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Abstract We introduce an Interaction- and Trade-off-based Eco-Evolutionary Model (ITEEM), in

which species are competing in a well-mixed system, and their evolution in interaction trait space is

subject to a life-history trade-off between replication rate and competitive ability. We demonstrate

that the shape of the trade-off has a fundamental impact on eco-evolutionary dynamics, as it

imposes four phases of diversity, including a sharp phase transition. Despite its minimalism, ITEEM

produces a remarkable range of patterns of eco-evolutionary dynamics that are observed in

experimental and natural systems. Most notably we find self-organization towards structured

communities with high and sustained diversity, in which competing species form interaction cycles

similar to rock-paper-scissors games.

DOI: https://doi.org/10.7554/eLife.36273.001

Introduction
We observe an immense diversity in natural communities (Hutchinson, 1961; Tilman, 1982; Hus-

ton, 1994), but also in controlled experiments (Maharjan et al., 2006; Gresham et al., 2008;

Kinnersley et al., 2009; Herron and Doebeli, 2013; Kvitek and Sherlock, 2013), where many spe-

cies continuously compete, diversify and adapt via eco-evolutionary dynamics (Darwin, 1859;

Cody and Diamond, 1975). However, the basic theoretical models (Volterra, 1928; Tilman, 1982)

predict that both ecological and evolutionary dynamics tend to decrease the number of coexisting

species by competitive exclusion or selection of the fittest. This apparent contradiction between

observations and theory gives the stunning biodiversity in communities the air of a paradox (Hutch-

inson, 1961; Sommer and Worm, 2002) and hence has begotten a long, ongoing debate on the

mechanisms underlying emergence and stability of diversity in communities of competitive organ-

isms (Hutchinson, 1959; Huston, 1994; Chesson, 2000; Sommer and Worm, 2002; Doebeli and

Ispolatov, 2010).

To identify candidate mechanisms that could resolve the problem of generation and maintenance

of diversity, the basic theoretical ecological and evolutionary models have been extended by numer-

ous features (Chesson, 2000; Chave et al., 2002), including spatial structure (Mitarai et al., 2012;

Villa Martı́n et al., 2016; Vandermeer and Yitbarek, 2012), spatial and temporal heterogeneity

(Caswell and Cohen, 1991; Fukami and Nakajima, 2011; Hanski and Mononen, 2011;

Kremer and Klausmeier, 2013), tailored interaction network topologies (Melián et al., 2009;

Mougi and Kondoh, 2012; Kärenlampi, 2014; Laird and Schamp, 2015; Coyte et al., 2015;

Grilli et al., 2017), predefined niche width (Scheffer and van Nes, 2006; Doebeli, 1996), adjusted

mutation-selection rate (Johnson, 1999; Desai and Fisher, 2007), and life-history trade-offs
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(Rees, 1993; Bonsall et al., 2004; de Mazancourt and Dieckmann, 2004; Gudelj et al., 2007; Fer-

enci, 2016; Posfai et al., 2017). However, it is still unclear which features are essential to explain

biodiversity. For instance, diversity is also observed under stable and homogeneous conditions

(Gresham et al., 2008; Kinnersley et al., 2009; Maharjan et al., 2012; Herron and Doebeli, 2013;

Kvitek and Sherlock, 2013).

So far, models of eco-evolutionary dynamics have been developed in three major categories:

models in genotype space, like population genetics (Ewens, 2012) and quasispecies models

(Nowak, 2006); models in phenotype space, like adaptive dynamics (Doebeli, 2011) and webworld

models (Drossel et al., 2001); and models in interaction space, like Lotka-Volterra models

(Coyte et al., 2015; Ginzburg et al., 1988) and evolving networks (Mathiesen et al., 2011;

Allesina and Levine, 2011). Each of these categories has strengths and limitations and emphasizes

particular aspects. However, in nature these aspects are entangled by eco-evolutionary feedbacks

that link genotype, phenotype, and interaction levels (Post and Palkovacs, 2009; Schoener, 2011;

Ferriere and Legendre, 2013; Weber et al., 2017). In a closed system of evolving organisms muta-

tions, that is, evolutionary changes at the genetic level (Figure 1a), can cause phenotypic variations

if they are mapped to novel phenotypic traits in phenotype space (Figure 1b)(Soyer, 2012). These

variations have ecological impact only if they affect biotic or abiotic interactions of species

(Figure 1c); otherwise they are ecologically neutral. The resulting adaptive variations in the interac-

tion network change the species composition through population dynamics. Finally, frequency-

dependence occasionally selects strategies that adapt species to their new environment (Scho-

ener, 2011; Moya-Laraño et al., 2014; Hendry, 2016; Weber et al., 2017).

Thus, we have a link from interactions to eco-evolutionary dynamics, suggesting that we do not

need to follow all evolutionary changes at the genetic or phenotypic level if we are interested in

macro-eco-evolutionary dynamics, but only those changes that affect interactions. In this picture,

evolution can be considered as an exploration of interaction space, and modeling at this level can

help us to study how complex competitive interaction networks evolve and shape diversity. This

neglect of genetic and phenotypic details in interaction-based models (Ginzburg et al., 1988;

Solé, 2002; Tokita and Yasutomi, 2003; Shtilerman et al., 2015) equals a coarse-graining of the

eco-evolutionary system (Figure 1). This coarse-graining not only reduces complexity but it should

also make the approach applicable to a broader class of biological systems.

eLife digest A patch of rain forest, a coral reef, a pond, and the microbes in our guts are all

examples of biological communities. More generally, a community is a group of organisms that live

together at the same place and time. Many communities are composed of a large number of

different species, and this diversity is maintained for long times.

Although diversity is a key feature of biological communities, the mechanisms that generate and

maintain diversity are not well understood. Research had hinted at links between diversity and the

trade-offs that species are subject to. For instance, there is a trade-off between competitiveness and

reproduction: if there are limited resources in the environment a species may either produce many

offspring that are not very competitive, or fewer, more competitive offspring.

Farahpour et al. have now simulated the development of communities of organisms that

reproduce, compete, and die in a uniform environment. Crucially, these computational simulations

introduced a trade-off between competitive ability and reproduction.

The simulations show that the form of trade-off has a fundamental impact on diversity: moderate

trade-offs favor diversity, whereas extreme trade-offs suppress diversity. The simulations also

revealed mechanisms that underlie how diversity is generated. In particular, cyclic relationships

emerge where one species dominates another but is also dominated by a third, similar to the rock-

paper-scissors game.

Since Farahpour et al. used a bare-bone model with only a few essential features the results could

apply to a larger class of community-like systems whose evolution is driven by competition. This

includes economic and social systems as well as biological communities.

DOI: https://doi.org/10.7554/eLife.36273.002
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Interaction-based evolutionary models have received some attention in the past (Ginzburg et al.,

1988; Solé, 2002) but then were almost forgotten, despite remarkable results. We think that these

works have pointed to a possible solution of a hard problem: The complexity of evolving ecosystems

is immense, and it is therefore difficult to find a representation suitable for the development of a sta-

tistical mechanics that enables qualitative and quantitative analysis (Weber et al., 2017). Modeling

at the level of interaction traits, rather than modeling of detailed descriptions of genotypes or phe-

notypes, coarse-grains these complex systems in a natural way so that this approach may be helpful

for developing a biologically meaningful statistical mechanics.

The first eco-evolutionary interaction-based model was introduced by Ginzburg et al. (1988)

based on Lotka–Volterra dynamics for competitive communities. Instead of adding species charac-

terized by random coefficients, taken out of some arbitrary species pool, they made the assumption

that a new mutant should be ecologically similar to its parent, which means that phenotypic varia-

tions that are not ecologically neutral generate mutants that interact with other species similar to

their parents (Figure 1). Thus, speciation events were simulated as ecologically continuous mutations

in the strength of competitive interactions. This model, although conceptually progressive, was not

able to produce a large stable diversity, possibly because diversity requires components not

included in this model. Therefore subsequent interaction-based models supplemented it with ad hoc

features to specifically increase diversity, such as special types of mutations (Tokita and Yasutomi,

2003), addition of mutual interactions (Tokita and Yasutomi, 2003; Yoshida, 2003), enforcement of

partially connected interaction graphs (Kärenlampi, 2014), or imposed parent-offspring niche sepa-

ration (Shtilerman et al., 2015). While these models generated, as expected, higher diversity than

the original Ginzburg model, they could not reproduce key characteristics of real systems, for

example emergence of large and stable diversity, diversification to separate species and mass

extinctions. Of course, the use of ad hoc features that deliberately increase diversity also cannot

explain why diversity emerges.

An essential component missing in the previous interaction-based models had been a constraint

on strategy adoption. In real systems such constraints prevent the emergence of Darwinian Demons,

that is, species that develop in the absence of any restriction and act as a sink in the network of pop-

ulation flow. Among all investigated features responsible for diversity, mentioned above, life-history

trade-offs that regulate energy investment in different life-history strategies are fundamentally
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Figure 1. Link between genotype, phenotype and interaction space. This schematic shows species in a community of grain-eating and nectar-feeding

birds, living in an environment where nectar feeding is advantageous. (a) Six different genotypes (sequences Si) on a distance tree genotype space. (b)

Four distinct phenotypes, Pj, are present in this space. Genotypes S1 and S2 are mapped to the same phenotype PI , and S5 and S6 are mapped to the

same phenotype PIV . (c) Interaction space distinguishes only three interaction traits Tk (for definition see Model section below). PI and PII are mapped

to the same interaction trait Ta because the change of feather color does not affect ecological interactions regarding the feeding habit. The table on

the right shows how the complexity of the description reduces as we map the system to interaction space.

DOI: https://doi.org/10.7554/eLife.36273.003
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imposed by physical laws such as energy conservation or other thermodynamic constraints, and thus

present in any natural system (Stearns, 1989; Gudelj et al., 2007; Del Giudice et al., 2015). These

physical laws constrain evolutionary trajectories in trait space of evolving organisms and determine

plausible evolutionary paths (Fraebel et al., 2017; Ng’oma et al., 2017), i.e. combinations of strate-

gies adopted or abandoned over time. Roles of trade-offs for emergence and stabilization of diver-

sity have been investigated in previous eco-evolutionary studies (Posfai et al., 2017; Rees, 1993;

Bonsall et al., 2004; de Mazancourt and Dieckmann, 2004; Ferenci, 2016; Gudelj et al., 2007)

and experiments (Stearns, 1989; Kneitel and Chase, 2004; Agrawal et al., 2010; Maharjan et al.,

2013; Ferenci, 2016). It has been shown, for example, that if metabolic trade-offs are considered,

even at equilibrium and in homogeneous environments, stable coexistence of species becomes pos-

sible (Gudelj et al., 2007; Beardmore et al., 2011; Maharjan and Ferenci, 2016).

Here, we introduce a new, minimalist model, the Interaction and Trade-off-based Eco-Evolution-

ary Model (ITEEM), with simple and intuitive eco-evolutionary dynamics at the interaction level that

considers a life-history trade-off between interaction traits and replication rate, that means, better

competitors replicate less (Jakobsson and Eriksson, 2003; Bonsall et al., 2004). To our knowledge,

ITEEM is the first model which joins these two elements, the interaction-space description with a life-

history trade-off, that we deem crucial for an understanding of eco-evolutionary dynamics. We use

ITEEM to study development of communities of organisms that diversify from one ancestor by grad-

ual changes in their interaction traits and compete under Lotka-Volterra dynamics in well-mixed,

closed system.

We show that ITEEM dynamics, without any ad hoc assumption, not only generates large and

complex biodiversity over long times (Herron and Doebeli, 2013; Kvitek and Sherlock, 2013) but

also closely resembles other observed eco-evolutionary dynamics, such as sympatric speciation (Til-

mon, 2008; Bolnick and Fitzpatrick, 2007; Herron and Doebeli, 2013), emergence of two or more

levels of differentiation similar to phylogenetic structures (Barraclough et al., 2003), occasional col-

lapses of diversity and mass extinctions (Rankin and López-Sepulcre, 2005; Solé, 2002), and emer-

gence of cycles in interaction networks that facilitate species diversification and coexistence

(Buss and Jackson, 1979; Hibbing et al., 2010; Maynard et al., 2017). Interestingly, the model

shows a unimodal (‘humpback’) course of diversity as function of trade-off, with a critical trade-off at

which biodiversity undergoes a phase transition, a behavior observed in nature (Kassen et al., 2000;

Smith, 2007; Vallina et al., 2014; Nathan et al., 2016). By changing the shape of trade-off and

comparing the results with a no-trade-off model, we show that diversity is a natural outcome of com-

petition if interacting species evolve under physical constraints that restrict energy allocation to dif-

ferent strategies. The natural emergence of diversity from a bare-bone eco-evolutionary model

suggests that a unified treatment of ecology and evolution under physical constraints dissolves the

apparent paradox of stable diversity.

Model
ITEEM is an individual-based model (Black and McKane, 2012; DeAngelis and Grimm, 2014) with

simple intuitive updating rules for population and evolutionary dynamics. A simulated system in

ITEEM has Ns sites of undefined spatial arrangement (no neighborhood), each providing perma-

nently a pool of resources that is sufficient for the metabolism of one organism. The community is

well-mixed, which means that the probability for an encounter is the same for all pairs of individuals,

and that the probability of an individual to enter a site (i.e. to access resources) is the same for all

individuals and sites.

We start an eco-evolutionary simulation with individuals of a single strain occupying a fraction of

the Ns sites, and then carry out long simulations for millions of generations. Note that in the follow-

ing, to facilitate discourse, we use the term strain for a group of individuals with identical traits,

whereas the term species denotes a monophyletic cluster of strains with some intraspecific diversity

(for a discussion on application of these terms in this study see Appendix 1, Species and strains).

Over time t, measured in generations, the number of individuals, Nind tð Þ, number of strains, Nst tð Þ,

and number of species, Nsp tð Þ, change by ecological (birth, death, competition) and evolutionary

dynamics (mutation, extinction, diversification).

Every generation or time step consists of Ns sequential replication trials of randomly selected indi-

viduals, followed at the end by a single death step. In the death step all individuals that have
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reached their lifespan at that generation will vanish. Lifespans of individuals are drawn at their births

from a Poisson distribution with overall fixed mean lifespan l. This is equivalent to an identical per

capita death rate for all strains. For comparison, simulations with no attributed lifespan (l ¼ ¥) were

carried out, too; in this case the only cause of death is defeat in a competitive encounter.

At each replication trial, a randomly selected individual of a strain a can replicate with probability

ra. Age of individuals plays no role in their reproduction and thus a newborn individual can be

selected and replicate with the same probability as adult individuals. With a fixed probability � the

offspring mutates to a new strain a0. Then, the newborn individual is assigned to a randomly selected

site. If the site is empty, the new individual will occupy it. If the site is already occupied, the new indi-

vidual competes with the current holder in a life-or-death struggle. In that case, the surviving individ-

ual is determined probabilistically by the ‘interaction’ Iab, defined for each pair of strains a, b. Iab is

the survival probability of an a individual in a competitive encounter with a b individual, with Iab 2

0; 1½ � and Iab þ Iba ¼ 1 (Grilli et al., 2017). All interactions Iab form an interaction matrix I tð Þ that enc-

odes the outcomes of all possible competitive encounters in this probabilistic sense. Row a of I

defines the ‘interaction trait’ Ta ¼ Ia1; Ia2; . . . ; IaNst tð Þ

� �

of strain a, with Nst tð Þ the number of strains at

time t.

If strain a goes extinct, its interaction elements must be removed, i.e. the ath row and column of

I are deleted. Conversely, if a mutation of a generates a new strain a0, its trait vector is obtained by

adding a small random variation to the parent trait, that is Ta0 ¼ Ta þ h, where h ¼ h
1
; � � � ;hNst tð Þ

� �

is a vector of independent random variations, drawn from a zero-centered normal distribution of

fixed width m. With this, I grows by one row and column. The new elements of the matrix are:

Ia0b ¼ Iabþhb ;

Iba0 ¼ 1� Ia0b ;

Ia0a0 ¼ 0:5 ; (1)

where b¼ 1; � � � ;Nst tð Þ and thus a0 inherits its interactions from a, but with a small random modifi-

cation. Evolutionary variations in ITEEM generate mutants that are ecologically similar to their

parents. Such variations can represent any phenotypic variation that influences interactions of strains

with their community and thus changes their relative competitive abilities (Thompson, 1998;

Thorpe et al., 2011; Bergstrom and Kerr, 2015; Thompson, 1999). With Equation 1 we assume

that all the interaction terms of the new mutant can change independently.

To implement trade-off between competitive ability and fecundity, we introduce a relation

between competitive ability C, defined as average interaction

C Tað Þ ¼
1

Nst tð Þ� 1 b 6¼a

X

Iab; (2)

and replication ra (for fecundity). When Nst ¼ 1, competitive ability of that single strain is set to zero.

To study the influence of trade-off between competitive ability and replication, we systematically

change its shape by varying a parameter d 0� d<1ð Þ (Figure 2). For details of trade-off function and

its effect on trait distribution and relative fitness see Appendix 1, Trade-off. Trade-off functions can

be concave (d<0:5), linear (d¼ 0:5), or convex (d>0:5). The trade-off function ties better competitive

ability to lower fecundity and vice versa. The extreme case d¼ 0 makes r¼ 1 and thus independent

of C, which means no trade-off.

We compare ITEEM results to the corresponding results of a neutral model (Hubbell, 2001),

where we have formally evolving trait vectors Ta but fixed and uniform replication probabilities and

interactions. Accordingly, the neutral model has no trade-off.

ITEEM belongs to the well-established class of generalized Lotka-Volterra (GLV) models in the

sense that the population-level approximation of the stochastic, individual-based ecological dynam-

ics of ITEEM leads to the competitive Lotka-Volterra equations (Appendix 1, Generalized Lotka–Vol-

terra (GLV) equation). Thus the results of the model can be interpreted in the framework of

competitive GLV equations that model competition for a renewable resource pool and summarize all
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types of competition (Gill, 1974; Maurer, 1984)

in the elements of the interaction matrix I (see

above), i.e. these elements represent the resul-

tant negative effect of all competitor populations

on each other.

Our model also allows to study speciation in

terms of network dynamics. The interaction

matrix I defines a complete dominance network

between coexisting strains. In this network the

nodes are strains (a;b), and the directed edges

connecting them indicate direction and strength

of dominance, i.e. sign and size of Iab � Iba,

respectively. Thus, the elements of the weighted

adjacency matrix of this network are defined as

either Wab ¼ Iab � Iba, if a is the superior compet-

itor in the pairwise encounter with b (Iab>Iba), or

otherwise as Wab ¼ 0. With this definition all Wab

are in 0; 1½ �. Accordingly, for the dominance net-

work of species, we computed directed edges

between any two species, i and j, by averaging

over edges between all pairs of strains belonging

to these species, that is W
sp
ij ¼ �Wab for all strains

a and b in the ith and jth species, respectively.

The strength and direction of dominance edges

indicate the effective flow of population between

species.

As we consider a trade-off between replication

and competitive ability in the framework of GLV equations, we can distinguish between r- and a-

selection (Gill, 1974; Kurihara et al., 1990; Masel, 2014). r-selection selects for reproductive ability,

which is beneficial in low density regimes, while a-selection selects for competitive ability and is

effective at high density regimes under frequency-dependent selection. a-selection, first introduced

by Gill (Gill, 1974), can be realized by acquisition of any kind of ability or mechanism that increases

the chance of an organism to take over resources, to prevent competitors from gaining resources

(Gill, 1974), or helps the organism to tolerate stress or reduction of contested resource availability

(Aarssen, 1984). a-selection is different from K-selection; although both are effective at high den-

sity, the latter is limited to investments in efficient and parsimonious usage of resources

(Masel, 2014).

The source code of the ITEEM model is freely available at GitHub (Farahpour, 2018; copy

archived at https://github.com/elifesciences-publications/ITEEM).

Results

Generation of diversity
Our first question was whether ITEEM is able to generate and sustain diversity. Since we have a well-

mixed system with initially only one strain, a positive answer implies sympatric diversification: the

emergence of new species by evolutionary branching without geographic isolation or resource parti-

tioning. In fact, we observe that during long-time eco-evolutionary trajectories in ITEEM new, distinct

species emerge, and their coexistence establishes a sustained high diversity in the system

(Figure 3a).

Remarkably, the emerging diversity has a clear hierarchical structure in the phylogeny tree and

trait space: at the highest level we see that the phylogenetically separated strains (Figure 3a and

Appendix 1, Species and strains) appear as well-separated clusters in trait space (Figure 3b) similar

to biological species. Within these clusters there are sub-clusters of individual strains

(Barraclough et al., 2003). Both levels of diversity can be quantitatively identified as levels in the

distribution of branch lengths in minimum spanning trees in trait space (Appendix 1, SMST and

Figure 2. Trade-off between replication and

competitive ability. The shape of trade-off is controlled

by trade-off parameter d (Appendix 1, Trade-off).

Trade-off functions with d ¼ 0, 0:14, 0:29, 0:43, 0:57,

0:71, 0:86 are plotted, each in different color, from the

dark blue horizontal line for d ¼ 0 (i.e. no trade-off), to

the red convex curve for d ¼ 0:86.

DOI: https://doi.org/10.7554/eLife.36273.004
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distribution of species and strains in trait space). This hierarchical diversity is reminiscent of the phy-

logenetic structures in biology (Barraclough et al., 2003).

Overall, the model shows evolutionary divergence from one ancestor to several species consisting

of a total of hundreds of coexisting strains (Figure 3c). This evolutionary divergence in interaction

Figure 3. Evolutionary dynamics of a community driven by competitive interactions, with trade-off between fecundity and competitive abilities (d ¼ 0:5,

l ¼ 300, � ¼ 0:001, m ¼ 0:02, Ns ¼ 10
5). (a) Species’ frequencies over time (Muller plot): one color per species, vertical width of each colored region is

the relative abundance of respective species. Frequencies are recorded every 104 generations over 106 generations. The plot was produced with

R-package MullerPlot (Farahpour et al., 2016). (b) Distribution over trait space: Snapshot of distribution of strains and species in trait space after 106

generations. By using classical multidimensional scaling the multidimensional trait space is reduced to two dimensions that explain most of the variance

in trait space (see Appendix 1, Classical multi-dimensional scaling (CMDS)). Points and discs are strains and species, respectively (see Appendix 1,

Species and strains). Magnified disc in lower right corner shows strains in the light green species disc. Discs diameter are proportional to the total

abundance of corresponding species, i.e. the sum of relative abundances of all strains that belong to that species. In this snapshot Nst ¼ 660 and

Nsp ¼ 10. (c) Evolutionary dynamics in trait space: Snapshots as in panel (b), but concatenated for all times (horizontal axis), from the monomorphic first

generation to generation 10
6. Figure 3—video 1 shows this evolutionary dynamics over time. (d) Functional diversity over time (see Appendix

1, Diversity indexes and parameters of dynamics) measured by the size of minimum spanning tree (SMST) in interaction trait space (see Appendix 1,

SMST and distribution of species and strains in trait space). At 1:75� 10
6 generations diversity collapses with all species but one going extinct (vertical

dashed line) (Appendix 1, Collapses of diversity). (e) Heatmap of interaction matrix I for generation 10
6. Row and column order reflects species

consistent with panel (b) and indicated by color bars along top and left. Colors inside heat map represent values of interaction terms (color-key along

bottom). (f) Evolution of dominance network: several snapshots from panel (c) with dominance edges, W sp
ij between species (colored discs). (g) Numbers

and mean strength of cycles over time in green and red, respectively. The strength of a cycle is defined by its weakest edge. Number and mean

strength are given in units of number and mean strength of equivalent random networks, respectively (Appendix 1, Intransitive dominance cycles). Right

ends in (a) and (c) correspond to generation panel (b) and (e). Colors of species are the same in panels (a), (b), (c), (e) and (f). Note that time scales differ

between panels (a), (c) and (d), (g).

DOI: https://doi.org/10.7554/eLife.36273.005

The following video is available for figure 3:

Figure 3—video 1. Divergent eco-evolutionary dynamics in interaction trait space.

DOI: https://doi.org/10.7554/eLife.36273.006
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space is the result of frequency-dependent selection without any further assumption on the competi-

tion function, for example a Gaussian or unimodal competition kernel (Dieckmann and Doebeli,

1999; Doebeli and Ispolatov, 2010), or predefined niche width (Scheffer and van Nes, 2006). In

the course of this diverging sympatric evolution, diversity measures typically increase and, depend-

ing on trade-off parameter d, high diversity is sustained over hundreds of thousands of generations

(Figure 3d, and Appendix 1, Diversity over time). This observation holds for several complementary

measures of diversity, no matter whether they are based on abundance of strains or species, or on

functional diversity, i.e. quantities that measure the spread of the population in trait space (Appen-

dix 1, Functional diversity (FD), functional group and functional niche).

The observed pattern of divergence contradicts the long-held view of sequential fixation in asex-

ual populations (Muller, 1932). Instead, we see frequently concurrent speciation with emergence of

two or more species in quick succession (Figure 3a), in agreement with recent results from long-

term bacterial and yeast cultures (Herron and Doebeli, 2013; Maddamsetti et al., 2015;

Kvitek and Sherlock, 2013).

ITEEM systems self-organize toward structured communities: the interaction matrix of a diverse

system obtained after many generations has a conspicuous block structure with groups of strains

with similar interaction strategies (Figure 3e), and these groups being well-separated from each

other in trait space (Figure 3b) (Sander et al., 2015). This fact can be interpreted in terms of func-

tional organization as the interaction trait in ITEEM directly determines the functions of strains and

species in the community (Appendix 1, Functional diversity (FD), functional group and functional

niche). This means that the block structure in Figure 3e corresponds to self-organized, well-sepa-

rated functional niches (Whittaker et al., 1973; Rosenfeld, 2002; Taillefumier et al., 2017), each

occupied by a cluster of closely related strains. This niche differentiation among species, which facili-

tates their coexistence, is the result of frequency-dependent selection among competing strategies.

Within each functional niche the predominant dynamics, determining relative abundances of strains

in the niche, is neutral. Speciation can occur when random genetic drift in a functional group gener-

ates sufficiently large differences between the strategies of strains in that group, and then selection

forces imposed by biotic interactions reinforce this nascent diversification by driving strategies fur-

ther apart.

We observe as characteristic of the dynamics of the dominance network W (see Model) the

appearance of strong edges as diversification increases trait distance (or dissimilarity) between spe-

cies (Figure 3f) (Anderson and Jensen, 2005).

Emergence of intransitive cycles
Three or more directed edges in the dominance network can form cycles of strains in which each

strain competes successfully against one cycle neighbor but loses against the other neighbor, a con-

figuration corresponding to rock-paper-scissors games (Szolnoki et al., 2014). Such intransitive

dominance relations have been observed in nature (Buss and Jackson, 1979; Sinervo and Lively,

1996; Lankau and Strauss, 2007; Bergstrom and Kerr, 2015), and it has been shown that they sta-

bilize a system driven by competitive interactions (Allesina and Levine, 2011; Mathiesen et al.,

2011; Mitarai et al., 2012; Laird and Schamp, 2015; Maynard et al., 2017; Gallien et al., 2017).

We find in ITEEM networks that the increase of diversity coincides with growth of mean strength of

cycles (Figure 3d,g and Appendix 1, Intransitive dominance cycles). Note that these cycles emerge

and self-organize in the evolving ITEEM networks without any presumption or constraint on network

topology.

Formation of strong cycles could also hint at a mechanistic explanation for another phenomenon

that we observe in long ITEEM simulations: Occasionally diversity collapses from medium levels

abruptly to very low levels, usually followed by a recovery (Figure 3d). Remarkably, dynamics before

these mass extinctions are clear exceptions of the generally strong correlation of diversity and aver-

age cycle strength. While the diversity immediately before mass extinctions is inconspicuous, these

events are always preceded by exceptionally high average cycle strengths (Appendix 1, Collapses of

diversity). Because of the rarity of mass extinctions in our simulations we currently have not sufficient

data for a strong statement on this phenomenon, however, it is conceivable that the emergence of

new species in a system with strong cycles likely leads to frustrations, i.e. the newcomers cannot be

accommodated without inducing tensions in the network, and these tensions can destabilize the net-

work and discharge in a collapse. The extinction of a species in a network with strong cycles will
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probably have a similar effect. This explanation of mass extinctions would be consistent with related

works where collapses of diversity occur if maximization of competitive fitness (here: by the new-

comer species) leads to a loss of absolute fitness (here: break-down of the network) (Matsuda and

Abrams, 1994; Masel, 2014). This is a special case of the tragedy of the commons (Hardin, 1968;

Masel, 2014) that happens when competing organisms under frequency-dependent selection

exploit shared resources (Rankin and López-Sepulcre, 2005), as it is the case in ITEEM.

Impact of trade-off and lifespan on diversity
The eco-evolutionary dynamics described above depends on lifespan and trade-off between replica-

tion and competitive ability. This becomes clear if we study properties of dominance network and

trait diversity. Figure 4a relates properties of the dominance network to the trade-off parameter d,

at fixed lifespan l. Specifically, we plot two indicators of community structure against trade-off

parameter d, namely mean weight of dominance edges Wh i, and mean strength of cycles �.

Figure 4b summarizes the behavior of diversity as function of d and lifespan l. For this summary, we

chose ten parameters that quantify different aspects of diversity, for example richness, evenness,

functional diversity, and trait distribution, and then averaged over their normalized values to obtain
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Figure 4. Effects of trade-off d and lifespan l on community structure and diversity. (a) Mean weight of dominance

edges Wh i (orange squares) and mean strength of cycles � (blue circles) as function of d. Mean cycle strength is

given in units of mean strength of corresponding random networks for the respective trade-off (Appendix 1,

Intransitive dominance cycles). Points in panel (a) are evaluated as averages over three different simulations, each

over 5� 10
6 generations with � ¼ 0:001, m ¼ 0:02, l ¼ ¥ and NS ¼ 10

5. Error bars are standard deviations

averaged over these three simulations. The shaded area marks mean strength of cycles for a neutral model with

corresponding parameters � standard deviation. (b) Phase diagram of diversity as function of trade-off d and

lifespan l. Diversity (represented by color spectrum defined in the color bar) is given as consensus of several

quantities (Appendix 1, Diversity indexes and parameters of dynamics for different trade-offs and lifespans).

Diversity has four distinct phases (I–IV). Insets along the top margin are representative MDS plots (Appendix 1,

Classical multi-dimensional scaling (CMDS)) of strain distributions in trait space, with l ¼ 10
5 but different values of

d (left to right: I with d ¼ 0:11; II with d ¼ 0:5; III with d ¼ 0:89). Panel (a) corresponds to a horizontal cross-section

through the phase diagram in panel (b) with l ¼ ¥ for Wh i and � as indicators of community structure.

DOI: https://doi.org/10.7554/eLife.36273.007
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an overall measure of diversity (color bar in the figure). The full set of parameters is detailed in

Appendix 1, Diversity indexes and parameters of dynamics for different trade-offs and lifespans. The

resulting phase diagram gives us an overview of the community diversity for different trade-off

parameters d and lifespans l. The diagram shows a weak dependency of diversity on l and a strong

impact of d, with four distinct phases (I-IV) from low to high d as described in the following.

Without trade-off (d ¼ 0), strains do not have to sacrifice replication for better competitive abili-

ties. Any resident community can be invaded by a new mutant with relatively higher C that does not

have to compensate with a lower r. These mutants resemble Darwinian Demons (Law, 1979), i.e.

strains or species that can maximize all aspects of fitness (here C and r) simultaneously and would

exist under physically unconstrained evolution. Such Darwinian Demons can then be outcompeted

by their own mutant offspring’s that have higher C and the same r. Thus we have sequential pre-

dominance of such strategies with constantly changing traits and improving competitiveness, but no

diverse network emerges. As we increase d from this unrealistic extreme into phase I (0<d<
~

0:2)

coexistence is facilitated. However, the small d still favors investing in relatively higher competitive

ability as a low-cost strategy to increase fitness. In this phase Wh i and � (Figure 4a) slightly increase:

biotic selection pressure exerted by inter-species interactions starts to generate diverse communities

(left inset in Figure 4b, Appendix 1, Diversity indexes and parameters of dynamics for different

trade-offs and lifespans).

When d increases further (phase II), trade-off starts to force strains to choose between higher rep-

lication or better competitive abilities. Extremes of these quantities do not allow for viable species:

sacrificing r completely for maximum C stalls population dynamics, whereas maximum r leads to

inferior C. Thus strains seek middle ground values in both r and C. The nature of C as mean of inter-

actions (Equation 2) allows for many combinations of interaction traits with approximately the same

mean. Thus, in a middle range of r and C, many strategies with the same overall fitness are possible,

which is a condition of diversity (Marks and Lechowicz, 2006). From this multitude of strategies,

sets of trait combinations emerge in which strains with different combinations keep each other in

check, for example by the competitive rock-paper-scissors-like cycles between species described

above. An equivalent interpretation is the emergence of diverse sets of non-overlapping compart-

ments or functional niches in trait space (Figure 3b,e). Diversity in this phase II is the highest and

most stable (middle inset in Figure 4b, Appendix 1, Diversity indexes and parameters of dynamics

for different trade-offs and lifespans).

As d approaches 0:7, Wh i and � plummet (Figure 4a) to interaction values comparable to the

noise level m (see Model), and a cycle strength typical for the neutral model (horizontal light green

ribbon in Figure 4a), respectively. The sharp drop of Wh i and � at d» 0:7 is reminiscent of a phase

transition. As expected for a phase transition, the steepness increases with system size (Appendix 1,

Size of the system). For d >
~

0:7, weights of dominance edges never grow and no structures, for exam-

ple cycles, emerge. Diversity remains low and close to that of a neutral system. The sharp transition

at d» 0:7 which is visible in practically all diversity measures (between phases II and III in

Figure 4b, see also Appendix 1, Diversity indexes and parameters of dynamics for different trade-

offs and lifespans) is a transition from a system dominated by biotic selection pressure to a neutral

system. In high trade-off phase III, a small relative change in C produces a large relative change in r

(Appendix 1, Strength of trade-off function). For instance, given a resident strain R with r and C, a

closely related mutant M increases the fitness by adopting a relatively high r while paying a relatively

small penalty in C (see Appendix 1, Strength of trade-off function for the relative impacts of the

traits), and therefore will invade R. Thus, diversity in phase III will remain stable and low, and is char-

acterized by a group of similar strains with no effective interaction and hence no diversification to

distinct species (right inset in Figure 4b and Appendix 1, Diversity indexes and parameters of

dynamics for different trade-offs and lifespans). In this high trade-off regime, lifespan comes into

play: here, decreasing l can make lives too short for replication. These hostile conditions minimize

diversity and favor extinction (phase IV).

Trade-off, resource availability, and diversity
There is a well-known but not well understood unimodal relationship (‘humpback curve’) between

biomass productivity and diversity: diversity as function of productivity has a convex shape with a

maximum at middle values of productivity (Smith, 2007; Vallina et al., 2014). This productivity-

diversity relation has been reported at different scales in a wide-range of natural communities, for
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example phytoplankton assemblages (Vallina et al., 2014), microbial (Kassen et al., 2000; Horner-

Devine et al., 2003; Smith, 2007), plant (Guo and Berry, 1998; Michalet et al., 2006), and animal

communities (Bailey et al., 2004). This behavior is reminiscent of horizontal sections through the

phase diagram in Figure 4b, though here the driving parameter is not productivity but trade-off.

However, we can make the following argument for a monotonic relation between productivity and

trade-off shape. First we note that biomass productivity is a function of available resources

(Kassen et al., 2000): the larger the available resources, the higher the possible productivity. This

allows us to argue in terms of available resources. For eco-evolutionary systems with scarce resour-

ces, species with high replication rates will have low competitive ability because for each individual

of the numerous offspring there is little material or energy available to develop costly mechanisms

that increase competitive ability. On the other hand, if a species under these resource-limited condi-

tions produces competitively constructed individuals it cannot produce many of them. This argument

shows a correspondence between a resource-limited condition and high d for trade-off between rep-

lication and competitive ability. At the opposite, rich end of the resource scale, evolving species are

not confronted with hard choices between replication rate and competitive ability, which is equiva-

lent to low d. Taken together, the trade-off axis should roughly correspond to the inverted resource

axis: high d for poor resources (or low productivity) and low d for rich resources (or high productiv-

ity); a detailed analytical derivation will be presented elsewhere. The fact that ITEEM produces this

frequently observed humpback curve proposes trade-off as underlying mechanism of this productiv-

ity-diversity relation.

Frequency-dependent selection
Observation of eco-evolutionary trajectories as in Figure 3 suggested the hypothesis that speciation

and extinction events in ITEEM simulations do not occur at a constant rate and independently of

each other, but that one speciation or extinction makes a following speciation or extinction more

likely. Such a frequency-dependence occurs if emergence or extinction of one species creates the

niche for emergence and invasion of another species, or causes its decline or extinction (Herron and

Doebeli, 2013). Without frequency-dependence such evolutionary events should be uncorrelated.

To test for frequency-dependent selection we checked whether the probability distribution of

inter-event times (time intervals between consecutive speciation or extinction events) is compatible

with a constant rate Poisson process, i.e. a purely random process, or whether such events are corre-

lated (Appendix 1, Frequency-dependent selection). We find that for long inter-event times the

decay of the distribution in ITEEM simulations is indistinguishable from that of a Poisson process.

However, for shorter times there are significant deviations from a Poisson process for speciation and

extinction events: at inter-event times of around 10
4 the probability decreases for a Poisson process

but significantly increases in ITEEM simulations. Thus, the model shows frequency-dependent selec-

tion with the emergence of new species increasing the probability for generation of further species,

and the loss of a species making further losses more likely. This behavior of ITEEM is similar to micro-

bial systems where new species open new niches for further species, or the loss of species causes

the loss of dependent species (Herron and Doebeli, 2013; Maddamsetti et al., 2015).

The above analysis illustrates a further application of ITEEM simulations. Eco-evolutionary trajec-

tories from ITEEM simulations can be used to develop analytical methods for the inference of com-

petition based on observed diversification patterns. Such methods could be instrumental for

understanding the reciprocal effects of competition and diversification.

Effect of mutation on diversity
Mutations are controlled in ITEEM by two parameters: mutation probability �, and width m of trait

variation. In simulations, diversity grew faster and to a higher level with increasing mutation probabil-

ity (� ¼ 10
�4; 5� 10

�4; 10�3; 5� 10
�3), but without changing the overall structure of the phase dia-

gram (Appendix 1, Mutation probability). One interesting tendency is that for higher �, the lifespan

becomes more important at the interface of regions III and IV (high trade-offs), leading to an expan-

sion of region III at the expense of the hostile region IV: long lifespans in combination with high

mutation probability establish low but viable diversity at large d. The humpback curve of diversity

over d is observed for all mutation probabilities. Thus, the diversity in ITEEM is not a simple result of

a mutation-selection balance but trade-off plays an important role in shaping diversity in trait space.
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The width of trait variation, m, influences both the speed of evolutionary dynamics and the maxi-

mum variation inside species, i.e. clusters of strains. The smaller m the slower the dynamics and the

smaller the clusters. However extreme values of m can completely suppress the diverging evolution:

Very small variations are wiped out by rapid ecological dynamics, and very large variations disrupt

selection forces by imposing big fluctuations.

Comparison of ITEEM with neutral model
The neutral model introduced in the Model section has no meaningful interaction traits, and conse-

quently no meaningful competitive ability or trade-off with fecundity. Instead, it evolves solely by

random drift in trait space. Similarly to ITEEM, the neutral model generates clumpy structures of

traits (Appendix 1, Neutral model), though here the clusters are much closer and thus the functional

diversity is much lower. This can be demonstrated quantitatively by the size of the minimum span-

ning tree of populations in trait space that are much smaller for the neutral model than for ITEEM at

moderate trade-off (Appendix 1, Neutral model). The clumpy structures generated with the neutral

model do not follow a stable trajectory of divergent evolution, and, hence, niche differentiation can-

not be established. In a neutral model, without frequency-dependent selection and trade-off, stable

structures and cycles cannot form in the community network, and consequently, diversity cannot

grow effectively (Appendix 1, Neutral model). The comparison with the neutral model points to fre-

quency-dependent selection as a promoter of diversity in ITEEM. For high trade-offs (region III in

Figure 4b), diversity and number of strong cycles in ITEEM are comparable to the neutral model

(Figure 4a).

Discussion

Phenotype traits and interaction traits
In established eco-evolutionary models, organisms are described in terms of one or a few phenotype

traits. In contrast, the phenotype space of real systems is often very high-dimensional; competitive

species in their evolutionary arms race are not confined to few predefined phenotypes but rather

explore new dimensions in that space (Maharjan et al., 2006; Maharjan et al., 2012; Zaman et al.,

2014; Doebeli and Ispolatov, 2017). Coevolution systematically pushes species toward complex

traits that facilitate diversification and coexistence (Zaman et al., 2014; Svardal et al., 2014), and

evolutionary innovation frequently generates phenotypic dimensions that are completely novel in the

system (Doebeli and Ispolatov, 2017). Complexity and multi-dimensionality of phenotype space

have recently been the subject of several experimental and theoretical studies with different

approaches that demonstrate that evolutionary dynamics and diversification in high-dimensional

phenotype trait space can produce more complex patterns in comparison to evolution in low-dimen-

sional space (Doebeli and Ispolatov, 2010; Gilman et al., 2012; Svardal et al., 2014; Kraft et al.,

2015; Doebeli and Ispolatov, 2017). For example, it has been shown that the conditions needed

for frequency-dependent selection to generate diversity are satisfied more easily in high-dimensional

phenotype spaces (Doebeli and Ispolatov, 2010). Moreover, the level at which diversity saturates in

a system depends on its dimensionality, with higher dimensions allowing for more diversity

(Doebeli and Ispolatov, 2017), and the probability of intransitive cycles in species competition net-

works grows rapidly with the number of phenotype traits. The conventional way to tackle this prob-

lem is to use models with a larger number of phenotype traits. However, this is not really a solution

of the problem because this still confines evolution to the chosen fixed number of traits, and it also

makes these models more complex and thus computationally less tractable. As will be discussed

below, interaction-based models such as ITEEM offer a natural solution to this problem by mapping

the system to an interaction trait space that can dynamically expand by the emergence of novel

interaction traits as eco-evolutionary dynamics unfolds.

Eco-evolutionary dynamics in interaction trait space
Interaction-based eco-evolutionary models rely on the assumption that phenotypic evolution can be

coarse-grained to the interaction level (Figure 1). This means that regardless of the details of pheno-

typic variations, we just study the resultant changes in the interaction network. In an eco-evolutionary

system dominated by competition this is justified because phenotypic variations are relevant only
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when they change the interaction of organisms, directly or indirectly; otherwise they do not impact

ecological dynamics. The interaction level is still sufficiently detailed to model macro-evolutionary

dynamics that are dominated by ecological interactions.

A transition from phenotype space to interaction space requires a mapping from the former to

the latter, based on the rules that characterize the interaction of individuals with different phenotypic

traits. As a concrete example, we might consider the competition kernel of adaptive dynamics mod-

els (Doebeli, 2011) that determines the competitive pressure of two individuals with specific traits.

That formalism describes well how, after mapping phenotypic traits to the interaction space, ecologi-

cal outcome eventually is determined by interactions between species. In Appendix 1, Phenotype-

interaction map, some properties of this mapping are discussed.

Interaction-based models
In the first interaction-based model by Ginzburg et al. (1988), emergence of a new mutant was

counted as speciation, and it was shown that simulating speciation events as ecologically continuous

mutations in the strength of competitive interactions resulted in stable communities. However the

Ginzburg model produced stable coexistence of only a few similar interaction traits, without branch-

ing and diversification to distinct species. As outlined in the introduction, subsequent interaction-

based models tried to solve this problem by supplementing the Ginzburg model with some ad hoc

features. For example, Tokita and Yasutomi (2003) mixed mutualistic and competitive interactions,

and showed that only local mutations, i.e. changes in one pair-wise interaction rate, can produce sta-

ble diversity. Recently, Shtilerman et al. (2015) enforced diversification in purely competitive com-

munities by imposing a large parent-offspring niche separation. To our knowledge, ITEEM is the first

interaction-based model in which, despite its minimalism and without ad hoc features, diversity grad-

ually emerges under frequency-dependent selection by considering physical constraints of eco-evo-

lutionary dynamics.

In all previous interaction-based models, eco-evolutionary dynamics has been divided into itera-

tions over two successive steps: each first step of continuous population dynamics, implemented by

integration of differential equations, was followed by a stochastic evolutionary process, namely spe-

ciation events and mutations, as a second step. However, in nature these two steps are not sepa-

rated but intertwined in a single non-equilibrium process. Hence, the artificial separation

necessitated the introduction of model components and parameters that do not correspond to bio-

logical phenomena and observables. In contrast, individual-based models like ITEEM operate with

organisms as units, and efficiently simulate eco-evolutionary dynamics in a more natural and consis-

tent way, with parameters that correspond to biological observables.

Trade-off anchors eco-evolutionary dynamics in physical reality
Life-history trade-offs, like the trade-off between replication and competitive ability, now experimen-

tally established as essential to living systems (Stearns, 1989; Agrawal et al., 2010; Masel, 2014),

are inescapable constraints imposed by physical limitations in natural systems. Our results with

ITEEM show that trade-offs fundamentally impact eco-evolutionary dynamics, in agreement with

other eco-evolutionary models with trade-off (Huisman et al., 2001; Bonsall et al., 2004;

de Mazancourt and Dieckmann, 2004; Beardmore et al., 2011). Remarkably, we observe with

ITEEM sustained high diversity in a well-mixed homogeneous system. This is possible because mod-

erate life-history trade-offs force evolving species to adopt different strategies or, in other words,

lead to the emergence of well-separated functional niches in interaction space (Gudelj et al., 2007;

Beardmore et al., 2011).

Given the accumulating experimental and theoretical evidence, the importance of trade-off for

diversity is becoming more and more clear. ITEEM provides an intuitive and generic conceptual

framework with a minimum of specific assumptions or requirements. This makes the results transfer-

able to different systems, for example biological, economical and social systems, wherever competi-

tion is the driving force of evolving communities. Put simply, ITEEM shows generally that in a bare-

bone eco-evolutionary model withal standard population dynamics (birth-death-competition) and a

basic evolutionary process (mutation), diverse set of strategies will emerge and coexist if physical

constraints force species to manage their resource allocation.
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Power and limitations of ITEEM
Despite its minimalism, ITEEM reproduces in a single framework several phenomena of eco-evolu-

tionary dynamics that previously were addressed with a range of distinct models or not at all, namely

sympatric and concurrent speciation with emergence of new niches in the community, mass extinc-

tions and recovery, large and sustained functional diversity with hierarchical organization, spontane-

ous emergence of intransitive interactions and cycles, and a unimodal diversity distribution as

function of trade-off between replication and competition. The model allows detailed analysis of

eco-evolutionary mechanisms and could guide experimental tests.

The current model has important limitations. For instance, the trade-off formulation was chosen

to reflect reasonable properties in a minimalist way. This should be revised or refined as more exper-

imental data become available. Secondly, individual lifespans in this study came from a random dis-

tribution with an identical fixed mean. Hence we have no adaptation and evolutionary-based

diversity in lifespan. This limits the applicability of the current model to communities of species that

have similar lifespans, and that invest their main adaptation effort into growth or reproduction and

competitive ability. Furthermore, our model assumes an undefined pool of steadily replenished

shared resources in a well-mixed system. This was motivated by the goal of a minimalist model for

competitive communities that could reveal mechanisms behind diversification and niche differentia-

tion, without resource partitioning or geographic isolation. However, in nature, there will in general

be few or several limiting resources and abiotic factors that have their own dynamics. For this sce-

nario, which is better explained by a resource-competition model than by the GLV equation, it is

possible to consider resources as additional rows and columns in the interaction matrix I and in this

way to include abiotic interactions as well as biotic ones.

In an interaction-based model like ITEEM the interaction terms of the mutants change gradually

and independently (Equation 1). This assumption of random exploration of interaction space can be

violated, for example, in simplified models with few fixed phenotypic traits. Further studies are nec-

essary to investigate the general properties and restrictions of the map between phenotype and

interaction space. In Appendix 1, Phenotype-interaction map we briefly introduced and discussed

some properties of this map.
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Appendix 1
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Species and strains
There is no universally accepted definition of species (Zachos, 2016), especially for asexual

populations (Zachos, 2016; Birky Jr and Barraclough, 2009; Richards, 2013). In the present

work, we follow Rosselló-Mora and Amann (2001) and use the concept of phylo-phenetic

species applicable to asexual populations. A phylo-phenetic species is defined as a

monophyletic cluster of strains that show a high degree of overall similarity with respect to

many independent characteristics (Rosselló-Mora and Amann, 2001). We used genealogical

trees to define species as group of strains that share a most recent common ancestor and are

separated by long-lasting gaps in the tree. Each of these clusters that is branching off from a

point of divergence in the tree was counted as an individual species if it has existed for more

than a certain number of generations (7� 10
4 in the manuscript), considering all of its sub-

branches. Changing the threshold in a range from 2� 10
4 to 10

5 had no profound impact on

the results. Branches that lasted shorter than this threshold were counted as strains of their

parents (Appendix 1—figure 1).
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Appendix 1—figure 1. Genealogical tree corresponding to the simulation reported in Figure 3

of the main text. This tree contains around 80000 different strains clustered into 24 species with

the threshold of 7� 10
4 generations. Colors are the same as in Figure 3a, b, c and f of the

main text. Black dots represent the strains that are present in the last snapshot
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of Figure 3a and b (Generation 10
6). 10 out of 24 species are still extant in the last snapshot.

Red circles show the branching points.

DOI: https://doi.org/10.7554/eLife.36273.009

Distribution of strains in trait space and their diversification (see Figure 3b and c of the

main text) shows that these monophyletic clusters are also the well-separated clusters in

functional space which together allow us to consider them as phylo-phenetic species.

See Birky Jr and Barraclough, (2009); Ereshefsky (2010); Richards (2013); Wilkins (2018)

for a discussion on pros and cons of this definition.

Trade-off

Trade-off function
Linear, concave and convex trade-offs among different life-history traits have been reported in

many studies (Jessup and Bohannan, 2008; Maharjan et al., 2013; Saeki et al., 2014;

Ferenci, 2016). It has been shown that different forms of trade-off reproduce different

diversity and coexistence patterns (Levins, 1968; Maharjan et al., 2013; Kasada et al., 2014;

Ehrlich et al., 2017). The shape of trade-off is determined by various factors like quantitative

relationship between resource allocations in life-histories (Saeki et al., 2014), physiological

mechanisms (Bourg et al., 2017), and environment (Jessup and Bohannan, 2008).

In this study, to implement a trade-off between reproduction ra and competitive ability

C Tað Þ with a variable form, we used a function with one shape parameter s:

r Tað Þ ¼ 1�C Tað Þ1=s
� �s

(3)

where Ta is the trait vector of strain a. This trade-off function maps competitive ability of

species to reproduction probability in the range 0; 1½ �. By changing the exponent s between

simulations, we can study the effect of trade-off shape on eco-evolutionary dynamics. For a

systematic scan of trade-off shapes (Figure 2 in the main text), we formulated the shape

parameter s as

s¼�log2 1� dð Þ; (4)

with trade-off parameter d covering 0; 1½ � in equidistant steps. Of course, other functional

forms of the trade-off are conceivable.

Trade-off and explored interaction trait space
Trade-offs between life-history traits are constraints imposed by fundamental resource-

allocation principles. They confine evolutionary adaptations and innovations to a permissible

subspace of all trait combinations. However the outcome of evolution – determined by the

underlying mechanisms of the system and selection forces – is a subset of this permissible

subspace, occupied by the selected coexisting organisms, in which all organisms should have

more or less the same fitness to be able to coexist. Thus, in each community and at each time

point, just a small part of this permissible space is usually occupied (Bourg et al., 2017).

In ITEEM, the competitive ability C of a strain (Equation 2 of the main text) quantifies how

successfully individuals of this strain compete against individuals of all co-existing strains in

direct encounters. Thus, C is a relative and density-dependent component of the fitness. In the

course of evolutionary dynamics, C never explored extreme regimes, which means that we

never observed C » 0 (organisms that fail nearly in all encounters) or C » 1 (organisms that

defeat nearly all the rivals). Instead, we saw a distribution around middle values, C » 0:5. In the

low trade-off regime, emergence of strategies with relatively high competitiveness, without a

considerable cost in reproduction, drives the system to low diversity by outfighting the

competitors. In this case, as C is a relative, interaction-based measure (Equation 2 of the main

text) extinction of species with low competitive ability pushes the distribution of C again

toward 0:5. In the high trade-off regime, even small gains in C come with a severe penalty in r,
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that is, increasing competitive ability to high values is very unlikely; thus, strategies with a

relatively high r can prevail by a negligible decrement in their relative competitive ability,

which again limits diversity of strategies and brings them back to C » 0:5. For moderate trade-

off values between the above limiting cases, C also stabilizes around 0.5, as described in the

main text (Results, Impact of trade-off and lifespan on diversity).

Strength of trade-off function
At first sight, the strength of a trade-off function – how strongly changes in one trait influence

the other trait – seems to be just a synonym for the slope (=first derivative) of the trade-off

function. For instance, consider two traits x and y that both contribute to the fitness and are

related by trade-off function y ¼ f xð Þ with first derivative f 0 xð Þ. A small change Dx in trait x will

cause a change Dy» f 0 xð ÞDx in trait y, so that, obviously, for given Dx the slope f 0 xð Þ determines

the change Dy. However, the effect of such a change will very much depend on the community

context: the same change Dx or Dy may be relatively large or relatively small, depending on

the actual values of x and y. For example, a Dy ¼ 0:1 will change y ¼ 0:1 by 100%, but a larger

y ¼ 0:8 by a mere 12.5%, and accordingly the change Dy will have different effects on the

fitness of the affected strain. Therefore, we define as trade-off strength � x; yð Þ the ratio Dy

y
= Dx

x
,

or, in the limit of Dx;Dy ! 0 as

� x;yð Þ ¼
dy

dx
�
x

y
: (5)

To demonstrate that the trade-off strength � is a more meaningful quantity than the slope

to characterize the effect of the trade-off, we discuss in the following a few characteristic

cases.

Assume the same strain with a trait value x in two different systems, 1 and 2, with different

trade-off functions f1; f2, respectively. In the first system, x may be mapped to a large value of

trait y1 ¼ f1 xð Þ, while in the second it may be mapped to a small value of trait y2 ¼ f2 xð Þ.

Emergence of a mutant with a small change Dx in trait x causes different variations in the two

systems, namely Dy1 » f
0
1
xð ÞDx among large traits �y1, and Dy2 » f

0
2
xð ÞDx among small traits �y2.

Thus the same Dx impacts the two systems differently, even if the slopes f 0i xð Þ would be the

same. The trade-off strength Dy

y
= Dx

x
captures this difference as it is smaller for system 1 and

larger for system 2.

� is also expressive if the two systems have different values of the first trait x1<x2 that are

mapped to the same second trait y and have the same slope of trade-off function in the

respective range (f 0
1
x1ð Þ ¼ f 0

2
x2ð Þ). The same changes in the first trait Dx have different impacts

on relative fitness of the two systems, which is again captured by trade-off strength Dy

y
= Dx

x
.

Only in the special case x1 ¼ x2 and y1 ¼ y2, the slope Dy

Dx
is sufficient to compare the effects of

trade-offs on fitness and dynamics.

For x ¼ C and y ¼ r the derivative dy

dx
is the derivative of the trade-off function in Figure 2 of

the main text, explicitly formulated in Equation 3.

In ITEEM, as explained in the previous section, the competitive ability C is typically in the

middle range, i.e. organisms with low or high competitive ability are rare. In this middle range,

trade-off strength � C; rð Þ ¼ dr
dC

C
r
increases with increasing trade-off parameter d, as shown

in Appendix 1—figure 2 below.
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Appendix 1—figure 2. Trade-off strength � C; rð Þ as a function of competitive ability for different

values of trade-off parameter d. For d>0:5, � C; rð Þ increases rapidly and deviates from one but

for low trade-offs � C; rð Þ � 1. Color code corresponds to the one used in Figure 2 of the main

text.

DOI: https://doi.org/10.7554/eLife.36273.010

Generalized Lotka–Volterra (GLV) equation
As an individual-based model, ITEEM simulates systems consisting of distinct, interacting

organisms, and thus can model non-equilibrium dynamics, demographic fluctuations, effects of

diverse lifespans, and other features of real systems, as discussed in the main text. If these

features were not of concern we could replace the ecological dynamics of ITEEM by the

corresponding population-level model. In the following we show that such an abstraction of

ecological interactions of ITEEM leads to the competitive generalized Lotka-Volterra (GLV)

equation.

We start from the main equation of population dynamics for our model:

_xa ¼ raxa 1�
b

X

xb

� �

þ
b

X

raxaIabxb �
b

X

rbxbIbaxa � dxa (6)

In which xa ¼ na
Ns

is the relative abundance or probability of finding strain a in the system (Ns

is the number of sites in the system). The first term on the right side of Equation 6 is the

growth of the population of strain a when it produces progeny that is able to find an empty

space in the system. The second term shows the growth of population a when after

reproduction its offspring is able to invade a site occupied by another individual, the third

term is the decrease of population a due to invasion by offspring of other strains and the last

term is the decrease of population a due to the intrinsic death rate because of the attributed

life span (d ¼ 1=l). We can rewrite the equation as follows:
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_xa ¼ xa ra � d�
b

X

ra� raIabþ rbIba
� �

xb

� �

¼ xa ra � d�
b

X

ra 1� Iab
� �

þ rbIba
� �

xb

� �

¼ xa ra � d�
b

X

raþ rb
� �

Ibaxb

� �

¼ xa ra � dþ
b

X

Aabxb

� �

In which we used 1� Iab ¼ Iba (see Equation 1 in the main text). The last equation above,

which we can rewrite compactly as

_x¼ x � gþAxð Þ; (7)

is the GLV equation. g ¼ r� d is the effective population growth rate and A is the community

matrix; its elements Aab ¼ � ra þ rb
� �

Iba are always negative in our system which shows that

ITEEM strains and species are competing.

The close relationship of our individual-based ecological dynamics with the GLV equation

shows that organisms are competing in the sense that they expand their populations at the

expense of their competitors populations to secure resources and increase fitness. This

similarity of GLV with ITEEM ecological dynamics also explains why ITEEM individual-based

dynamics corresponds to a well-mixed system. A ‘site’ in the model is not a patch of space or

a piece of a spatially structured resource – neighborhood has no meaning, as in the GLV

model. Instead, a ‘site’ stands for a discrete portion of the steadily replenished resource pool

that is equally accessible to all extant individuals, and sufficient for their respective

metabolisms. Being well-mixed means that any individual meets any other individual and site

with the same probability. A difference between the individual-based ITEEM and the

population-level version in Equation 7 is that the former models encounters at the level of

individuals whereas the latter maps encounters to interactions between populations.

As outlined above, ITEEM simulations can be interpreted in the framework of the

competitive GLV equation. In evolving systems governed by this equation, fitness is

determined by reproduction rate, carrying capacity and competitive abilities (Gill, 1974;

Masel, 2014). In the present model, the carrying capacity is the same for all strains and

species, and the fitness at the low density limit (corresponding to the initial phase of the

simulations) is determined by replication r. At the high density limit typically simulated in the

present work, the product of r and C determines the fitness (Masel, 2014).

Classical multi-dimensional scaling (CMDS)
Multi-dimensional scaling (MDS) algorithms take sets of points in N-dimensional space and

represent them in a lower-dimensional space (typically 2-dimensional) so that the original

distances in N-dimensional space are preserved as well as possible. The lower-dimensional

representation can then be easily visualized.

Classical MDS (CMDS) is a member of the family of MDS methods (Cox and Cox, 2000;

Borg and Groenen, 2005; Wang, 2012). The algorithm takes as input an N � N distance

matrix, where the distances could for example be dissimilarities between pairs of N objects,

and outputs a coordinate matrix that determines positions of the points in a lower-dimensional

(often 2-dimensional) space with the condition of minimizing the loss function that measures

discrepancy between the algorithm’s output and the real distances. The quality of the lower-

dimensional representation can be assessed from the eigenvalues of a factor analysis that

shows the fraction of variation in the data explained by each dimension. CMDS is

mathematically closely related to principal component analysis (PCA) (Wang, 2012).

In our analysis, objects are interaction traits of strains and our aim is to visualize the

distribution of them in trait space. To this end we first calculate the Euclidean distances

between all trait vectors
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Dab ¼Dist Ta;Tb

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

Nst

g¼1

Iag � Ibg
� �2

v

u

u

t ; (8)

and then, by applying the cmdscale function of the R software (version 3.3.0) to that distance

matrix, we project our trait space into 2-dimensional plots. Thus, each point in the 2-

dimensional CMDS plot represents a trait vector, i.e. a strain. The larger the distance between

two points, the more different the traits of corresponding strains. While CMDS is a handy tool

for the visualization of evolutionary processes in trait space (Figure 3b and f of the main text),

all quantitative analyses were performed in the original high-dimensional space.

In the very early stages of evolution (Appendix 1—figure 3-top) strains are very similar so

that two dimensions are not sufficient to represent their dissimilarities accurately (relatively

high eigenvalues beyond the 2nd eigenvalue in top right of Appendix 1—figure 3). But when

evolutionary speciation’s and branching’s occur, the 2-dimensional space is more appropriate,

as the eigenvalues from the factor analysis show (Appendix 1—figure 3-bottom and

Appendix 1—figure 4).
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Appendix 1—figure 3. Top-left: Trait space at generation 6� 10
4 projected into two dimen-

sions using CMDS. Top-right: Percentage of variation explained by the first 20 eigenvectors

from factor analysis. Here the first two eigenvectors explain around 2� 18 ¼ 36% of variation.

Bottom: Same system as the top but for generation 1� 10
6. Here, the first two eigenvectors

explain around 78% of variation. Simulation was done with d ¼ 0:5, l ¼ 300, � ¼ 0:001 and

m ¼ 0:02.

DOI: https://doi.org/10.7554/eLife.36273.011
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Appendix 1—figure 4. Percentage of variation explained by the first two coordinates versus

time for one simulation. Simulation was done with d ¼ 0:5, l ¼ 300, � ¼ 0:001 and m ¼ 0:02.

DOI: https://doi.org/10.7554/eLife.36273.012

SMST and distribution of species and strains in trait space
The minimum spanning tree (MST) has been used as a tool to characterize the distribution of

species and strains in interaction trait space. The MST of a graph is a tree that connects all

nodes of that graph so that the total edge weight is minimized. For N nodes, the MST has N �

1 edges. Specifically, if we have N strains in interaction trait space as nodes, we compute as

MST a tree of N � 1 edges that links all strains with a minimum sum of edge lengths

(= distances between strains in interaction trait space [Equation 8]). For a more familiar

example think of nodes as N cities on a map and the MST as a tree of N � 1 edges that links

all cities, so that the sum of edge lengths (= distances between pairs of cities) is minimized.

The sum of edges of the MST (SMST) can be used as a quantitative measure that

characterizes the distribution of points. The MST of an evenly distributed structure, with N

nodes, has N � 1 edges with more or less the same length and thus, the SMST scales with N.

For a hierarchical structure, MST consists of long edges between clusters and short edges that

connect the nodes inside each cluster; in this case, the SMST scales with the number of

clusters. The SMST increases by divergent evolution. The left panel of Appendix 1—figure 5

shows an example MST in the trait space of our simulation, represented in 2D for the sake of

visualization.
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Appendix 1—figure 5. Minimum Spanning Tree (MST) in interaction trait space. Left: 2D

representation of MST of a typical snapshot of a simulation with d ¼ 0:5, l ¼ 300, � ¼ 0:001,

and m ¼ 0:02. The community in this snapshot consists of 667 strains. Here we used R-package

vegan 2.4–5 to find the MST. Right: the set of 500 gray curves shows the sorted lengths of the

edges of the MST versus their ranks (rank 1 = longest edge) for 500 snapshots from

simulations with the aforementioned parameters. The red curve is the average of all curves

and the red shaded area is the corresponding standard deviation. R1 and R2 are approximate

lengths of short branches connecting strains within clusters (R1), and long branches (R2)

connecting species. N approximates the number of long branches or species.

DOI: https://doi.org/10.7554/eLife.36273.013

The right panel of Appendix 1—figure 5 plots the lengths of the length-sorted edges of

the MST versus their ranks for 500 simulation snapshots (d ¼ 0:5, l ¼ 300, � ¼ 0:001, m ¼ 0:02).

From this log-log-scaled plot we see that there are two clearly different scales in the size of

edges. R1 is a representative value for the size of clusters (distance between strains within a

typical species) and R2 is a representative value for the scale of the trait space (typical distance

between different species). N in Appendix 1—figure 5 represents approximately the number

of distinct clusters (species) in the system.

Diversity indexes and parameters of dynamics
A diversity index quantifies a certain aspect of diversity in a single number. Since diversity is

itself complex, no single diversity index is sufficient to describe the diversity of a community.

For example richness, i.e. number of species, has no information about the distribution of the

population among species. Evenness or Shannon entropy takes into account this distribution

but does not inform about the diversity of the trait of species, i.e. how diverse is a system with

respect to the functionality of its species. Functional diversity indexes focus on this aspect but

none of them exhaustively describes properties of trait space (Mouchet et al., 2010). For a

comprehensive assessment of diversity and community dynamics, information about the

density of species over resources, rate of extinction and emergence, and also details of

community structure, for example interaction of species and topology of the network, should

be considered, too.

Diversity over time
The next plots show how SMST, an index for functional diversity, changes over time. Note that

evolutionary collapses (mass extinctions) occasionally occur (see Appendix 1, Collapses of

diversity) with a probability that depends on the trade-off parameter, lifespan and mutation

probability. The plots in Appendix 1—figure 6 follow SMST (see Appendix 1, SMST and

distribution of species and strains in trait space) over time for different trade-offs d but the

same lifespan l (and mutation probability) in each plot.

Appendix 1—figure 7 follows SMST over time for different lifespans l but the same trade-

off d in each plot. Comparison of Appendix 1—figure 7 and Appendix 1—figure 6 confirms
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that diversity and dynamics are strongly associated with trade-off without a noticeable effect

of lifespan (except for very short lifespans, upper left panel of Appendix 1—figure 6 and

bottom panel of Appendix 1—figure 7).
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Appendix 1—figure 6. Changes of SMST over time for different trade-off parameters d but

fixed lifespan l in each plot. For very large d diverse strategies cannot be adopted. For the

smallest d diverse strategies can emerge easily, but among them extreme strategies

(Darwinian Demons) very quickly dominate leading to low diversity. Sustainable diversity

emerges for moderate values of d. Very short lifespans l prevent increase in diversity,

especially for big trade-offs (zero SMST for l ¼ 10 and high d). Simulations were done with � ¼

0:001 and m ¼ 0:02.

DOI: https://doi.org/10.7554/eLife.36273.014
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Appendix 1—figure 7. Changes of SMST over time for different lifespans l but fixed trade-off

d in each plot. Apparently lifespan has no large effect for small and moderate d. For big d, short

lifespans suppress diversity completely (extinction). Simulations with � ¼ 0:001 and m ¼ 0:02.

DOI: https://doi.org/10.7554/eLife.36273.015

Functional diversity (FD), functional group and functional niche
Univariate diversity indexes that are defined based on abundance of species, like richness and

evenness, are routinely used to quantify diversity in biological communities. These indexes are

most expressive if species are equal in their effect on their community and ecosystem

functioning. However, in the last decades ecologists are increasingly realizing that without

information on variety of functions in a community, diversity can not be correctly evaluated
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(Mouchet et al., 2010), and that trait-based measures that reflect the importance, essentiality,

or redundancy of species may be more meaningful than abundance-based measures

(Cadotte et al., 2011). Inspired by the concept of Hutchinsonian niche, functional diversity

(FD) was introduced by Rosenfeld as distribution of species in functional space

(Whittaker et al., 1973; Rosenfeld, 2002). The axes of this space represent the functional

features of species (Mouchet et al., 2010) which are usually measurable characteristics (traits)

that are indicators of organismal performance, and that are associated with species fitness and

their ecological function (Violle et al., 2007; Májeková et al., 2016). In ITEEM, we operate

with the interaction trait, which is already an optimal indicator of function of strains and

species: the whole vector of interactions that determines the role or function of strain/species

in the actual community (Hooper et al., 2002; Sander et al., 2015). Thus, the distribution of

interaction traits in trait space determines variety of functions in the system.

Different measures of FD have been introduced, each quantifying and explaining one facet

of trait distribution in trait or functional space, very similar to SMST (Appendix 1, SMST and

distribution of species and strains in trait space). In the following we also use three other

indexes: functional dispersion, Rao index and functional evenness (Mouchet et al., 2010;

Mason et al., 2013).

Distinct, well-separated clusters in functional (trait) space mean that species are diversified

to different functional groups. A functional group is defined in ecology either as a set of

species with similar effect on their environment, or as cluster in trait space (Hooper et al.,

2002). In ITEEM, by using the framework of interaction-based models, these two definitions

are interchangeable.

The positions of functional groups in functional space define their functional niches. The

notion of functional niche was first introduced by Elton as the place of an animal in its

community or its biotic environment (Elton, 1927). Then Clarke (Clarke, 1954) noted that the

functional niche stresses the function of the species in the community, which is different from

its physical niche, the latter determining its place in the habitat. A suitable definition of

functional niche is the area occupied by a species in the n-dimensional functional space

(Clarke, 1954; Whittaker et al., 1973; Rosenfeld, 2002). This concept was subsequently

differentiated by Odum who considered the habitat as the organism’s ‘address’ and the niche

as its ‘profession’ (Odum, 1959). Following this picture and considering that there is no

physical niche or habitat in our well-mixed model, we can say that in ITEEM, the position of

trait vectors in functional space determines the profession (function) of species. In the eco-

evolutionary dynamics of ITEEM, distinct functional groups with different professions/roles/

functions emerge in a community of competitive organisms.

Diversity indexes and parameters of dynamics for different trade-
offs and lifespans
For the phase diagram in Figure 4 of the main text we have synthesized a descriptive

dimensionless diversity parameter by averaging over normalized values of several diversity

indexes, namely richness, Shannon entropy, standard deviation of replication r, maximum

distance in trait space, standard deviation of interaction terms, sum of squared lengths of

minimum spanning tree of trait space, functional diversity indexes (functional dispersion, Rao

index and functional evenness, all three in two versions: with and without abundance), and

strength of cycles. This phase diagram gives a good overview about different characteristics of

communities with different d and l, but, of course, the averaging procedure leads to a loss of

detailed information. Therefore, we report in Appendix 1—figure 8 some of the most

important indexes of community state computed from our simulations for different trade-offs

and lifespans. Each index value is averaged over 5� 10
6 generations. The four phases

described in Figure 4 of the main text can be seen in nearly all the parameters. Functional

diversity indexes (functional dispersion, functional evenness and Rao’s quadratic entropy) are

calculated using the dbFD function in R-package FD, version 1.0–12.

Farahpour et al. eLife 2018;7:e36273. DOI: https://doi.org/10.7554/eLife.36273 29 of 41

Research article Computational and Systems Biology Ecology

https://doi.org/10.7554/eLife.36273


100

200

300

400

500

600

Richnessa

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

1

2

3

4

5

Shannon Entropyb

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

0.5

1.0

1.5

Relative Cycle Strengthc

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

0.002

0.004

0.006

0.008

0.010

0.012

0.014

SD of Reproduction rated

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

5

10

15

20

25
FDis (WoA)e

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

5

10

15

20

25
FDis (WA)f

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

0.80

0.85

0.90

0.95

FEve (WA)g

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

100

200

300

400

500

600

Rao index (WoA)h

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

100

200

300

400

500

600

Rao index (WA)i

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

5

10

15

20

25

Max. dist. in trait spacej

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

0

10000

20000

30000

40000

50000

60000

70000
Volume of trait spacek

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

500

1000

1500

SMSTl

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

100

200

300

400

500

600
Area of MDS plotm

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

0.1

0.2

0.3

0.4

0.5
SD of Interaction ratesn

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

2e+04

4e+04

6e+04

8e+04

1e+05
Populationo

0 0.2 0.4 0.6 0.8 1
1

0
1

1
0

2
1

0
3

1
0

4
1

0
5

δ

λ

∞

0

500000

1000000

1500000

2000000

2500000

Extinction stepsp

0 0.2 0.4 0.6 0.8 1

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5

δ

λ

∞

Appendix 1—figure 8. Diversity indexes used to compute the phase diagram of Figure 4 of

the main text. (a) Richness: number of different strains in community. (b) Shannon entropy: here

a measure of evenness in strain population. (c) Relative strength of cycles of size three

compared to random networks (see Appendix 1, Intransitive dominance cycles). (d) Standard

deviation of replication r as a measure of diversity in reproduction strategy. (e) Functional

dispersion (FDis, without using the abundance vector): measures the mean distance of

individual strains in trait space to their centroid. (f) Functional dispersion (FDis, using the

abundance vector): measures the mean distance of individual strains (weighted by abundance

vector) in trait space to their centroid. (g) Functional evenness (FEve, using the abundance

vector): quantifies functional evenness and is higher when strains/species are spread

homogeneously in trait space. When disruptive selection produces clusters of localized strains

in trait space this index decreases. (h) Rao’s quadratic entropy (without using the abundance

vector): measures mean functional distance between two randomly chosen individuals. (i) Rao’s

quadratic entropy (using the abundance vector): measures mean functional distance between

two randomly chosen individuals. (j) Maximum distance in trait space between strains. (k)

Volume of trait space: calculated by multiplication of eigenvalues of factor analysis. (l) SMST

(see Appendix 1, SMST and distribution of species and strains in trait space). (m) Area of MDS

plot: calculated by multiplication of the two first eigenvalues of factor analysis. (n) Standard

deviation of interaction terms. (o) Community population: number of individuals in community.

(p) Number of mass extinction events over 5� 10
6 generations. Each plot is the average of

corresponding index over three simulations each over 5� 10
6 generations. Simulations with

� ¼ 0:001, m ¼ 0:02 and Ns ¼ 10
5.

DOI: https://doi.org/10.7554/eLife.36273.016
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Intransitive dominance cycles
Flow of energy/mass between strains in ITEEM community is determined by the dominance

matrix Wab:

Wab ¼
Iab� Iba if; Iab>Iba

0 otherwise

� �

(9)

The corresponding network is a directed network with one directed edge between each

pair of nodes (strains), pointing from the dominating to the dominated one, with weight

between 0 and 1 according to (Equation 9). Three or more directed edges in the dominance

network can form cycles of strains in which each strain competes successfully against one cycle

neighbor but loses against the other neighbor, a configuration corresponding to the rock-

paper-scissors game. Even in a completely connected random dominance network, a randomly

selected triplet of nodes forms a cycle with a probability of 1

4
. We are interested in

characterizing evolved networks in ITEEM in comparison to random networks. Hence, we

compare number, NNetwork
cyc , and average strength, SNetworkcyc , of cycles of the evolving network at

each time step with number, NRandom
cyc , and average strength, SRandomcyc of cycles of its equivalent

shuffled random networks. For this purpose we

1. average over cycles: We select at random 3 nodes of the network and check if they form a

cycle of size 3. If yes, the number of 3-cycles, NNetwork
cyc , of the network increases by one and

the minimum weight among its edges (corresponding to the limiting edge in that cycle for

energy/mass flow) is the strength of that cycle. This procedure is repeated many times

(>105), and then we average over the strengths of all cycles to obtain average strength of

cycles, SNetworkcyc .

2. build the equivalent random networks: We shuffle the edges of original network to obtain a

random network. Then we apply the procedure described in step one on this network to

measure the number of cycles and their average strengths. This step is done several times

(>10) to sample different random networks, and by averaging over them we obtain NRandom
cyc

and SRandomcyc .

3. normalize the values: Number and average strength of ITEEM network are normalized to the

number and average strength of the corresponding random network, respectively: NNetwork
cyc ¼

NNetwork
cyc

NRandom
cyc

and SNetworkcyc ¼
SNetworkcyc

SRandomcyc
.

The results of these three steps are plotted in Figure 3g and Figure 4a of the main text.

Collapses of diversity
Collapses of diversity occur occasionally in ITEEM simulations. The probability of collapses

depends on the trade-off parameter d, attributed lifespan l, and mutation probability �. In our

analysis, a diversity collapse is defined as a sharp decrease in diversity, i.e. a sudden drop of

the SMST, larger than half of the temporal average of the SMST in 10
4 generations

(Appendix 1—figure 9a). In this way we excluded small or gradual decreases in a diversity

measure.
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Appendix 1—figure 9. (a) Diversity collapse in a sample simulation with d ¼ 0:4, l ¼ 3� 10
4,

� ¼ 0:001 and m ¼ 0:02. Diversity collapse (red line) is defined as a sharp decrease in diversity.

Red dots mark 5sampling time steps before the collapse. (b) Diversity versus average cycle

strength for 24 different simulations each over 5� 10
6 generations with � ¼ 0:001, m ¼ 0:02,

d ¼ 0:28; 0:33; 0:4; 0:44; 0:5; 0:56 and l ¼ 1� 10
4; 3� 10

4; 1� 10
5;¥. The red dots highlight the

five sampling time steps before each observed collapse. The overall distribution of sampled

values, and the distribution of the (red) points preceding the collapses are over plotted as two

sets of contours.

DOI: https://doi.org/10.7554/eLife.36273.017

In order to find a qualitative explanation for diversity collapses in ITEEM, we examined the

relation between diversity and average cycle strength (Appendix 1—figure 9b). During

simulations, these two quantities are usually correlated, but this correlation is blurred by the

stochastic nature of eco-evolutionary dynamics. Sometimes, diversity increases faster than

cycle strength or vice versa. If we highlight the time steps before the sudden collapses, we see

that they always lie in the right part of the cycle strength distribution, which means that cycle

strengths are larger than expected at these time points.

Size of the system
We checked the effect of system size by comparing simulations with sizes

Ns ¼ 1� 10
4; 3� 10

4; 1� 10
5; 3� 10

5, l ¼ ¥ and a set of trade-off parameters (0 � d<1). One of

the diversity indexes (SMST) is plotted in Appendix 1—figure 10 for different sizes. With

increasing Ns the final diversities in trait space increase, and the drop at d» 0:7 becomes

sharper, which is typical of a phase transition.
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Appendix 1—figure 10. Functional diversity, measured by size of minimum spanning tree

(SMST), as function of trade-off parameter for different system sizes Ns. Simulations with l ¼ ¥,

� ¼ 0:001, and m ¼ 0:02.

DOI: https://doi.org/10.7554/eLife.36273.018

Plotting diversity versus size of the system for the middle rage of trade-off parameter d in a

log-log plot reveals a scaling relation with exponent around 2: D ~ S1:97 (Appendix 1—figure

11).
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Appendix 1—figure 11. Functional diversity, measured by size of minimum spanning tree

(SMST) versus size of the system in a log-log plot, averaged over middle range of trade-off

parameter (d ¼ 0:44; 0:5; 0:56). We see a scaling relation with exponent of 1:97 between diversity

and size of the system. Simulations with l ¼ ¥, � ¼ 0:001, and m ¼ 0:02.

DOI: https://doi.org/10.7554/eLife.36273.019

Frequency-dependent selection
Frequency-dependent selection mediated by interaction of species could be a source of

temporal correlation between eco-evolutionary ‘events’, for example speciation, invasion, and

extinction of species. In the absence of such biotic selections, speciation and extinction of

different species occur randomly with a constant rate without any autocorrelation in time. To

examine if there is such a correlation we used the distribution of inter-event times, that is, the

distribution of intervals between occurrence of consecutive events. For a completely random

(Poisson) process – which is the null hypothesis for correlated speciation and extinction – this

distribution follows an exponential distribution. Deviation from the exponential distribution is a

signature of correlation between events. Appendix 1—figure 12 compares the inter-event

distribution of ITEEM data with the best fit of a geometric distribution (discrete version of

exponential distribution) to the data. The clear deviation from the Poisson process supports

that speciation and extinctions are not just random events, but that after occurrence of an

event, with a delay (» 10000 generations), the probability of observing another event is higher

than in a random process.
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Appendix 1—figure 12. Distribution of time interval between speciation events (left) and

extinction events (right). Blue points and error bars: data from 24 ITEEM simulations, each of

5� 10
6 generations (d ¼ 0:5; l ¼ 10

5 . . .¥;NS ¼ 10
5; � ¼ 0:001;m ¼ 0:02). Error bars are �2

standard deviations calculated by bootstrapping. Red points and error bars: maximum

likelihood fit (function fitdistr in R-package MASS, version 7.3–44) of the simulated data to a

geometric distribution (discrete version of an exponential distribution), corresponding to an

assumed Poisson process. Error bars are �2 standard deviations estimated by a maximum

likelihood fit.

DOI: https://doi.org/10.7554/eLife.36273.020

Mutation probability
Appendix 1—figure 13 shows the behavior of a typical diversity index (SMST) as function of d

and l for different mutation probabilities �. The overall dependency on trade-off and lifespan

is the same for a wide range of �, but the value of diversity indexes depend on it: the smaller

the � the lower the diversity in community. � also affects the rate of increase in

diversity (Appendix 1—figure 14).
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Appendix 1—figure 13. SMST for different mutation probabilities (�) versus trade-off (d) and

lifespan (l).

DOI: https://doi.org/10.7554/eLife.36273.021
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Appendix 1—figure 14. Rate of increase in diversity (measured as increase of SMST per 10000

generations) for different mutation probabilities �. Rate of increase in diversity is calculated by

fitting a line to the first 80000 generations of each simulation and averaging is over five

different simulations. Error bars show the errors estimated by the fit. Note the log-log scale of

the plot.

DOI: https://doi.org/10.7554/eLife.36273.022

Neutral model
To compare the diversity generated by genetic drift (neutral model) with diversity generated

under selection pressure induced by competition with moderate trade-offs, we simulated

neutral models in which all strains compete equally for resources, that means Iab ¼ 0:5 for all

pairs of strains, but traits evolve by mutation as before. In the neutral model, reproduction

probabilities should also be the same for all strains, hence we attributed the same replication

in each simulation to all strains. We carried out simulations for r ¼ 0:1; 0:5; 0:9. The distribution

of strains over trait space (Appendix 1—figure 15) shows that genetic drift is able to spread

trait vectors in trait space and to produce a small cloud of strains, but the diversity generated

in this way is much smaller than that of communities evolved under biotic selection pressure

mediated by competition under moderate trade-offs (compare scale to that of bottom left

panel of Appendix 1—figure 3).
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Appendix 1—figure 15. Trait space of a community evolved under neutral model at three time

steps: 1� 10
6, 2� 10

6, and 3� 10
6 with l ¼ 100, r ¼ 0:9, � ¼ 0:001, and m ¼ 0:02. Note the small

size of the trait space in comparison to a non-neutral model (bottom left panel of

Appendix 1—figure 3).

DOI: https://doi.org/10.7554/eLife.36273.023

In order to show clearly the difference between the diversity produced in both models we

also studied diversity measures and other parameters. The to panel in each column of

Appendix 1—figure 16 follows changes of a typical diversity index (SMST) over time for a

simulation of genetic drift for one lifespan (with three different reproduction probability), and

compares these changes with those in a typical simulation with competitive selection pressure

for a moderate trade-off (d ¼ 0:56).The bottom panels illustrate the corresponding comparison

for cycle formation. The relative strengths of cycles in these simulations have large fluctuations

around a value less than one, without any stable pattern over time. This means that community

dynamics in the neutral model is determined by fluctuations, as expected from a model

dominated by random genetic drift.
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Appendix 1—figure 16. Changes of SMST (top panels) and relative strength of cycles (bottom

panels) over time for three different lifespans. Colored curves are the results of the neutral

model with different reproduction rates (r ¼ 0:1; 0:5; 0:9). The results are compared with the

outcome of one simulation with d ¼ 0:56 and the corresponding lifespans (gray curves). For

l ¼ 10 and r ¼ 0:1 the population went extinct very quickly.

DOI: https://doi.org/10.7554/eLife.36273.024

Phenotype-interaction map
A map between two spaces, for example interaction and phenotype space, can be

constructed by the rules and laws that link them. The interaction of two individuals is a

function of their phenotypic traits. Generally, this can be a complex relation with different

functionality of different traits. When this function is known, any phenotypic variation can be

mapped into the interaction space. To generally investigate this map, we borrow the term

Farahpour et al. eLife 2018;7:e36273. DOI: https://doi.org/10.7554/eLife.36273 37 of 41

Research article Computational and Systems Biology Ecology

https://doi.org/10.7554/eLife.36273.023
https://doi.org/10.7554/eLife.36273.024
https://doi.org/10.7554/eLife.36273


competition kernel from adaptive dynamics theory as a phenotype-based model

(Doebeli, 2011). A competition kernel measures the competitive impact of two individuals

from different strains with different traits, i.e. for two individuals from strains a and b, the

competition kernel is a function a xa;xb

� �

where xa ¼ x1a; x2a; . . .ð Þ and xb ¼ x1b; x2b; . . .
� �

are

the phenotypic trait vectors of the corresponding strains. Elements of these vectors can be any

relevant phenotype like size, color, expression of a gene, etc. Considering that in our model

the carrying capacity is fixed and equal for all traits, interaction terms of ITEEM are

proportional to the competition kernel, Iab / a xa;xb

� �

.

The dimension of the phenotype space is equal to the number of traits with each axis

representing a trait, and strains are distributed according to their traits over this space

(Appendix 1—figure 17a). Interaction space, on the other hand, has one axis for each strain,

and individuals are distributed based on their interactions with the strains that represent the

axes (Appendix 1—figure 17b). The dimension of interaction space is dynamic because it

increases with new strains and shrinks as strains go extinct.
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x
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x1x1x1

x
2

x
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x
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II
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Interaction spacea b

Appendix 1—figure 17. Distribution of strains in a) the phenotype space b) the interaction

space. This system consists of 3 strains with two phenotypic traits. Here, without loss of

generality, we ignore intra-specific competitions. Interaction terms are obtained from the

competition kernel: Iab / a xa;xb

� �

.

DOI: https://doi.org/10.7554/eLife.36273.025

A new, phenotypical mutant strain appears in phenotype space close to its parent

(Appendix 1—figure 18a and c). Any phenotype variation that is not ecologically neutral and

produces a new ‘interaction’ mutant, i.e. a strain with a novel interaction vector, adds a new

dimension to the interaction space (Appendix 1—figure 18 b and d) while it is still close to its

parent, as expected from their ecological similarity.
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Appendix 1—figure 18. The phenotype and the interaction space of a system that first consists

of 2 strains with two phenotypic traits and then is invaded by a mutant.

DOI: https://doi.org/10.7554/eLife.36273.026

A relevant question about interaction based-models could be if the random Gaussian

variations in the interaction traits are biologically meaningful or not. The key to answering this

question is the competition kernel, that is, how phenotypes are translated to the interactions,

and hence depends on its functionality. However, if we consider that a mutant should be

ecologically similar to its parent, the assumption of random Gaussian variations appears

justified; it is also in line with models at the phenotype and genotype levels. Evolution is

exploring the trait space, which, depending on the model, could be genotype, phenotype or

interaction space. This exploration can be random (neutral evolution), or directional (adaptive

evolution). In evolutionary models in phenotype space, usually phenotypic variations are drawn

from a Gaussian distribution around the parent’s trait vector. The fate of these mutants are

then determined by either genetic drift, or the fitness landscape, or the community, i.e. when

frequency-dependent selection is the driving evolutionary force. If we use such Gaussian

distributions to model phenotype traits, we can use the competition kernel to map them into

interaction space and test if such variations produce random variations in the interaction traits.

Consider a system with P phenotypic traits in which each strain a is described by its trait

vector xa ¼ x1; x2; . . . ; xPð Þ. A mutant offspring a0 should have a trait vector that is a random

variation of the trait vector of its parent a, i.e. xa0 ¼ xa þ n ¼ x1 þ n1; x2 þ n2; . . . ; xn þ nPð Þ,

where elements ni (i ¼ 1; . . . ;P) of n are drawn independently from a normal distribution. To

map this system to the interaction space, we need the competition kernel. In a system with N

strains, the interaction trait vector of parent strain a is Ta ¼ Ia1; . . . ; IaNð Þ ¼
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a xa;x1ð Þ; . . . ; a xa;xNð Þð Þ while the interaction trait vector of mutant a0 is

Ta0 ¼ Ia01; . . . ; Ia0Nð Þ ¼ a xa0 ;x1ð Þ; . . . ; a xa0 ;xNð Þð Þ ¼ a xa þ n;x1ð Þ; . . . ; a xa þ n;xNð Þð Þ. As the

phenotypic variations are small, we can approximate the b-th element of Ta0 with a Taylor

series expansion:

Ia0b ¼ a xa0 ;xb

� �

¼ a xaþ n;xb

� �

¼ a xa;xb

� �

þgT :nþ
1

2
n
THnþ . . .¼ Iab þhb: (10)

g ¼ d
dxa

a xa;xb

� �

and H ¼ d
dxa

g are the gradient vector and the Hessian matrix (first and

second order derivatives in single variable case) of the competition kernel and hb is a random

number with normal distribution (Equation 1 in the main text). For the last equation we have

used the central limit theorem, which states that the sum of many independent random

variables is approximated well by a normal distribution.

Despite the fact that the precise influence of random phenotypic variations on the

interaction trait depends on the functionality of competition kernel, the above approximation

(Equation 10) shows that those variations can be mapped to random variations in the

interaction terms. This means that if a mutant emerges with random variation of its parent’s

phenotype, its interactions with the extant strains are random variations of the interactions of

the parent. It is important to mention that neither in phenotype nor in interaction space,

random trait variation between parent and mutant offspring leads necessarily to random

independent characters of parent and offspring. The latter is true only if evolution is governed

by neutral drift. In adaptive evolution, the fate of a mutant is determined by the interaction of

that mutant with the community or the environment.

One important aspect of the interaction level modeling is that the organisms are defined in

this space by their interaction traits. Thus, variations that occur in different phenotype traits

are coarse-grained into the interaction terms. Interaction space is not restricted by the

dimensions of the phenotype trait and hence allows for evolutionary innovations that happen

due to emergence of new phenotypic dimensions, for example a novel metabolic pathway

activated by epigenetic changes. However, this coarse-graining neglects phenotypic variations

that do not affect ecological interactions, and thus maps different phenotypic mutations that

lead to the same effective ecological interactions to the same interaction term, for example if

those phenotypic variations yield the same ecological dominance (Appendix 1—figure 19).

This is similar to the genotype-phenotype map if several genotypes are mapped to the same

phenotype. The non-injectivity between the phenotype and interaction space is not an issue

when the ecological outcome of the eco-evolutionary dynamics is studied.

x1

x
2

Phenotype space Interaction spacea b

Appendix 1—figure 19. Non-injectivity of the phenotype-interaction map. Depending on the

competition kernel, several phenotype arrangements can be mapped to the same interaction
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arrangement. For example if we consider an asymmetric competition kernel like a xa;xb

� �

¼

i¼1;2

X

d 1� 1

1þbe
�c xai�xbið Þ

� �

(Kisdi, 1999), the two imaginary phenotypes that are shown as b in (a)

will be mapped to the same point in the interaction space. Remember that these two are not

present at the same time but both are possible phenotypic traits that give rise to the same

interaction term with a. In fact in this example for the aforementioned competition kernel set

of points that all map to the same interaction term with a form a curve (thick gray line).
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