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Abstract The genotype–phenotype map (GP map) concept applies to any time point in the
ontogeny of a living system. It is the outcome of very complex dynamics that include environmental
effects, and bridging the genotype–phenotype gap is synonymous with understanding these
dynamics. The context for this understanding is physiology, and the disciplinary goals of physio-
logy do indeed demand the physiological community to seek this understanding. We claim
that this task is beyond reach without use of mathematical models that bind together genetic
and phenotypic data in a causally cohesive way. We provide illustrations of such causally
cohesive genotype–phenotype models where the phenotypes span from gene expression profiles
to development of whole organs. Bridging the genotype–phenotype gap also demands that
large-scale biological (‘omics’) data and associated bioinformatics resources be more effectively
integrated with computational physiology than is currently the case. A third major element is the
need for developing a phenomics technology way beyond current state of the art, and we advocate
the establishment of a Human Phenome Programme solidly grounded on biophysically based
mathematical descriptions of human physiology.
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Introduction

We use DNA information in at least four explanatory
settings: as a pure marker where we do not make a direct
link to any particular phenotype; when we by statistical
means establish an association between one or more
chromosomal regions and phenotypic variation; when we
can document that a particular DNA variation (natural or
imposed) does indeed cause a phenotype; and finally in a
causally cohesive setting where we can also explain how the
genetic variation causes the observed phenotype in terms
of biophysical mechanism at the cell, tissue and organ
system levels. Even though there are several challenges
associated with the first three types of explanation, they
are all dwarfed by those facing us in connection with the
fourth type. But these are the ones to be overcome if we are
to bridge the gap between the genotype and the phenotype
with real understanding, and thus realize the disciplinary
goals of both genetics (Bateson, 1906, p. 190) and physio-
logy (Gove, 1981).

The terms genotype and phenotype were introduced
by the Danish plant physiologist and geneticist Wilhelm
Johannsen in 1909. An individual’s genotype denotes the
constitution of parts or all of its genetic material, while its
phenotype may comprise anything from a single observable
characteristic or trait to all conceivable ones. Thus any
morphological, developmental, biochemical or physio-
logical property all the way down to the subcellular
level (including epigenetic marks), as well as any of the
individual’s behaviour and products of behaviour, is a
phenotypic characteristic and belongs to the individual’s
phenome (Soulé, 1967; Houle et al. 2010).

The relation between genotype and phenotype can be
conceptualized as a genotype–phenotype map (GP map),
assigning a phenotype to each possible genotype. Even
though the term physiological genetics pointing to the
genotype–phenotype relation has at least a 75 years
history (Goldschmidt, 1938), the mathematically oriented
GP map concept was coined only 40 years ago (Burns,
1970). The concept is highly instrumental for physiological
research and concords well with the disciplinary goals of
physiology as they are laid out in the standard definition
of the discipline: “the study of the functions and activities
of living matter (as of organs, tissues, or cells) as such
and of the physical and chemical phenomena involved”
(Webster’s Third New International Dictionary). Fulfilling
these goals demands an understanding of the mechanisms
underlying the GP map.

The GP map concept applies to any time point in the
ontogeny of a living system and it is an abstraction of a
relation that is the outcome of very complex dynamics

that include environmental effects. The concept does not
imply that DNA has a privileged place in the chain of
causality authorizing the current zoo of anthropomorphic
concepts we attribute to it (Noble, 2012; Omholt, 2012). As
described in more detail by Omholt (2012), DNA allows
a system to induce perturbations of its own dynamics
as a function of its own system state or phenome. Thus
the presence of DNA is a systems structure that enables
living systems to self-transcend – not beyond the dictums of
physics and chemistry, but beyond those morphogenetic
limits that exist for non-living open physical systems in
general. Thus there is no direct causal arrow from genotype
to phenotype in the sense that DNA is responsible for
exerting a direct effect as a sub-system on the system
dynamics. The causality flows from the system state
through a change in use of DNA (as an inert system
component) that results in a change in the production
of RNA and protein, which in turn perturbs the system’s
dynamics. In those cases where variations in DNA cause
changes in the perturbation regime it may lead to different
system dynamics and thus physiological variation. This
way of perceiving the function of DNA in a GP map context
brings physiology back as the major arena for under-
standing the manifestation and propagation of genetic
variation.

Our view is that without the massive, combined use
of existing and new mathematics, high-dimensional data
analysis, computer science and advanced engineering
methodology, biological research will not be able to probe
very deeply into the genotype–phenotype relation. In the
following we elaborate on a few selected topics associated
with what it takes to bridge the genotype–phenotype
gap through this merging of life sciences, mathematical
sciences and engineering.

Causally cohesive genotype–phenotype modelling

The subject matter of physiological research is to
understand the mechanisms and principles underlying
biological systems behaviour. Computational physiology
has a long and effective track record of applying systems
dynamics models to dissect biological function. The
efficacy of computational models in physiology arises
from their capacity to connect a comprehensive amount
of empirical data into a functional whole, by enforcing
explicit formulations of various hypotheses, by precisely
framing the prediction space of hypotheses, by initiating
and canalizing experimental or empirical work by pointing
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out key questions and the type of data needed, and last but
not least, by functioning as highly efficient synthesizers of
intellectual capital from various disciplines. But however
complex they may be, such models do not link with the
genetic realm unless we embed them in a model setting
that maintains an explicit relation to genetic variation.

If a dynamic model of a physiological system is
capable of accounting for the phenotypic variation
in a population, the causative genetic variation will
manifest in the model parameters (Rajasingh et al.
2008), i.e. those model elements that are constant
over the time scale of an individual instance of the
particular model being studied. However, even the
lowest-level model parameters are themselves phenotypes,
whose genetic basis may be mono-, oligo- or poly-
genic, and whose physiological basis and variation can
be mechanistically modelled at ever deeper levels of
detail (Rajasingh et al. 2008; Vik et al. 2011). The
term causally cohesive genotype–phenotype (cGP) modelling
describes an approach where low-level parameters have an
articulated relationship to the individual’s genotype, and
higher-level phenotypes emerge from the mathematical
model describing the causal dynamic relationships
between these lower-level processes (Rajasingh et al.
2008). Such cGP models bridge the gap between standard
population genetic models that simply assign phenotypic
values directly to genotypes, and mechanistic physiological
models without an explicit genetic basis (Fig. 1).

Figure 1. Decomposition of the genotype-phenotype map
In causally cohesive genotype–phenotype (cGP) models, the
mapping from genotypes to phenotypes can be decomposed into
two separate mappings. Mathematical models describing the
dynamics of a biological system typically contain two types of
elements, state variables that change with time and parameters that
remain constant over the time scale of the study. This scheme applies
to any level of biological resolution. A phenotype is any observable
characteristic of interest, such as the trajectory of a state variable or
a summary thereof. Because the parameters in a physiological model
can be conceived as aggregated summaries of finer-scale underlying
models, parameters are phenotypes too. In a causally cohesive
multiscale model, this leads to layers of models. The mapping from
genotypes to parameters can in principle be experimentally
measured. With current technology this is in most cases a daunting
task, but considerable insight can be obtained even if one does not
have detailed information about this mapping.

This research programme idea was stated explicitly
by Jim Burns (1970) in one of the symposia led by
Conrad Waddington that resulted in the three-volume
work Towards a Theoretical Biology: “It is the quantitative
phenotype, arising from the genotypic prescriptions and
the environment, which is of critical importance for the
cell’s survival and which therefore features in population
genetic theory. A study of this synthetic problem would
thus, by providing genotype–phenotype mappings for
simple synthetic systems, help to connect two major areas
of biological theory: the biochemical and the population
genetic.”

By linking genetics with computational physio-
logy, the cGP programme opens up a research
field whose explanatory domain in principle
encompasses all phenotypic patterns associated with
the genotype–phenotype relation. This includes the
description of phenotypic plasticity as a function of
genetic variation in mechanistic terms, i.e. how a given
genotype may produce different phenotypes due to
environmental change. Even though it is early days, this
research programme has already provided results that
go well beyond the explanatory domains of traditional
statistically oriented genetics theory construction.

Over the last 30 years there have been several studies on
the genetics of generic models of metabolic networks (e.g.
Kacser & Burns, 1981; Keightley & Kacser, 1987; Keightley,
1989; Bagheri & Wagner, 2004; Fiévet et al. 2010). From the
late 1990’s, several groups reported various quantitative
genetic properties of generic models of gene regulatory
systems (e.g. Wagner, 1994; Gibson, 1996; Frank, 1999;
Johnson & Porter, 2000; Omholt et al. 2000; Gilchrist &
Nijhout, 2001; Bergman & Siegal, 2003). In the last 10
years a number of organism-specific studies have revealed
novel insights; e.g. on galactose metabolism (Peccoud
et al. 2004), sporulation efficiency (Gertz et al. 2010) in
yeast, control of flowering time in Arabidopsis thaliana
(Welch et al. 2005), signal transduction in the invertebrate
phototransduction system (Pumir & Shraiman, 2011) and
action potentials and calcium dynamics in mammalian
myocytes (Silva et al. 2009; Vik et al. 2011; Wang et al.
2012). These studies exemplify the insights and patterns
to be discovered. In the following sections we provide
a few illustrations of how such studies lead to new
understanding of the link between non-linear dynamics
models of biological systems and classical genetic
theory.

Illustrations of insights provided by cGP modelling

Link between single locus genetics and physiology In
this era of genomics one may easily get the impression
that single-locus genetics is a bygone activity. But this is
far from being the case as much of current experimental
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physiology is devoted to understanding the physiological
implications of variation at a single locus. In standard
genetics theory additive and dominant gene action in
diploids are defined by comparing heterozygote and
homozygote phenotypes. Because these concepts just
compare the phenotypes of three different genotypes they
cannot serve directly as mediators between genetics theory
and physiology. Gjuvsland et al. (2010) introduced the
concept of allele interaction for studying non-additivity in
each diploid genotype based on monoallelic knockouts
(so-called hemizygotes). By targeting the degree of
functional dependency between the two alleles composing
each genotype of a given locus, allele interaction allows a
straightforward link between regulatory biology and single
locus genetics. This enriches single locus genetics with a
number of new features, and leads to the conclusion that
in terms of biological mechanism, genetic dominance is
given by a specific relationship between the allele inter-
actions of all the three genotypes. This represents, to the
best of our knowledge, the first real epistemic refinement
of the genetic dominance concept since it was introduced
by Gregor Mendel 150 years ago.

The study demonstrates how the allele interaction
in each genotype is directly quantifiable in gene
regulatory models, and that there is a unique, one-to-one
correspondence between the sign of regulatory feedback
loops and the sign of the allele interactions. This can
be used as an intellectual torch to search for feedback
loops across a whole range of physiological systems in
any diploid organism where allele-specific knockouts or
knockdowns are feasible.

Thus a closer look at one of the oldest concepts in
genetics in a computational physiology setting appears
to have disclosed a new experimental approach on
how to identify intricate intra- and inter-locus feed-
back relationships in eukaryotes as well as providing a
most needed directly operational conceptual link between
genetics theory and regulatory biology.

Describing and analysing high-dimensional multiscale
genotype–phenotype maps The study by Vik et al. (2011)
on an in silico heart cell summarized in Box 1 showed
that the cGP framework is useful for understanding
how different genetic phenomena, such as intralocus
dominance, interlocus epistasis and varying degrees of
phenotypic correlation, arise in physiological systems. Of
particular biomedical relevance, the study showed how the
cGP approach can be used to disclose penetrance features
as a function of regulatory anatomy and genetic back-
ground. Thus here we have a tool to systematically study
the phenotypic masking and release of genetic variation
and thus understand how, without any change in the
regulatory anatomy of a physiological system, traits may
appear monogenic, oligogenic or polygenic depending

on which genotypic variation is actually present in a
population.

The relationship between inputs (initial conditions
and model parameters) and outputs (measures of
model dynamics and behaviour) in computational
physiological models may be high-dimensional and
complex. In this study, however, sensitivity analysis
showed that the effects of genetic parameter variation on
higher-level phenotypes such as action potential duration
and calcium transient amplitude were quite sparse.
Furthermore, the study showed that sensitivity analysis
together with virtual experiments can disclose biologically
important parameter variation that would otherwise go
undetected. This implies that cGP models may be used
to suggest experimental perturbations and measurements
to reveal important context-dependent genetic
variation.

The study described above shows how cGP modelling
can be used to gain important new insights, and in fact
build theory on, for example, the relationship between
penetrance and regulatory anatomy, even without being
able to describe the genotype to parameter map in causal
terms. In some cases, however, it is already possible to
make a direct link between specific genetic variation and
high-level phenotypes. An epistemically very important
first step in this direction has been made by combining
molecular dynamics models of individual ion channels
with channel Markov models that can then be introduced
into single cell models and from there into whole organ
simulations (Silva et al. 2009; Box 2 and Fig. 2). This
strategy links genetic variation in the coding parts of
genes to variation in the properties of protein channels
up to variation in whole organ phenotypes (Fig. 1). This
represents a significant achievement and provides a very
strong framework for linking genetic variation with whole
organ function, and it points to a future where not only
many more ion channels can be addressed in this way, but
where also gene regulatory models will link a much wider
class of genetic variation to cellular phenotypes that have
impact on higher-level function. This will lead us toward
a long term goal of cGP research, namely to combine
high-resolution physiological models with the complex
genetic variation found in human populations. The next
section describes one preliminary step in that direction.

GWAS: Model parameters are containers of missing
heritability Genome-wide association studies (GWAS)
of human traits have generally failed to explain more
than a small proportion of the heritable variation. This
so-called ‘missing heritability’ is perhaps the major
challenge in current biomedical genetics (Maher, 2008;
Manolio et al. 2009; Allen et al. 2010; Eichler et al.
2010; Park et al. 2010; Makowsky et al. 2011), and the
realization that the genotype–phenotype map is more
complex than expected necessitates the development of

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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Box 1. A cGP model of the action potential of a heart muscle cell

Vik et al. (2011) explored, characterized and analysed the GP map for a detailed model of a mouse heart cell (Li et al. 2010).
Biological system. The heart cell model describes the flow of ions across the cell membrane and between different

compartments of the cell. This flow of ions achieves the two main functions of the cell: To contract the heart muscle, and to
propagate an electrical signal. The cell ‘charges its battery’ by moving many positive ions out of the cell fluid. Once it is
charged, an electrical impulse will cause the cell to ‘fire’, as ion channels open to allow rapid depolarization, producing a
signal that propagates to neighbouring cells. Muscle contraction, on the other hand, is triggered by the release of calcium
into the cytosol. Initially, calcium is sequestered into special compartments, until depolarization triggers its release.

Multilevel phenotypes. The main cell-level phenotypes of this model are the action potential and calcium transient, i.e. the
time courses of the transmembrane potential and cytosolic calcium concentration, respectively. However, many subcellular
phenotypes can be observed and studied experimentally, in particular the ion currents that make up the action potential and
calcium transient and are carried by specialized protein complexes called ion channels (see Box 2), of which there are many
types and many instances of each type within a given cell. Ion channels help or hinder the passage of ions (particularly
calcium, sodium, and potassium) across the cell membrane, opening or closing in response to conditions such as ion
concentrations or transmembrane potential. Ion channels differ in their thresholds, as well as in how fast they switch
between states. The structure and function of ion channels is well understood, and can be observed and experimentally
manipulated (Molleman, 2002). In particular, stepwise changes in transmembrane voltage can be induced to study the
voltage-dependent conformation switching behaviour and ‘memory’ of ion channels, offering a common basis for comparing
the ion-channel behaviour of different cell types, models, or parameter scenarios.

Disease phenotype. Normal heart function requires both relaxation (to fill the heart chambers with blood) and contraction (to
pump blood out to the body). Using the calcium transient as a proxy for contraction and relaxation, cell dynamics was
categorized as ‘failed’ if the peak was below 50% of baseline (illustrating failure to contract), if the base was more than
200% of baseline (failure to relax), if amplitude was less than 50% of baseline, or if dynamics failed to converge within
10 min of simulated time.

Virtual experiments. Muscle cells require external stimuli to exhibit their characteristic dynamics, and different experiments are
designed bring out different aspects of the behavioural repertoire of the system. The simulated heart cells were subjected to
four different protocols: Pacing at regular intervals, to mimic the normal function of the heart; two-step voltage clamping to
observe the voltage-dependent activation of ion currents; variable-gap voltage clamping to study the recovery from
inactivation; and quiescence as a ‘null experiment’ (no stimulus).

Genotype to parameter map. For purposes of illustration, it was assumed that each model parameter was determined by one
biallelic locus, with genotypic values of aa = 50%, Aa = 100%, and AA = 150% of the baseline parameter estimate.

Genotype generation. The effects of the hypothetical genes were estimated by an initial sensitivity analysis describing the
percentage change in each scalar phenotype per percentage change in each model parameter. For a subset of the parameters,
all possible combinations (i.e. a full factorial design) were generated to study higher-order parameter interactions.

new methodology. The cGP framework offers a promising
approach by exploiting the fact that parameters of physio-
logical models are intermediate-level phenotypes linked
by a causal mathematical structure.

Wang et al. (2012) introduced this approach by doing
genome-wide association studies on virtual populations
of heart cell models. Parameter values for an individual
were generated by randomly sampled effects of simulated
SNPs. Genotypes with realistic linkage disequilibrium
between SNPs were derived from the HapMap database
(Fig. 3). The GWAS was much more successful when
it targeted variation in model parameters than the
cell-level phenotypes directly. Furthermore, the GWAS
results for the cellular phenotype groups were pre-
dominantly a consequence of the sensitivity structure of
the dynamic model. SNPs associated with traits that were
sensitive to few parameters had a higher penetrance than
SNPs associated with traits that were sensitive to many
parameters for a given model resolution. This shows how
sensitivity analysis can be used to systematically reveal
hotspots for genetic variation underlying a complex trait,

focusing attention on the SNP variation that affects the
parameters to which the trait is most sensitive, and thus
identify those parameters (i.e. phenotypes) that should be
priority targets of phenotypic screening programmes (see
below).

Thus, letting GWAS studies be guided by computational
physiology can reveal much more of the variation
underlying phenotypic variation of complex traits and at
the same time disclose how this genetic variation actually
influences the high-level phenotypic variation in causally
cohesive terms. Even though we will most likely see
improvements in statistical genetics methodology to reveal
causal genetic variation in coming years, we claim that
in terms of gaining biological understanding the impact
of such methodology will be substantially enhanced by
combining it with computational physiology.

Accounting for the influence of environment Statistical
genetics acknowledges the effects of environment on
the genotype–phenotype relationship by estimating

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society
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Box 2. Refining the genotype-to-parameter map: From nucleotide mutation to protein conformation to state switching in ion
channels

Cardiac ion channels are prime candidates for realistic genotype-to-parameter mapping, being quite low-level parameters
whose genetic variation has been well studied (Roberts & Brugada, 2003; Roepke & Abbott, 2006; Sanguinetti &
Tristani-Firouzi, 2006). Silva et al. (2009) used protein folding models to predict effects of amino acid substitutions on
conformation stability and transition rates in ion channels, developed Markov models as a higher-level approximation, and
verified the results experimentally for some mutations (Fig. 2). For small perturbations in overall structure, and particularly for
the voltage-sensing region of voltage-sensitive ion channels, this marks a major advance in the state of the art in mapping
genetic variation to physiological parameters.

Whole-cell models of cellular electrophysiology usually lump together the combined activity of many instances of an ion
channel. Thus, they describe how transmembrane voltage changes due to ion currents:

Rate of change in voltage = (Capacitance of cell membrane) × (Current 1 + Current 2 +. . .)

What drives the current is the difference in ion concentration between the inside and outside of the cell, as well as differences
in electrical charge concentration. At a certain transmembrane voltage, those forces cancel and there can be no net current.
Thus, a typical ion current is modelled as:

Current = (Amount of ion channel) × (Proportion of channels that are open) × (Voltage – Equilibrium voltage)

As indicated, not all ion channels are open at any given time. The ion-channel proteins flicker between open and closed states.
In voltage-sensing ion channels, the opening and closing rates depend on transmembrane voltage in a way that depends on
the amino acid side chains of the ion channel’s voltage-sensing domain. Thus, the sequence of DNA that codes for this protein
domain has a very direct effect on model parameters.
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Figure 2. Bridging the genotype–phenotype gap with data and models at multiple phenotypic levels
A, three-dimensional structure of KCNQ1 potassium channel, looking in from outside the cell. The channel consists
of four subunits with six segments (colour-coded). Pore regions (S5–S6) of one subunit interact with the adjacent
subunit voltage-sensing region (S1–S4). B, alternative metastable conformations of the subunits, only one of which
permits ions to pass. C, energy landscape of conformations as characterized by translation and rotation of the
S4 segment, shown here for transmembrane voltage Vm = 0 mV. Labels P, IC, DC refer to conformations in B.
D, Markov model that simplifies the state space of the ion channel into discrete states. Only when all 4 subunits
are in the permissive state (P) on the energy landscape, can the channel open (transition to O1) to generate
current. E, recorded traces from single ion channels, showing stochastic switching between open and closed
states. F, macroscopic current; the sum of 1000 single channels. Both individual traces and macroscopic current
can be directly simulated from the Markov model. G, effects of mutation on macroscopic current, as observed
and as simulated via protein conformation stability and the Markov model. Modified from Silva et al. (2009), with
permission.
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the so-called ‘genotype × environment interaction’. This
measure serves several purposes well, but it does not
convey underlying causal mechanisms and can thus
only identify phenomena in need of explanation. In
contrast, because the effects of environment can be
directly built into computational physiology models, the
cGP approach provides both an explanatory and a pre-
dictive framework. The environment-phenotype map
for a given genotype (or ecotype or species) has been
extensively studied in ecological genetics, where it is
called a reaction norm (Pigliucci, 2001). This concept is
important because the fitness of a parent depends on
the undetermined environment of its future offspring.
Hence, many organisms are phenotypically plastic, so
that the same genotype can result in strikingly different
behaviours, morphologies or life histories depending on

both abiotic (e.g. temperature, pH, nutrient availability)
and biotic factors (e.g. predation risk, competition for
mates).

Plant physiology in particular has pioneered the
explicit incorporation of environmental effects in cGP
studies. Factors such as temperature, pH, humidity and
nutrients are often highly variable, easily logged, and
have obvious physiological effects that are already well
understood and modelled. Good illustrations are models
of crop yield whose parameters are linked to genomic
variation and where temperature and vapour pressure
are environmental inputs (Hammer et al. 2006) and a
model describing how the photoperiod works through
gene regulatory networks to determine flowering time
in pea (Wenden et al. 2009). A conceptually similar, but
arguably more difficult challenge is to account for lifestyle
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Figure 3. Virtual genome-wide association analysis, looking for DNA variation to predict phenotypic
variation
Targeting model parameters as intermediate phenotypes (C) proved more efficient than targeting top-level
phenotypes alone (B). Panel A shows how a heart cell model, a genetic map and a virtual population are tied
together by selecting heart model parameters assumed to be under the influence of genetic variation and
associating the parameter variation to DNA variation (single nucleotide polymorphisms, SNPs) on virtual genomes.
Individual genotypes are mapped into heart model parameters (steps 1–3), and by running the heart cell model
parameters are mapped into cell-level phenotypes (step 4). Finally, GWAS analysis is then performed on the virtual
population (step 5). (Fig. 1 of Wang et al. 2012). Panel B shows the variance in cellular phenotypes that could
be explained using causal SNPs detected in GWAS targeting these phenotypes directly. Panel C shows improved
results when using causal SNPs obtained from GWAS targeting all genetically controlled parameters. Each boxplot
summarizes total explained variance by GWAS for 100 Monte Carlo runs. (Modified from Wang et al. 2012).
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and environmental factors in models seeking to describe
the etiology of complex disease.

The biomedical utility of cGP modelling

There is in principle no limit to the complexity of
biological models that can be used in a cGP context.
In the not too distant future, the cGP programme in a
multiscale and multiphysics context will probably give
us an extensive understanding of how different types
of genetic variation propagate and manifest in different
environmental and physiological settings and genetic
backgrounds. Investigation of the GP map associated with
high-level phenotypes manifest at the level of the whole
organism requires computational models integrating
molecular-, cellular-, tissue-, and organ-level processes to
high-level function. Developing such models is the goal of
the IUPS Physiome Project (Hunter & Borg, 2003) and a
number of related efforts organized under the Physiome
banner. The Virtual Physiological Rat (VPR) Project
represents one international effort recently organized
along these lines, using the laboratory rat as a model
physiome (Beard et al. 2012).

If we are to probe deep into the etiology of complex
disease and develop efficient therapies, where the genetic
dimension is included, we will most likely be forced to
deal with quite complex multiscale models in most cases.
However, one should not underestimate the importance
of simple models. Such models have proved very useful
when the goal is to unravel unifying principles underlying
specific biological phenomena (Alon, 2006), and can also
have direct clinical relevance, e.g. cancer chronotherapy
(Altinok et al. 2007). But in general, we think the pre-
dominant role of such models in a biomedical GP map
context is to contribute to the epistemic foundation for
integrative models of wider clinical utility.

Considering what computational physiology has
already achieved with relatively moderate resources, we
are confident that cGP models of practical utility for
personalized medicine are within reach. However, how
long this will take, and how far-reaching and trans-
formative cGP models will become, depends very much
on the broader biomedical community and its ability to
start collaborating on defining, financing and pursuing
the wide array of concerted theoretical-experimental R&D
programmes that are needed to bring the necessary
knowledge, methodology and technology to the table.

Ontogeny: the ultimate cGP modelling challenge

Hopefully, the emergence of multiscale and multiphysics
modelling will also put us in position to start to make
real headway in what may be considered to be the
ultimate cGP modelling challenge, namely the description

of the ontogeny (and associated themes) of organisms
where the genetic and environmental dimensions are fully
incorporated (Alberch, 1991; Pigliucci, 2010).

A particularly illustrative step in this direction is
a dynamic model of tooth shape in ringed seals
(Salazar-Ciudad & Jernvall, 2010; Fig. 4), where dentitions
show a high degree of variation. Despite the complexity of
dental variation in ringed seals, the model is able to mimic
the range of variation by simple changes to the parameters
describing the functioning of the signalling network and
cell and tissue biomechanical properties known to underlie
the morphological development of teeth. Changes in single
parameters regulating signalling during cusp development
were shown to explain shape variation among individuals,
whereas a parameter regulating epithelial growth was
shown to explain serial, tooth-to-tooth variation along
the jaw. As variations of these parameters are partly
under genetic control, this insight accords very well
with the general scheme depicted in Fig. 1. What the
genotype-to-parameter map looks like in this case we do
not know, and even though the physics involved in tooth
development was modelled in a quite rudimentary way,
the results show that the cGP programme can successfully
target developmental phenomena long before all the
biological details are in place.

Considering the ongoing efforts to model
developmental processes in several model organisms based
on comprehensive phenotyping and experimentation
(Tomlin & Axelrod, 2007; Band et al. 2012) and the fact
that the bioengineering community is now increasing
its efforts to develop sophisticated conceptual and
methodological machinery for describing biological
growth (Humphrey & Rajagopal, 2002; Lubarda & Hoger,
2002; Taber, 2006; Lage et al. 2010; Jones & Chapman,
2012), we are quite confident that causally cohesive
explanatory bridges for developmental systems will be
successfully constructed in ever more detail in the years to
come. However, these efforts, and several others, would
benefit substantially from a tighter connection between
cGP modelling and bioinformatics.

Linking bioinformatics with cGP modelling

The analysis of -omics data routinely produces vast
networks of associations, e.g. between genetic variability,
protein expression, and disease-related phenotypes (Joyce
& Palsson, 2006). Analyses of network structure have
yielded many valuable biological insights. Cause and effect
can to some extent be identified by Bayesian network
analysis, though this framework struggles to incorporate
time and feedback, the main characteristics of dynamical
systems (Sieberts & Schadt, 2007). Several other modelling
frameworks have been applied to infer features of the
underlying dynamic processes (Machado et al. 2011),
e.g. Boolean networks and simple Petri nets. However,

C© 2013 The Authors. The Journal of Physiology C© 2013 The Physiological Society



J Physiol 591.8 Bridging the genotype–phenotype gap 2063

utilizing -omics data in models of physiological mechanism,
such as differential equations or continuum mechanics,
poses fundamental challenges in parameter identifiability
(Tarantola, 2004, 2006; Aster et al. 2012) as well as
computation. We suspect that the realization will emerge
that current physiological models are often much more
complex than existing phenomics data can support. Being
able to iterate between different levels of model complexity,
recognizing pattern and focusing in on mechanism, will
be essential in making use of the best data we are likely to
get (Tenazinha & Vinga, 2011).

We believe many important next steps can be made
using existing data and models. The immediate obstacle
is that model components are not properly annotated.
It is currently an overwhelming task to browse through
genomics databases for polymorphisms related to a given
model parameter, to extract candidate models for a
given cell type in a repository, or to confront models
with commensurable experimental data. However, this
situation is about to change, as the standardization of
ontologies is giving precise technical meaning to data and
model resources (De Bono et al. 2011). Many -omics
databases are already ontologically annotated, whereas
the annotation of model repositories is in its infancy.
Making model and data resources speak the same language
enables large-scale machine processing of biologically
meaningful queries. For bioinformatics, this is a major
step forward and it will transform computational physio-
logy by facilitating faster and more relevant confrontation
with data.

The need for dramatically improved phenomics

Phenotype space is a vast place, and the development
of phenomics will always demand prioritizing what
to measure (Houle et al. 2010). We claim that this
prioritization will benefit tremendously from being guided
by computational models of how phenotypes are created
and maintained in causal terms and not by simple
conceptual models. At the same time, for this modelling
work to really become transformative, it is mission critical
that it becomes nourished and confronted by massive
amounts of data that only a mature phenomics technology
can provide.

Full understanding of how genetic variation causes
phenotypic variation of a complex trait requires a
mathematical representation that extends from cells
to tissues, organs and the whole-organism level. Such
representations will have to encompass a hierarchy of
descriptions at different length and time scales spanning 9
and 15 orders of magnitude, respectively (Hunter & Borg,
2003). A much improved phenomics may quantitatively
and qualitatively enrich the intimate relationship that
exists between experimental measurement and multiscale
model construction and validation. For example, a
model ensemble of the mammalian heart is now
emerging, incorporating electrical activation, mechanical
contraction, fluid mechanics, energy supply and
utilisation, cell-signalling and many other biochemical
processes capable of linking gene sequences and protein
pathways to the integrative function of cardiac cells,

Figure 4. Linking genotype to phenotype through gene networks and tissue mechanics
A, cell behaviour is characterized by a combination of parameters for gene network properties and cellular
properties. B, tissue morphology emerges from a model where the mesenchyme is a three-dimensional space
in which molecules and mechanical stresses diffuse (mesh connects cell centres; colour indicates the diffusing
inhibitor). C, the developing tooth shape at regular time intervals, starting from seven cells representing the tip
of the oral epithelium invagination, where A–D in the last panel identify seal tooth cusps. From Salazar-Ciudad &
Jernvall (2010) with permission.
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tissues and the intact organ (Fink et al. 2011). Much of
the experimental data needed requires time-consuming,
expensive efforts by highly trained personnel. For example,
standard phenotyping of a mouse heart to obtain a
minimal set of data for model parameterization, may
involve in vivo MRI measurements of volume, surface
area and velocity, magnitude and direction of the myo-
cardium left ventricular volume (Pautler, 2004) but also
several other high-resolution features (Sosnovik et al.
2007): mounting of the heart in a Langendorff rig to
obtain left ventricle pressure–volume data (How et al.
2005); the mounting of dissected right ventricle trabeculae
in another rig to measure force and heat generation, to
do calcium imaging, and perform patch clamping (Han
et al. 2009); and finally fixation and slicing of the heart
to obtain fibre orientation and other structural data by
confocal imaging (Young et al. 1998). This laborious
‘business-as-usual’ phenotyping provides a very modest
amount of information compared to the high-dimensional
spatiotemporal phenotypic data from several individuals
that is really needed for making fast progress.

It is an embarrassing fact that age is still the best pre-
dictor for many complex diseases. A major reason for this
is that biological ageing (senescence) leads to frailty, a
syndrome of decreased reserve and resistance to stressors
causing vulnerability to adverse outcomes (Fried et al.
2001). This implies that we sorely need to understand
frailty in quantitative terms if we are really going to get a
grip on the etiology and treatment of complex diseases.
That is, we need to make the physiology of the ageing
individual a mathematical object. The data requirements
for this endeavour may be much more complex than for
understanding the physiology of the young, because ageing
is a stochastic process and manifests in many different
ways and anatomical locations (Wilkinson, 2009). New
phenomics technology will be essential for the making of
multiscale physiological models of the effects of ageing.

Engineers can take much of the credit for the very
fast improvements in genome sequencing technology
we are now witnessing. Considering the diversity of
technologies required, the development of a mature
phenomics technology will need to involve far wider
sectors of the engineering community than we have seen
up to now for genomics. To the gain sufficient momentum
in this direction it would have been most helpful with
an internationally funded Human Phenome Programme
solidly grounded on biophysically sound mathematical
descriptions of human physiology.

Concluding remarks

So what does it take to the bridge the genotype–phenotype
gap? Our message is in principle quite simple. The
functional genomics community should stop applying
misconceived anthropomorphic metaphors for how

DNA works in biological systems, and instead start
to acknowledge that it is completely dependent on
adapting the vocabulary of physiology to understand
gene function. The physiological research community,
on the other hand, should to a greater extent embrace
the fact that the disciplinary goals of physiology demand
an understanding of the mechanisms underlying the
genotype–phenotype map. Biology is par excellence the
realm where we observe the most varied and complex
manifestation of non-linear system dynamics on the
planet. To hope for a deep causal understanding of the
genotype–phenotype relation without making use of the
vocabularies designed for describing and analysing such
dynamics is wishful thinking. A thorough mathematically
phrased and biophysically based understanding of what
causes the variation of phenomes as a function of genetic
and environmental variation will not only transform
drug design, personalized medicine, production biology
and biotechnology, but also foster very sophisticated
engineering in several technology areas. We think this level
of understanding is within reach, even though it awaits
several technological, conceptual and methodological
breakthroughs.
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