models

Figure 4 reveals the signal time sequence of the target localization process. Firstly, a signal is
transmitted by the sound source at time t0, and arrives at the target at time t0 + τs. We assume that the
signal is reflected by the target as soon as it arrives at the target. Secondly, the direct signal sd

i received
by receiver ri at time td

i = t0 + τd
i . The receiver ri records the arrival time of the direct signal sd

i as Td
is.

The measurement model of the direct signals can be stated as

Td
is = µi(t0 + τd

i ) + oi + nd
i , i = 1, 2, · · · , M, h, (11)

where nd
i ∼ N (0, σ2

i ), i = 1, 2, · · · , M, h are Gaussian measurement noises of the direct signals sd.
Thirdly, the reflected signal si received by the receiver ri at time ti = t0 + τs + τi. The receiver

records the arrival time of the reflected signal as Tis. The measurement model of the reflected signal
can be represented as

Tis = µi(t0 + τs + τi) + oi + ni, (12)

i = 1, 2, · · · , M, h,

where ni ∼ N (0, σ2
i ) is the Gaussian measurement noise of the reflected signal si with σ2

i known as
a priori. The measurement noises of each receivers are assumed to be independent with each other.
Therefore, the elements of the set {ni, nd

i , i = 1, 2, · · · , M, h} are independent with each other.

!

The source

The target

The 
central 
receiver

The            
normal 
receiver 

ith

τh

τs

τi

t0

t0 + τs

th

ti

τhi

!

τhi

thi

tib

t

t

t

ttdi

tdh

τdh

τdi

thb

tih

Figure 4. Description of the time series.

Fourthly, the CR broadcasts a signal at time thb to start the information gathering process and
records the broadcast time as Thb. The signal arrives at the NR ri at time thb + τhi, where τhi is the
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propagation delay between the CR and the NR ri. The NR ri records the signal arrival time and denotes
it as Tih. The measurement models of the signals from the CR to the NRs are expressed as

Thb = µhthb + oh, (13)

Tih = µi(thb + τhi) + oi + nih, i = 1, 2, · · · , M, (14)

where nih ∼ N (0, σ2
i ), i = 1, 2, · · · , M are independent Gaussian measurement noises.

Fifthly, the NR ri replies a signal to the CR at time tib after receiving the broadcast signal from
the CR. The signal contains all the recorded timestamps Td

is, Tis, Tih and Tib of itself. The CR records
the arrival time of the signal as Thi. The measurement models of the signals from the NRs to CR are
represented as

Tib = µitib + oi, (15)

Thi = µh(tib + τhi) + oh + nhi, i = 1, 2, · · · , M, (16)

where nhi ∼ N (0, σ2
h ), i = 1, 2, · · · , M are independent and identically distributed (IID) Gaussian

measurement noises.

3. The UTLS Algorithm

We considered the problem of underwater target localization and synchronization for the
distributed SIMO sonar system. Firstly, we combined the direct signals and the broadcast signals by
the receivers to carry out time synchronization. Sequentially, we localized the target with the estimated
clock parameters and the TOAs of reflected signals.

3.1. Time Synchronization

In this section, we perform time synchronization by estimating the clock skews of the receivers
firstly, and estimating the clock offsets of the receivers sequentially.

3.1.1. Estimation of the Clock Skews

Different from the situation of our previous work [4], there are uncertainties in the locations of the
receivers. In order to reduce the influence of the uncertainties on the target localization, we estimate
the clock skews of the receivers in conjunction with the locations of the receivers with EM algorithm.
By combining (13)–(16), we have

Thb = µh(
Tih
µi
− τhi)−

µhoi
µi

+ oh −
µh
µi

nih, (17a)

Thi = µh(
Tib
µi

+ τhi)−
µhoi
µi

+ oh + nhi, (17b)

i = 1, 2, · · · , M,

which give that

Thi − Thb = µh(
Tib − Tih

µi
+ 2τhi) + ε̃i, (18)

where ε̃i =
µh
µi

nih + nhi denoting the noise. It follows from (11) and (17b) that

Td
hi − oh − nd

h
µh

−
Td

is − oi − nd
i

µi
= τd

h − τd
i , (19a)

Thi − oh − nhi
µh

− Tib − oi
µi

= τhi, (19b)
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which can be combined as

Thi − Td
hs = µh(

Tib − Td
is

µi
+ τhi − τd

h + τd
i ) + ε̄i, (20)

where ε̄i =
µhnd

i
µi

+ nhi − nd
h denoting the noise. We combine (18) and (20) and represent it in the vector

form as

ϕ = HΘ + ε, (21)

where Θ = [ϑT , µh]
T denoting the parameter vector, the vector ϑ = [µh/µ1, · · · , µh/µM]T , and the

vector ε = [ε̄1, · · · , ε̄M, ε̃1, · · · , ε̃M]T denoting the noises. The measurements related to the target
position are not included in (21). Therefore, (21) is independent on the target position. The covariance
matrix of ε is of the form

Σε =

[
Σ11 Σ12

Σ21 Σ22

]
, (22)

where Σ22 = diag(σ2
h + µ2

hσ2
1 /µ2

1, · · · , σ2
h + µ2

hσ2
M/µ2

M), Σ11 = Σ22 + σ2
h 1M1T

M, Σ12 = Σ21 = σ2
h IM.

The vector ϕ ∈ R2M is the observation which can be stated as

ϕ = [Th1 − Td
hs, · · · , ThM − Td

hs, Th1 − Thb, · · · , ThM − Thb]
T .

The matrix H = [A h] ∈ R2M×(M+1) denoting the observation coefficient matrix, where A = [AT
1 AT

2 ]
T ,

A1 = diag(Tib − Td
is, · · · , TMb − Td

Ms), A2 = diag(T1b − T1h, · · · , TMb − TMh) and h = [τh1 − τd
h +

τd
1 , · · · , τhM − τd

h + τd
M, 2τh1, · · · , 2τhM]T . The entries of h are related to the locations of the receivers

which are not exactly known. In order to obtain a fixed observation matrix, we linearize the entries of
h by the Taylor expansion as

τhi ≈ τ̄hi +
∂τ̄hi
∂xi

(xi − x̄i) +
∂τ̄hi
∂xh

(xh − x̄h),

τd
h ≈ τ̄d

h +
∂τ̄d

h
∂xh

(xh − x̄h),

τd
i ≈ τ̄d

i +
∂τ̄d

i
∂xh

(xi − x̄i),

where the vectors x̄h and x̄i are the Taylor expansion points of the propagation delays τd
h and τd

i ,
respectively. The vector [x̄T

h x̄i]
T is the Taylor points of the delay τhi. The propagation delays τ̄hi =

fhi(x̄h, x̄i), τ̄d
h = fhs(x̄h) and τ̄d

i = fis(x̄i). The vector h can be approximated as

h ≈ h̄ + Bγ, (23)

where h̄ = [τ̄h1 − τ̄d
h + τ̄d

1 , · · · , τ̄hM − τ̄d
h + τ̄d

M, 2τ̄h1, · · · , 2τ̄hM]T denoting the Taylor expansion point
of h. The vector γ is named as latent vector whose entries are latent variables. It can be expressed as

γ = xr − x̄r, (24)

where

xr = [xT
1 · · · xT

M xT
h ]

T

x̄r = [x̄T
1 · · · x̄T

M x̄T
h ]

T .
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The matrix B = [BT
1 BT

2 ]
T ∈ R2M×3(M+1) collecting the partial derivatives of h w.r.t. the locations

of the receivers. Its submatrices can be expressed as

B1 =


(

∂τ̄T
h1

∂x1
+

∂τ̄d
1

∂x1
)T · · · 0 ( ∂τ̄h1

∂xh
− ∂τ̄d

h
∂xh

)T

...
. . .

...
...

0 · · · ( ∂τ̄hM
∂xM

+
∂τ̄d

M
∂xM

)T ( ∂τ̄hM
∂xh
− ∂τ̄d

h
∂xh

)T



B2 =


2 ∂τ̄T

h1
∂x1

· · · 0 2 ∂τ̄T
h1

∂xh
...

. . .
...

...

0 0 2 ∂τ̄T
hM

∂xM
2 ∂τ̄T

hM
∂xh

 .

By substituting (23) into (21), we can modify (21) to

ϕ≈ H̄Θ + µhBγ + ε, (25)

where H̄ = [A h̄], the set {ϕ, γ} is termed complete data set. The parameter Θ can be estimated if the
complete data set is known. The EM algorithm can be utilized to estimate the latent vector γ firstly
and the parameter vector Θ sequentially.

We employ the EM algorithm to estimate the parameter vector Θ by maximizing the expectation of
the complete data logarithm likelihood function under the posterior distribution of the latent variables.
The process consists of two steps named as the expectation step (E-step) and the maximization step
(M-step). The purpose of the E-step is to estimate the latent variables by calculating the conditional
expectation. The M-step aims to estimate the parameters with the estimated latent variables. They are
explained as follows.

E-Step:

This step involves estimating the latent variables γ and formulating the objective function which
can be stated as

Q(Θ, Θ(l−1)) = E[log p(ϕ, γ|Θ)|ϕ, Θ(l−1)], (26)

where l is the iteration index, and log p(ϕ, γ|Θ) is the likelihood function which can be expressed as

log p(ϕ, γ|Θ) = log p(ϕ|γ, Θ) + log p(γ|Θ). (27)

Since the latent vector γ and the parameter vector Θ are independent, the second term in the
right hand side of (27) can be omitted as it is independent on Θ. Therefore the function Q(Θ, Θ(l−1))

can be represented as

Q(Θ, Θ(l−1)) ∝ E[log p(ϕ|γ, Θ)|ϕ, Θ(l−1)]. (28)

Through the derivation (see Appendix A), we rewrite the objective function as

Q(Θ, Θ(l−1)) ∝ −1
2
[ϕ−Aϑ − h̄µh]

TΣ−1
ε [ϕ−Aϑ − h̄µh]

+ [ϕ−Aϑ − h̄µh]
TΣ−1

ε Bγ̂µh −
V̂s

2
µ2

h, (29)

where the variables γ̂ and V̂s can be calculated according to (A2) and (A4), respectively.
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M-Step:

The maximization step attempts to find an optimal Θ which maximizes the objective function
Q(Θ, Θ(l−1)). We take the first order derivative of the object function Q(Θ, Θl−1) w.r.t. Θ and set the
result to zero, which gives

ATΣ−1
ε (ϕ−Aϑ − h̄µh − Bγ̂µh) = 0, (30)

[h̄TΣ−1
ε + γ̂TBTΣ−1

ε )(ϕ−Aϑ − h̄µh]

− h̄TΣ−1
ε Bγ̂µh − V̂sµh = 0. (31)

Define

q =

[
ATΣ−1

ε ϕ[
h̄T + γ̂TBT]Σ−1

ε ϕ

]
, (32)

and

G =

[
G11 G12

G21 G22

]
, (33)

where

G11 = ATΣ−1
ε (h̄ + Bγ̂),

G12 = ATΣ−1
ε A,

G21 = (h̄)TΣ−1
ε h̄ + 2(h̄)TΣ−1

ε Bγ̂ + V̂s,

G22 = [(h̄)TΣ−1
ε + γ̂TBTΣ−1

ε ]A.

The Equations (30) and (31) can be combined into the following vector form

GΘ = q, (34)

which gives the estimate of Θ as

Θ(l) = G−1q. (35)

According to (23), errors have been introduced by the linearization of h. In order to reduce the
errors, we need to update h̄ by updating the Taylor expansion point x̄r. Assuming that x̄(1)r = x̌r during
the first iteration, where x̌r = [x̌T

1 · · · x̌T
M x̌T

h ]
T . During the lth iteration, we set x̄(l)r = x̂(l−1)

r + γ̂(l−1) to

reduce the difference between x̂(l)r and the real locations xr of the receivers. Actually, during the l-th
iteration, the latent vector γ̂(l) collects the location offsets of the receivers, while x̄(l)r is the estimate of
the receivers’ locations. Therefore, we can estimate the locations of the receivers after the last iteration
by x̂r = x̄(l)r + γ̂(l). Denote Θ̂ as the estimate of Θ, the clock skews of the receivers can be calculated
as follows

µ̂h = [Θ̂]M+1 (36)

µ̂i =
µ̂h

[Θ̂]i
, i = 1, 2, · · · , M. (37)

The details of the EM based clock skews estimation algorithm are stated in Algorithm 1.



Sensors 2019, 19, 1976 12 of 23

Algorithm 1 : Expectation maximization (EM) based clock skews estimation algorithm.

Require: Tib, Thi, Tih, i = 1, 2, · · · , M, Thb, a, b, xh, L, N x̌i, Td
is, i = 1, 2, · · · , M, h,

Ensure: µ̂i, i = 1, 2, · · · , M, h, x̂r
1: l = 1, index = 1, x̂(l−1)

r = [x̌T
1 , · · · , x̌h]

T

2: while index do

3: x̄(l)r = x(l−1)
r

4: linearize h at x̄r according to (23)
5: E-Step:
6: calculate γ̂(l) according to (A2)
7: calculate V̂(l)

s according to (A4)
8: M-Step:
9: calculate Θ(l) according to (35)

10: if |Θ(l) −Θ(l−1)| ≤ δ or l ≥ L then

11: Θ̂ = Θ(l), x̂r = x̄(l)r + γ̂(l), index = 0
12: else

13: Θ(l−1) = Θ(l), x̂(l−1)
r = x̄(l)r + γ̂(l), l = l + 1

14: end if
15: end while
16: µ̂h = [Θ̂]M+1, µ̂i = µ̂h/[Θ̂]i, i = 1, 2, · · · , M.
17: return µ̂i, i = 1, 2, · · · , M, h, x̂r.

We remark that the uncertainties of the receiver locations are considered in two steps. In the
first step, the statistical properties of the receiver locations are utilized to estimate the location offsets
and obtain the estimate γ̂. In the second step, the estimate γ̂ is used to update the receiver locations,
which can reduces the influence of the uncertainties of the receiver locations.

3.1.2. Estimation of the Clock Offsets

We employ the WLS algorithm to estimate the clock offsets of the receivers. By substituting the
estimates of the clock skews into (11), (17a) and (17b), we have

ϕo = Hoo+ ε,

where the vector ϕo ∈ R3M+1 can be stated as

[Td
1s − µ̂1(t0 + τ̂d

i ), · · · , Td
hs − µ̂h(t0 + τ̂d

hs),

T1h − µ̂1(Thb/µ̂h + τ̂h1), · · · , TMh − µ̂M(Thb/µ̂h + τ̂hM),

Th1 − µ̂h(T1b/µ̂1 + τ̂h1), · · · , ThM − µ̂h(TMb/µ̂M + τ̂hM)]T ,

the delay τ̂d
i = τd

i (x̂i), τ̂hi = τhi(x̂h, x̂i). The coefficient matrix is defined as Ho =

[HT
o1 HT

o2 HT
o3]

T ∈ R(3M+1)×(M+1), where Ho1 = IM+1, Ho2 = [IM, [−µ1/µh, · · · , 1µM/µh]
T ] and Ho3 =

[−diag(µh/µ1, · · · , µh/µM), 1M]. The vector ε = [nd
1, · · · , nd

M, nd
h, n1h, · · · , nMh, nh1, · · · , nhM]T ∈

R3M+1 denoting the noise. Its covariance matrix can be expressed as Σε = diag(Σε1, Σε2, σ2
h IM),

where Σε1 = diag(σ2
1 , · · · , σ2

M, σ2
h ), Σε2 = diag(σ2

1 , · · · , σ2
M).

By applying the WLS algorithm, we can express the estimates of the clock offsets as

ô = (HT
o WoHo)

−1HT
o Woϕo, (38)

where the weighted matrix is defined as Wo = Σ−1
ε .
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3.2. Target Localization

By utilizing the estimates of the clock parameters, (12) can be rewritten as

φi = fs(x, xs) + fi(x, xi) +
ni
µ̂i

, i = 1, 2, · · · , M, h, (39)

where φi = (Tis − ôi − µ̂it0)/(µ̂i). Define φ = [φ1, · · · , φM, φh]
T , f (x, xr) =

[ f1(x, x1), · · · , fM(x, xM), fh(x, xh)]
T and ω = [n1/µ̂i, · · · , nM/µ̂M, nh/µ̂h]

T as the observation
vector, the propagation delay vector and the noise vector, respectively. We rewrite (39) as

φ = fs(x, xs)1M+1 + f (x, xr) + ω. (40)

The covariance matrix of the noise ω is Σω = diag(σ2
1 /µ2

1, · · · , σ2
M/µ2

M, σ2
h /µ2

h) ∈ R
(M+1)×(M+1).

It is hard to give an analytical solution of the estimation of the target’s location as the propagation
delays fs(x, xs) and fi(x, xi) are nonlinear w.r.t. the variable x. We employ the NWLS algorithm for the
target localization. The iterative process can be expressed as

x(l) = x(l−1) +
[
(D(l−1))TW D(l−1)

]−1
(D(l−1))TW

×[φ− fs(x(l−1), xs)− f (x(l−1), x̂r)], (41)

where the weight matrix W = Σ−1
ω , and the matrix D(l−1) is the Jacobi matrix of fs(x, xs)1M+1 + f (x, x̂r)

w.r.t. x. For the l-th iteration, the Jacobi matrix D(l−1) can be stated as

D(l−1) =

[
d fs(x, xs)

dxT ⊗ 1M+1 +
d f (x, x̂r)

dxT

] ∣∣∣
x=x(l−1)

. (42)

4. Numerical Simulations

We evaluate the performance of our proposed algorithms via the software “Matlab” with an
isogradient SSP and different variances of the locations of the receivers. At first, we introduce the
simulation setup. Then we show the estimation performance including the parameters of the receivers
and the location of the target.

4.1. Simulation Setup

As the clock skews of the receivers are designed to be 1, we assume that the real value of the clock
skews follow the Gaussian distributions µi ∼ N (1, σ2

µi
), i = 1, 2, · · · , M, h, where σ2

µi
is the variance

of µi. Assume that σ2
µi

= σ2
µj
∈ (10−12, 10−8] and σ2

i = σ2
j ∈ (10−8, 10−6] for i, j = 1, 2, · · · , M, h.

The receivers are random anchored in the rectangle [−800 m, 800 m] × [−800 m, 800 m] at the bottom
of the sea in a star topology with depths around 3000 m. The anchor chain length of the receivers
are limited in the interval (0 m, 300 m]. We assume that the measurement variances of the receiver
locations are within the range of [−10 dB, 8 dB] in dB. The location of the target is a three-dimensional
random variable which is uniform distributed in the cube [−800 m, 800 m] × [−800 m, 800 m] ×
[200 m, 3000 m]. We assume that the parameters of the sound speed as a = 0.016, b = 1500. In order to
fit the statistical properties of the noise samples, 2000 Monte Carlo trails are utilized to evaluate the
performance of our proposed algorithms by comparing with the competitors listed in Table 1.
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Table 1. The algorithms in the simulations.

Algorithms
Synchronization

Localization
Clock Skew Clock Offset

UTLS (proposed) EM WLS NWLS
NWLS-UTL [4] Tailored WLS � Tailored NWLS

WLS-NWLS WLS WLS NWLS
AWLS-NWLS AWLS WLS NWLS

ANWLS 1 0 NWLS
NWLS-RP real value real value NWLS

As shown in Table 1, the competitors include the NWLS-UTL algorithm, the WLS-NWLS
algorithm, the AWLS-NWLS algorithm, the ANWLS algorithm, and the NWLS-RP algorithm.
The NWLS-UTL algorithm is proposed in [4] for underwater target localization. In our proposed
UTLS algorithm, the NWLS algorithm is employed to estimate the location of the target with the
values of the clock skews and clock offsets estimated by the EM and WLS algorithms, respectively.
For comparison, the WLS-NWLS algorithm employs the NWLS algorithm to localize the target with
the estimates of the clock skews and clock offsets obtained by the WLS algorithms. The difference
between the AWLS-NWLS and WLS-NWLS is that the values of the clock skews, which are utilized
in the estimations of the clock offsets and target location, are estimated by an AWLS algorithm in
the AWLS-NWLS algorithm. In the ANWLS algorithm, the clock skews and clock offsets of the
receivers are assumed to be “1” and “0”, respectively. The NWLS-RP algorithm acts as a benchmark
since the real values of the clock parameters and the locations of the receivers are used. While the
measurements of the receiver locations are used in the NWLS-UTL, the WLS-NWLS, the AWLS-NWLS
and ANWLS algorithms.

Firstly, we illustrate the necessity of the consideration of the uncertainties of the receiver locations.
We show the performance of the estimation of the clock skews by the comparison of the proposed
EM algorithm with the WLS algorithm of the WLS-NWLS algorithm, the AWLS algorithm of the
AWLS-NWLS algorithm (whose details are shown in Appendix B) and the tailored WLS of the
NWLS-UTL algorithm. We show the performance of the estimations of the clock offsets by comparing
the WLS algorithms of the UTLS, the WLS-NWLS and the AWLS-NWLS algorithms. Sequently,
we show the necessarity of taking time synchronization into account. We reveal the target localization
performance of our proposed UTLS algorithm by comparing the NWLS algorithm of the UTLS with the
NWLS algorithms of the WLS-NWLS, the AWLS-NWLS, the ANWLS and the NWLS-RP algorithms.
In addition, we compare the UTLS algorithm with the NWLS-UTL algorithm which is proposed in our
previous work [4] to show the improvement.

For ease of presentation, we replace the root mean square errors (RMSEs) of the estimations of the
clock parameters and the locations of the NRs with the corresponding average value which can be
stated as

ave(RMSE) =
1
N

N

∑
i=1

RMSE(variablei), (43)

where the variablei can be chosen as µi, oi or xi, the variable N denotes the number of the variablei.
For example, N = M if the variablei stands for µi, i = 1, 2, · · · , M. For simplicity, we utilize “the RMSE
of µi\oi\xi” to stand for “the average RMSE of µi\oi\xi, i = 1, 2, · · · , N”, from now on.

4.2. Estimation Performance

The simulation results are shown in Figures 5–11. In Figures 5, 8 and 10, we fix σ2
µh

, σ2
µi

, σ2
x and

limit the term 10 log(1/σ2
i ) in the range [60 dB, 78 dB]. While in Figures 6, 9 and 11, we fix σ2

µh
, σ2

µi
, σ2

i , σ2
h

and limit the term 10 log(1/σ2
x ) in the range [−10 dB, 8 dB].
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4.2.1. Performance of the Estimations of the Clock Skews and Locations of the Receivers

In this subsection, we show the performance of the clock skew estimations carried out by the
algorithms listed in the second column of Table 1. The estimation performance of the receiver locations
via the EM algorithm of the UTLS algorithm is shown in this subsection too. The simulation results
of the estimation of the clock skews and the receiver locations are shown in Figures 5–7. For the
estimation performance of the clock skews and the receiver locations, we have the following remarks

1. The UTLS algorithm is the best one, the WLS-NWLS algorithm is the second one and the
AWLS-NWLS is the worst one.

2. The performance of the estimation of the clock skews can be improved by updating the locations
of the receivers. The main difference between the EM algorithm of the UTLS algorithm and the
WLS algorithm of the WLS-NWLS algorithm is that the EM algorithm estimates the locations of
the receivers by calculating the conditional expectation and utilizes the estimates of the locations
for the estimation of the clock skews, while the WLS algorithm of the WLS-NWLS algorithm
only utilizes the statistical properties for the estimation of the clock skews. As shown in Figure 5,
the UTLS algorithm is better than the WLS-NWLS algorithm and the difference increases with the
decreasing of the variance σ2

i . This is because that with a smaller variance σ2
i , the UTLS algorithm

obtains more accurate estimates of the locations of the receivers as shown in the upper subplot of
Figure 7, with which the estimation accuracy of the clock skews can be improved.
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Figure 5. Root mean square errors (RMSEs) of the estimation of the clock skews of the receivers via the
underwater target localization and synchronization (UTLS), the weighted least squares (WLS)-nonlinear
weighted least squares (NWLS), the approximated WLS (AWLS)-NWLS and the NWLS-UTL algorithms,
respectively, with 10 log(1/σ2

µh
) = 10 log(1/σ2

µi
) = 96 dB and 10 log(1/σ2

x ) = −10 dB.

3. By utilizing the statistical properties of the locations of the receivers, the estimation performance
of clock skews can be improved as shown in Figure 5. The main difference between the WLS
algorithm of the WLS-NWLS algorithm and the AWLS algorithm of the AWLS-NWLS algorithm
is that the WLS algorithm utilizes the statistical properties of the receivers’ locations, while the
AWLS dose not. The performance superiority of the WLS-NWLS algorithm compared with the
AWLS-NWLS algorithm arises from the utilizing of the statistical properties.

4. In the NWLS-UTL algorithm, the clock offsets are eliminated by a designed subtraction of the time
delay. The clock skews are estimated by a tailored WLS algorithm. Its. estimation performance of
the clock skews is similar to the WLS-NWLS and the AWLS-NWLS algorithms and poorer than
the UTLS algorithm.

5. As shown in Figure 6, the larger the variance σ2
x of the receiver location noises, the greater the

superiority of the UTLS algorithm.
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6. The UTLS algorithm is more robust against the location uncertainties of the receivers than
the WLS-NWLS, the AWLS-NWLS and the NWLS-UTL algorithms. As shown in Figure 6 the
performance of the UTLS algorithm decreases slowly with the increasing of the variance σ2

x .
While the WLS-NWLS, the AWLS-NWLS and the NWLS-UTL algorithms decrease faster than
the UTLS algorithm with the increasing of the variance σ2

x . The main reason is that the accuracy
of the estimates of the receivers’ locations via the EM algorithm of the UTLS algorithm declines
slowly with the increasing of the variance σ2

x as shown in the lower subplot of Figure 7.
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Figure 6. RMSEs of the estimation of the clock skews of the receivers via the UTLS, the WLS-NWLS,
the AWLS-NWLS and the NWLS-underwater target localization (UTL) algorithms, respectively,
with 10 log(1/σ2

µh
) = 10 log(1/σ2

µi
) = 80 dB, and 10 log(1/σ2

i ) = 10 log(1/σ2
h ) = 68 dB.
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Figure 7. RMSEs of the measurements and the estimations of the locations of the receivers via the
UTLS algorithm. In the upper subplot, we assume 10 log(1/σ2

x ) = −10 dB and 10 log(1/σ2
µh
) =

10 log(1/σ2
µi
) = 96 dB. In addition, we assume 10 log(1/σ2

i ) = 10 log(1/σ2
h ) = 68 dB in the

lower subplot.

4.2.2. Performance of the Estimations of the Clock offsets of the Receivers

In this subsection, we show the performance of the clock offset estimations carried out by the
algorithms listed in the third column of Table 1. We show the simulation results of the estimation of
the clock offsets in Figures 8 and 9. For the estimate of the clock offsets, we have the following remarks
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1. For the estimation of the offsets of the receivers, the UTLS algorithm is the best and the differences
between the UTLS algorithm and the other two algorithms increase with the decreasing of the
variance σ2

i as shown in Figure 8. There are two reasons. The first one is that the differences
of the clock skew estimates between the EM algorithm of the UTLS algorithm and the other
two algorithms increase with the decreasing of the variance σ2

i . The second one is that the EM
algorithm of the UTLS algorithm provides more accurate locations of the receivers for the WLS
algorithm of the UTLS algorithm, and the estimation accuracy of the locations of the receivers
increases with the decreasing of the variance σ2

i .
2. The performance superiority of the WLS algorithm of the WLS-NWLS algorithm compared with

the WLS algorithm of the AWLS-NWLS algorithm arises from the utilizing of the statistical
properties of the receivers’ locations as shown in Figure 8.

3. As shown in Figure 9, the WLS algorithm of the UTLS algorithm is more robust against the
uncertainty of the receivers’ locations. This characteristic is inherited from the EM algorithm of
the UTLS algorithm.
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Figure 8. RMSEs of the estimation of the offsets of the receivers via the UTLS, the WLS-NWLS
and the AWLS-NWLS algorithms, respectively, with 10 log(1/σ2
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) = 10 log(1/σ2

µi
) = 96 dB and

10 log(1/σ2
x ) = −10 dB.
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and 10 log(1/σ2
i ) = 10 log(1/σ2
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4.2.3. Performance of the Estimation of the Location of the Target

In this subsection, we show the performance of the target localization carried out by the algorithms
listed in the last column of Table 1. The simulation results of the target localization are shown in
Figures 10 and 11. We have the following remarks on the simulation results of the target localization.

1. The performance of the UTLS is the best compared with that of the WLS-NWLS, the AWLS-NWLS
and the ANWLS algorithms as shown in Figure 10. The advantages of the UTLS arise from
two reasons. First, the estimation accuracies of the clock skews and offsets carried out by
the EM and WLS algorithms of the UTLS algorithm, respectively, are higher than that of the
WLS-NWLS, the AWLS-NWLS and the ANWLS algorithms. Second, the estimation accuracy
of the receivers’ locations by the EM algorithm of the UTLS algorithm is higher than the
corresponding measurements of the receivers’ locations.

2. The performance of the WLS-NWLS algorithm is better than the AWLS-NWLS and the ANWLS
algorithms. This superiority of the WLS-NWLS arises from the WLS algorithms of the
WLS-NWLS algorithm.
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Figure 10. RMSEs of localization via the UTLS, the WLS-NWLS, the AWLS-NWLS, the ANWLS,
the NWLS-UTL and the NWLS-RP algorithms, respectively, with 10 log(1/σ2

µh
) = 10 log(1/σ2

µi
) =

96 dB and 10 log(1/σ2
x ) = −10 dB.

3. As shown in Figure 10, the performance variation trend of the UTLS is almost the same as the
NWLS-RP in which the real clock parameters and locations of the receivers are used. While the
performance of the other algorithms almost do not vary with the variance of σ2

i when the variance
σ2

i is small.
4. The performance of the UTLS algorithm is almost the same as the WLS-NWLS algorithm when

the variance σ2
x is small as shown in Figure 11. The reasons can be stated as follows. As shown

in the lower subplot of Figure 7, the difference between the estimated locations of the receivers
and the measurements of the locations is small when the variance σ2

x is small. As shown in
Figures 6 and 9, this phenomenon makes the performance superiority of the EM and WLS
algorithms of our proposed UTLS algorithm small when compared to the WLS algorithms of the
WLS-NWLS algorithm.

5. The UTLS algorithm is still better than the AWLS-NWLS and ANWLS algorithms when the
variance σ2

x is small. The larger the variance σ2
x , the greater the superiority of the UTLS algorithm.

6. The localization performance of the NWLS-UTL algorithm is poor as shown in Figure 10.
This phenomenon may arise from the fact that the NWLS-UTL algorithm is susceptible to the
location uncertainties of the receivers as shown Figure 11. The clock offsets have been eliminated
by the NWLS-UTL algorithm. Therefore, the computational cost is smaller because of the absence
of the clock offset estimates.
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7. The localization performance of the NWLS-RP algorithm is better the our proposed UTLS
algorithm. The reason is that the real clock parameters and receiver locations are employed
in the NWLS-RP algorithm, which is impractical.
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Figure 11. RMSEs of localization via the UTLS, the WLS-NWLS, the AWLS-NWLS, the ANWLS,
the NWLS-UTL and the NWLS-RP algorithms, respectively, with 10 log(1/σ2

µh
) = 10 log(1/σ2

µi
) = 80

dB and 10 log(1/σ2
i ) = 10 log(1/σ2

h ) = 68 dB.

In summary, the superiority of the EM algorithm of our proposed UTLS algorithm arises from the
consideration of the uncertainties of the locations of the receivers and the estimation of the receivers’
locations. With the estimates of the EM algorithm, the WLS algorithm of our proposed UTLS algorithm
obtains more accurate clock offsets. The NWLS algorithm of our proposed UTLS algorithm achieves
more accurate target localization with the estimates of the clock skews and offsets obtained via the
EM and WLS algorithms of our proposed UTLS algorithm, respectively. The superiority of the UTLS
algorithm increase with the increasing of the variance σ2

x .

5. Conclusions

In this work, we propose the target localization and time synchronization (UTLS) algorithm for
the distributed SIMO sonar system with an isogradient SSP and the uncertainties of the locations of the
receivers. The UTLS algorithm contains two steps. In the first step, we carry out time synchronization
via the EM and the WLS algorithms of our proposed UTLS algorithm. The locations of the receivers
are also estimated by the EM algorithm in this step. In the second step, the NWLS algorithm of our
proposed UTLS algorithm is employed to perform target localization with the estimates of the clock
parameters and the locations of the receivers. We compared the UTLS algorithm with the NWLS-UTL,
the WLS-NWLS, the AWLS-NWLS, the ANWLS and the NWLS-RP algorithms. The simulation
results show that our proposed UTLS algorithm is better than the NWLS-UTL, the WLS-NWLS,
the AWLS-NWLS and the ANWLS algorithms, and the advantage of the UTLS increases with the
increasing of the variance σ2

x . An isogradient SSP is an approximation of the real underwater SSP.
In order to obtain a more accurate measurement of distance, we will take a more elaborate SSP into
consideration for target localization in our future work.
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Appendix A

Objection function Q(Θ, Θ(l−1))

Q(Θ, Θ(l−1))

=
∫
[log p(ϕ|γ, Θ) + log p(γ|Θ)]p(γ|ϕ, Θ(l−1))dγ

∝
∫

log p(ϕ|γ, Θ)p(γ|ϕ, Θ(l−1))dγ

∝ −1
2

log |Σε| −
1
2

∫
[ϕ− H̄Θ− Bγµh]

TΣ−1
ε

[ϕ− H̄Θ− Bγµh]p(γ|ϕ, Θ(l−1))dγ

= −1
2

log |Σε| −
1
2
[ϕ− H̄Θ]TΣ−1

ε [ϕ− H̄Θ]

+ [ϕ− H̄Θ]TΣ−1
ε Bµh

∫
γp(γ|ϕ, Θ(l−1))dγ

− 1
2

µ2
h

∫
γTBTΣ−1

ε Bγp(γ|ϕ, Θ(l−1))dγ

= −1
2

log |Σε| −
1
2
[ϕ− H̄Θ]TΣ−1

ε [ϕ− H̄Θ]

+ [ϕ− H̄Θ]TΣ−1
ε Bµhγ̂−

µ2
h

2
V̂s, (A1)

where

γ̂ =
∫

γp(γ|ϕ, Θ(l−1))dγ, (A2)

and

V̂s =
∫

γTBTΣ−1
ε Bγp(γ|ϕ, Θ(l−1))dγ. (A3)

Due to that the covariance matrix Σε is positive semi-definite, the inverse matrix Σ−1
ε is also

positive semi-definite. We decompose it as Σ−1
ε = UUT by the Cholesky decomposition, where U =

[u1, u2, · · · , u2M], ui ∈ R2M is a column vector. We can rewrite (A3) as

V̂s =
2M

∑
i=1

∫
uT

i BγγTBTui p(γ|ϕ, Θ(l−1))dγ

=
2M

∑
i=1

uT
i BE[γγT |ϕ, Θ(l01)]BTui

=
2M

∑
i=1

uT
i B(γ̂γ̂T + Σγ|ϕ)B

Tui, (A4)

where Σγ|ϕ is the conditional covariance matrix of γ, which can be stated as

Σγ|ϕ = Σγ − ΣsϕΣ−1
ϕ Σϕs. (A5)
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For each iteration, the value Θ(l−1) is used by the covariance matrix Σε. In this case, the term
−1/2 log |Σε| can be omitted as it is irrelevant to the parameter vector Θ. Therefore, it can be omitted,
and the objection function can be rewritten as

Q(Θ, Θ(l−1)) ∝ −1
2
[ϕ−Aϑ − h̄µh]

TΣ−1
ε [ϕ−Aϑ − h̄µh]

+ [ϕ−Aϑ − h̄µh]
TΣ−1

ε Bγ̂µh −
V̂s

2
µ2

h. (A6)

Appendix B

The tailored WLS and AWLS algorithm

In the approximated weighted least squares (AWLS), the vector γ is assumed to be zero vector
and the observation model (25) is approximated as

ϕ≈ H̄Θ + ε. (A7)

With AWLS algorithm, the estimate of Θ is of the following form

Θ̂ = (H̄TΣ−1
ε H̄)−1H̄TΣ−1

ε ϕ. (A8)

In the weighted least squares (WLS) algorithm, we replace the latent vector γ with a noise vector
ns and rewrite the observation model (25) as

ϕ≈ H̄Θ + ε̄, (A9)

where ε̄ = ε + µhBns. We initial the parameter vector as Θ(0) = 1M+1, and obtain the following
iterative process with the WLS algorithm

Θ(l) = (H̄TW (l−1)
ε̄ H̄)−1H̄TW (l−1)

ε̄ ϕ, (A10)

where W (l−1)
ε̄ = Σ−1

ε̄ |Θ=Θ(l−1) . With the new estimate Θ(l), we update the weight matrix and continue
iterative process until ‖Θ(l) −Θ(l−1)‖ <= δ, where δ is threshold of the iteration termination.
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